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In this section we detail the Soil Water Assessment Tool (SWAT)
modeling of the Verde River Basin study area (Table S1) and
identify and summarize the hydrologic and climatic data sources
included in the modeling. We also describe additional analyses
of continuity and connectivity metrics including the Dendritic
Connectivity Index (DCI) calculation and report on late 21st
century differences in flow continuity and connectivity.

SWAT Modeling Calibration and Performance. We simulated stream-
flow at a daily time step over a 20-y calibration period and in-
dividual 19-y validation andmodeled current, forecasted mid-21st
century and forecasted late 21st century time periods. A 19–20 y
simulation period maximized the available historical data for all
of the representative stream gauge stations and climate stations
used in the hydrologic model. In addition, this simulation period
is considered suitably representative for hydrologic analyses be-
cause hydrologic metrics tend to stabilize with >15 y of data (1).
All simulations included a 3-y warm-up period before the sim-
ulation period. Model performance was evaluated for both the
calibration and validation periods at a monthly and daily time step.
Landscape and climate data used in SWAT modeling were

obtained from a variety of public access sources (Tables S2–S5)
(2). We assigned discharge output locations, referred to as
“nodes,” at an ∼2-km interval along the Verde River main stem
(264 km in total upstream of Horseshoe Reservoir) and 11 of its
major tributaries. This 2-km interval distance reflects a reason-
able compromise between channel length distances that are
ecologically meaningful in terms of habitat connectivity and
documented dispersal distances for regional fish species and the
range of spatial resolution (30-m elevation and land cover data
to 1° forecasted climate data) among the landscape and climate
data used in the SWAT modeling. The hydrologic model for the
VRB was built and initially parameterized using ArcSWAT
(v 2009.3.7 with SWAT2009 v 481) (3), a GIS interface software;
calibration was conducted using SWAT-CUP4 and SWAT2012 v
585 (4). All subsequent simulations (e.g., validation and fore-
casted periods) used SWAT2012 v 585.
We calibrated the SWAT model using a 20-y time period (1968–

1987) of 7 US Geological Survey (USGS)-operated stream gauges
(3 along the Verde River main stem and 4 in downstream por-
tions of tributaries) and 43 National Climatic Data Center
(NCDC)-operated climate stations. This suite of stream gauges
and climate stations collectively represent the variability of
streamflow characteristics of both the tributaries (e.g., from
ephemeral to perennial) and along the length of the Verde River
main stem as well as the spatial variability of precipitation
patterns in this desert climate (Tables S2–S5). We used a
multigauge autocalibration procedure using the Particle Swarm
Optimization (PSO) algorithm on 21 SWAT parameters that
influence discharge (4) (Table S6). This procedure is a preferred
optimization method because it is found to generate more ac-
curate results in fewer model iterations (5). For each stream
gauge, the calibration procedure identified SWAT parameter
values for contributing subbasins to that gauge, which result in
the best fit between simulated and measured streamflow. A best
fit goal for each iteration was based on the Nash–Sutcliffe co-
efficient of efficiency parameter (NSE; maximum value of 1 in-
dicates 1:1 simulated:observed fit). The calibration procedure
ceased after the specified best fit goal (NSE > 0.7) was achieved
or after 1,000 iterations, whichever occurred first. Next, the
calibrated parameters for individual subbasins that achieved the

highest NSE (best parameters) were adjusted to reflect realistic
values (e.g., neither negative nor unreasonably high values for
hydraulic conductivity nor negative values for channel roughness
coefficients). These final best fit parameters then were in-
corporated into the calibration procedure for the next down-
stream stream gauge until the final downstream stream gauge was
calibrated (Table S7). Basin-wide parameters (Table S6) were in-
corporated into the calibration of the final downstream gauge to be
comprehensively applied to all subbasins within the VRB.
Predictive performance of the SWAT model is evaluated

according to a suite of metrics chosen to assess different com-
ponents of the hydrograph and which illustrate more fully the
calibration skill (6, 7). We considered calibration to be complete
based on the best combination of evaluation metrics that achieve
or approach values considered acceptable as reported in the
literature (7–9) (Table S7 and Fig. S1). We specifically targeted
NSE (NSE > 0.5), Percent Bias (PBIAS within ± 25%), and
standardized root mean square error (RSR < 0.7) metrics. The
model was validated using a 19-y time period of 1988–2006, with
the exception of Williamson Wash, which was limited to a 5-y
validation period (2002–2006). A statistical comparison of daily
streamflow indicates that the calibration and validation time
periods display similar hydrologic characteristics (10). Approxi-
mately 90% of the dataset (12 mo for seven stream gauges) did
not show statistical differences in monthly mean, total, and
maximum streamflow.
The SWAT model reasonably simulated streamflow response

to precipitation. The SWAT model accurately simulated base
flow throughout the VRB and skillfully captured individual
streamflow events, although peak discharge magnitudes tended to
be under simulated for individual events (Table S7 and Fig. S1).
In addition, consistent downstream trends and general agreement
among adjacent nodes reflect reasonable streamflow routing
processes. Only seven nodes dispersed along the main stem and
one node in both Sycamore and Granite Creeks (3% of the total
of 300 nodes analyzed in the VRB) did not adequately perform
streamflow routing processes, which resulted in streamflow values
that were more than 1 order of magnitude smaller than both the
adjacent upstream and downstream nodes. In these nine cases, we
removed these nodes from the analysis and replaced them with
assigned streamflow values that were the computed average of the
immediately upstream and downstream node for each day of the
simulation period.
Base flow in the VRB is partially supported by groundwater

input from two regional aquifers (11, 12). Although climate-
induced impacts to groundwater systems are expected, the di-
rection and magnitude of change remain poorly understood (13)
and thus are difficult to formally integrate into the hydrologic
modeling. We report on climate-induced changes in pre-
cipitation runoff patterns, which focus on surface and near-sur-
face hydrologic processes. We do not include an evaluation of
climate change response to aquifer water resources with the
understanding that potential changes to groundwater may be
overshadowed by impacts associated with ongoing groundwater
extraction (14).

Modifications to SWAT Model to Account for Forecasted CO2

Concentrations. The SWAT model used for all five simulation
periods was a modified version to account for adjustments in
evapotranspiration processes under elevated CO2 concentrations
(detailed in ref. 15) as a function of different vegetation types.
CO2 concentrations for each simulation period are based on
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either mean concentrations as reported by the Mauna Lao Ob-
servatory (e.g., 330 and 360 ppm for calibration and validation
periods, respectively) or projected values under RCP8.5. We
used 489 ppm for midcentury CO2 concentration and 800 ppm as
a late century CO2 concentration with the understanding that the
forecasted 1,370 ppm is not expected to occur until the end of
the late century simulation period.

Precipitation and Temperature Comparison Between Current and
Future Periods. We used forecasted precipitation and average
temperate data from a multimodel mean (mmm) analysis that
included 16 global circulation models (GCMs, 16-mmm) at 1° by
1° spatial resolution and a monthly time step (2). Mean climate
data from the 16 GCMs (Tables S2–S5) were downscaled using a
proportional change factor (CF) approach in which observed data
were multiplied by a time- and station-dependent constant factor
to generate a daily synthetic record that corresponds to the mod-
eled monthly climatic patterns (16–18). Thus, for the precipitation
record, in each of the 19-y time periods under consideration,
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where PðobsÞ
k ðtÞ is the time record of observed daily precipitation

values at climate station k, CFkðtÞ is the time-dependent change
factor for station k, and PðadjÞ

k ðtÞ is the adjusted synthetic pre-
cipitation record to be used as downscaled climate data during
that period. A similar approach was used for temperature, in
which PkðtÞ would be replaced by daily mean temperature values.
Change factors were monthly mean proportions between

modeled and observed precipitation (or temperature) for each of
the three time periods; CFs were computed between the in-
dividual 43 climate stations and the appropriate 1° by 1° grid cell
of modeled data corresponding to each. For example,

CFkðmonth½t�= JanÞ=

D
PðGCMÞ
k

E
JanD

PðobsÞ
k

E
Jan

; [S2]

where CFkðmonth½t�= JanÞ is the change factor to be applied
to all January daily precipitation data at station k, hPðobsÞ

k i is that
station’s average observed daily precipitation in January, and
hPðGCMÞ

k iJan is the 16-mmm average daily precipitation in January
at the grid point closest to station k. For temperature data, CFs
were computed using ratios of monthly mean temperatures in units
of Kelvin. We generated three 19-y CF-adjusted time series that
included current (1988–2006), mid-21st century, and late-21st cen-
tury periods.
The CF approach is a common, computationally straightfor-

ward downscaling method that provides climatic variables at
space–time scales for use in local watershed models to assess
climate impacts (18). It should be noted that for precipitation
data, the CF approach preserves the daily climate characteristics
of the observed record in terms of number of wet and dry days.
Thus, downscaled data in this study reflect forecasted changes in
monthly mean precipitation through changes in precipitation
event magnitude, rather than the frequency of discrete pre-
cipitation events. This approach is reasonable given the lack of
forecast information regarding changes of convective precipitation
event frequency in the Verde Basin, which is an important climate
data downscaling topic that warrants further study.
Monthly values from the 16-mmm reproduce characteristic

seasonal precipitation and temperature patterns that are gener-
ally consistent with observed monthly values. The 16-mmm
reasonably reproduces decreasing precipitation during spring,
which increases during the summer monsoon, followed by a dip
before increased winter precipitation (Fig. S2). Despite general

agreement in patterns, the 16-mmm both overpredicts pre-
cipitation by 52% for winter (November–February) and 75% for
spring (March–April) and underpredicts precipitation by 33%
during the summer monsoon season (Fig. S2). Spatially variable,
convective processes account for much of the precipitation in
this region, which remains a persistent challenge to effectively
model at the watershed scale (2). The 16-mmm underpredicts
monthly average temperature in the winter (26%) and over-
predicts during the summer monsoon season (10%) (Fig. S2).
Differences in the meanmonthly precipitation between the CF-

adjusted current period and both midcentury and late century
RCP8.5 precipitation for the 43 climate stations included in the
SWAT model reflect seasonal trends of the greatest decrease
(20%) in precipitation during spring (March–April) and slight
decreases (3%) in precipitation during winter (November–
February) (Fig. S3). Increased precipitation (7%) is projected
for the summer monsoon season (July–September). Similar but
amplified differences exist between the current and late century
time periods (Fig. S3). Average daily temperatures are fore-
casted to increase by 2.7 °C by midcentury on average and almost
5 °C over the entire year by late century. The greatest increase
is projected during the summer monsoon season (3.0–5.5 °C
increase) followed by spring (2.7–4.8 °C increase) and winter
(2.4–4.3 °C increase) by both midcentury and late century
(Fig. S3). These trends are consistent with other analyses of
projected change in this region (2, 19).
We consider the application of the 16-mmm data to CF

downscaling a practical and appropriate approach for two rea-
sons. First, the 16-mmm reasonably reproduces seasonal climatic
patterns that are similar to the observed record. Second, the
16-mmm demonstrates forecasted changes between current, mid-
21st century, and late 21st century precipitation and temperature
that are accepted in peer-reviewed literature (2, 19). However, to
account for discrepancies between the 16-mmm and observed
data, stream drying patterns are assessed between only
CF-adjusted time periods. Unadjusted observed data were used
only in the SWAT calibration and validation process.

Continuity and Connectivity Metrics. Continuity metrics including
the number of zero-flow days, number of zero-flow periods (no
units), and duration (days) of zero-flow periods were evaluated
annually and seasonally. Seasonal partitioning includes spring
(March–June) representing the dominant reproductive (spawn-
ing) period for resident fish, the summer monsoon (July–
September) coinciding with the period after summer low-flow
conditions and representing a period of rapid recolonization into
previously dry stream channels, and winter (November–February)
season representing network-wide redistribution of resources and
prespawning fish migrations during periods of highest hydrologic
connectivity. In the American Southwest, the climate during
October is characteristically different from both the monsoon
and winter seasons; consequently, we do not include October in
calculations for either of these seasons but do include the month
in the annual (overall) calculations.
Overall and seasonal mean differences in flow continuity

metrics between CF-adjusted current and future simulation
periods are presented for the Verde River main stem, 11
tributaries, and network-wide (Table S8). Values were computed
by first taking differences between midcentury and late century
mean zero-flow metrics and current mean zero-flow metrics
across all nodes within a river segment (e.g., main stem or in-
dividual tributary). Zero-flow metrics include mean zero-flow
days, periods, and period durations. Means of differences in zero-
flow metrics were then computed across all nodes within the river
segment. Increases in stream drying are predicted throughout
much of the VRB, particularly during spring followed by summer.
Increases in springtime stream drying will drive prominent
reductions in connectivity during this season.
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Dendritic Connectivity Index. Following Cote et al. (20), we eval-
uate habitat fragmentation based on daily SWAT simulation
output of the Verde River Basin using a DCI, where connectivity
is defined as the probability that an individual fish may move
between any two points in a river network. The DCI considers
the ability of fish to move upstream or downstream between
discrete patches of a dendritic system, where each pair of patches
has a shared connectivity value, in this case determined by the
number and passability of barriers to fish movement between the
two. The DCI is essentially an average connectivity (weighted by
length) between all possible pairs of patches, given by

DCI=
Xn
i=1

 
Xn
j=1

li
L
lj
L
cij × 100; [S3]

where n is the total number of individual patches, L is the total
dendritic system length, cij is the connectivity between patches i
and j, and l is their respective length. We consider a patch to be
any continuous segment of adjacent model nodes with nonzero
flow (a spatially continuous wet reach) and evaluate DCI using
Eq. S3, summing over all possible pairs of wet reaches, for each
day of model output.
The connectivity cij in Eq. S3 is a function of the number and

length of continuous zero-flow reaches, which we consider as
temporary dry barriers to fish passage, lying between two wet
reaches i and j. It should be noted that these dry fragments
represent a nonzero fraction of the total dendritic system length,
and on a day of model output in which there is at least one
barrier, the system will be less than 100% wet. That is,

Xn

i=1

li
L
< 1: [S4]

According to Eq. S3, the maximum achievable DCI for that
day will be less than 100, even if all cij = 1.
This is a slight extension of the DCI application of Cote et al.

(20) in which barriers were treated as fixed and each comprised
a node of negligible length between adjacent river segments.
We assume that the passabilities of individual dry reach barriers

are independent and further that the passabilities of these barriers
in the upstream ð pumÞ and downstream ðddmÞ directions are equal.
Under these conditions,

cij =∏
M
m=1p

u
mp

d
m =∏M

m=1ðpmÞ2; [S5]

where M is the number of dry barriers between wet reaches i and
j and pm is the bidirectional passability of the mth barrier.
We evaluate barrier passability pm as a function of barrier

length lm in two different ways. The exponential method models
pm as a continuously decaying function of lm, given by

pm =Ae−Blm ; [S6]

where A is the passability of a 0-km barrier and B scales the
decay of passability as dry reach length increases. This method
reflects generalized fish dispersal probabilities. Under the sec-
ond, threshold method, the passability of any dry barrier is in-
stead a binary function of its length:

pm =
�
1    if   lm ≤ λT
0    if   lm > λT

; [S7]

where λT is a variable threshold based on reported dispersal
distance for a given species. In this case, cij will equal 1 only if
all possible dry barriers between wet reaches i and j are equal to
or below the threshold length.

As hydrologic connectivity decreases in response to climate-
induced changes to streamflow, fish species will be required to
disperse through rewetted channels to recolonize suitable hab-
itats. In recent years a number of studies have supported the idea
of heterogeneous movement by fish where populations consist of
both stationary and mobile components (21, 22). The stationary
component is represented by a high peak in a leptokurtic dis-
persal kernel and is linked to the concept of fish home range,
whereas the mobile component is represented by the fat tail in
the leptokurtic dispersal kernel and reflects long-distance dis-
persal events. Mobile fishes are hypothesized to be responsible
for exchange between populations and thus are decisive for ge-
netic exchange and recolonization processes (23). In fact, the
movements of such highly mobile and far-dispersing individuals
better explain recolonization patterns compared with the overall
mean movement of a population (24).
To determine appropriate values of λT to be used in the binary

threshold method, we used fitted leptokurtic dispersal kernels
presented in meta-analysis by Radinger and Wolter (25) to
predict the median annual movement rate (km) of mobile in-
dividuals for native fish species of the Verde River Basin. By
analyzing 160 datasets from 71 studies encompassing 62 fish
species and 12 families, Radinger and Wolter (25) demonstrated
a strong statistical relationship between movement distance of
mobile individuals (σ) and four parameters that included fish
morphology (body length, BL; aspect-ratio of the caudal fin,
AR), river characteristics (Stahler stream order, SO), and time
duration of the study (T):

σ =−7:48+ 1:45BL+ 0:58AR+ 1:51SO0:5 + logð0:55TÞ: [S8]

See table 2 in ref. 25 for specifics on model architecture and
predictive performance. Specifically, BL was set to the maximum
recorded total body length (mm) for the species (26), AR
was derived from photographs of prepared specimens (26), SO
was defined as the maximum stream of the VRB or 6, and time
was set to 365 d. Notably, estimates of movement rates are most
affected by BL and T and vary little according to AR, SO, and
family membership. By inputting the maximum BL and maxi-
mum SO we take a highly conservative approach that assumes
the highest movement rate possible for an individual from each
species. Data are reported in Table S9.
To evaluate differences in the sensitivity of native fish species in

the VRB to habitat fragmentation, we use the binary threshold
method, with varying values of λT that reflect species-specific
median dispersal distances over a year period for a mobile in-
dividual. Our analysis revealed that predicted dispersal distances
is highly variable among species, with a range from ∼0.5 km for
Poeciliopsis occidentalis (Gila topminnow) to almost 30 km for
Catostomus insignis (Sonora sucker) (Table S9). Our premise was
that long reaches of continuously dry channels may serve as
a temporary barrier for some fish for which dispersal distances
are less than the length of that dry length (leading to stranding)
but may not be a barrier for fish with dispersal distances ex-
ceeding the dry channel length.

Late Century Continuity and Connectivity. Late century (2080–2098)
projected changes in continuity and connectivity are similar in
direction to midcentury trends but larger in magnitude (Fig. S4).
Greater increases in zero-flow days and frequency and duration
of zero-flow periods are expected to continue into the late
century with associated decreases in connectivity, specifically
seasonal declines in DCI in spring (26%) and monsoon (8%)
periods. The frequency and mean lengths of dry channel frag-
ments are projected to increase during spring and monsoon
seasons (∼25% and ∼5%), resulting in decreases (6% and 3%)
in the proportion of the river network that supports streamflow
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during these seasons. We attribute increases in stream drying
patterns between the middle and late century to projected con-

tinued patterns but larger-magnitude changes in both pre-
cipitation and temperature between these time periods (Fig. S3).
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Fig. S1. Graphical evaluation of SWAT simulation for tributary East Verde River (A–D) and the Verde River main stem above Horseshoe Reservoir (E–H), which
represents streamflow for the entire catchment. Graphical display includes the monthly total (A, B, E, and F) and daily (C, D, G, and H) discharge for both
calibration (A, C, E, and G) and validation (B, D, F, and H) periods. Numbers within the plotted area refer to discharge values that plot beyond the range of the y
axis scale.

Fig. S2. Mean daily precipitation (Upper) and average temperature (Lower) by month for observed, 16 GCM multimodel mean (16-mmm), and change factor
(CF) adjusted observed values for 1988–2006 time period. Observed values were adjusted using a CF approach to match 16-mmm values.
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Fig. S3. Mean daily precipitation (Upper) and average temperature (Lower) by month for the current time period (1988–2006) and the two forecasted time
periods (2046–2064 and 2080–2098). Current and forecasted time periods are under the RCP8.5 scenario and synthesized using a change factor method based
on a 16 GCMmultimodel mean (15) and observed daily data (1988–2006) from 43 climate stations within the VRB. Mean values for each month were computed
across the 43 climate stations located within the VRB for all three time periods.
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Fig. S4. Differences in flow continuity metrics (mean number of zero-flow days, zero-flow periods, and zero-flow period duration per year) (A) and
connectivity metrics (DCI using two-parameter exponential decay function) (B) and mean dry channel fragment length and frequency (C ) between
current (1988–2006) and late century (2080–2098) time periods. Projected late century differences are similar in direction to midcentury changes in
continuity and connectivity metrics but greater in magnitude.

Table S1. Hydrologic characteristics of the Verde River main stem and 11 tributaries included in
the study

River Drainage area, km2 Channel length, km Flow regime

Main stem Verde 15,800 264 Perennial
East Verde, RK 34 880 40 Perennial
West Clear Creek, RK 60 656 50 Perennial
Wet Beaver Creek, RK 70 1,165 34 Perennial
Dry Beaver Creek, RK 6* 609 14 Intermittent
Oak Creek, RK 86 883 50 Perennial
Sycamore Creek, RK 114 1,222 32 Perennial
Hell Canyon, RK 132 783 22 Ephemeral
Granite Creek, RK 150 785 6 Ephemeral
Williamson Wash, RK 158 782 26 Intermittent
Partridge Creek, RK 180 1,417 36 Ephemeral
Unnamed Tributary, RK 224 760 24 Ephemeral

The river kilometer (RK, referenced upstream from Horseshoe Reservoir) is the location along the main stem
at which each tributary confluences.
*Dry Beaver Creek flows into Wet Beaver Creek rather than directly to the main stem.
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Table S2. Public access sources for geographic and hydrologic data used in SWAT modeling

Data type Resolution Source Web address

Elevation 30 m National Elevation Dataset (NED) from USGS
Seamless Data Warehouse

http://seamless.usgs.gov/

Land cover 30 m National Land Cover Database (NLCD) 2006 www.mrlc.gov/index.php
Soil 1:250,000 USDS-NRCS General Soil Map (STATSGO2) http://soils.usda.gov/survey/geography/statsgo/
Climate Daily USDA Agricultural Research Service (ARS) derived

from NOAA
www.ars.usda.gov/Research/docs.htm?docid=19388

Streamflow Mean daily USGS National Water Information System http://waterdata.usgs.gov/nwis/rt

Table S3. List of 16 GCMs used to generate a multimodel mean of current and forecasted climate data (2)

Institute Climate model ID RCP8.5 runs

Canadian Centre for Climate Modeling and Analysis (CCCma) CanESM2 5
National Center for Atmospheric Research (NCAR) CCSM4 5
Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation

Avancees en Calcul Scientifiqu (CNRM-CERFACS)
CNRM-CM5 4

Commonwealth Scientific and Industrial Research Organization in collaboration with the
Queensland Climate Change Centre of Excellence (CSIRO-QCCCE)

CSIRO-Mk3-6-0 10

Geophysical Fluid Dynamics Laboratory (NOAA GFDL) GFDL-ESM2G 1
GFDL-ESM2M 1

NASA Goddard Institute for Space Studies (NASA GISS) GISS-E2-R 1
Institute for Numerical Mathematics (INM) INM-CM4 1
Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR 4

IPSL-CM5A-MR 1
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean

Research Institute (The University of Tokyo), and National Institute for Environmental Studies
MIROC-ESM 1

MIROC-ESM-CHEM 1
Atmosphere and Ocean Research Institute (The University of Tokyo), National

Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology
MIROC5 3

Max Planck Institute for Meteorology (MPI-M) MPI-ESM-LR 3
Meteorological Research Institute MRI-CGCM3 1
Norwegian Climate Centre (NCC) NorESM1 1

Table S4. List of the seven USGS operated streamflow gauges used
for model calibration and validation

USGS streamflow gauge station Latitude, longitude

Main stem
Verde River near Paulden (09503700) 34.895°N, 112.342°W
Verde River near Clarkdale (09504000) 34.852°N, 112.065°W
Verde River above Horseshoe Dam (09508500) 34.073°N, 111.716°W

Tributaries
Williamson Wash (09502800) 34.867°N, 112.613°W
Oak Creek near Cornville (09504500) 34.764°N, 111.890°W
West Clear Creek near Camp Verde (09505800) 34.539°N, 111.693°W
East Verde near Childs (09507980) 34.276°N, 111.638°W

Main stem stream gauge station sequence is in downstream direction; tribu-
tary sequence is in the north to south direction.
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Table S5. List of the 43 NCDC climate stations used for model
calibration and validation

NCDC climate station Latitude, longitude Elevation, msl

C023190P 33.6°N, 111.717°W 480
C020632P 33.817°N, 111.65°W 503
C024182P 33.983°N, 111.717°W 616
C021614P 34.35°N, 111.7°W 807
C020625P 34.033°N, 111.367°W 946
C025635P 34.617°N, 111.833°W 969
C022193P 34.75°N, 112.033°W 1,031
C028904P 34.767°N, 112.033°W 1,058
C028653P 33.883°N, 111.833°W 1,122
C028273P 33.917°N, 111.483°W 1,134
C024391P 34.4°N, 111.617°W 1,156
C020670P 34.667°N, 111.717°W 1,164
C026424P 34.9°N, 112.2°W 1,177
C022742P 34.35°N, 111.95°W 1,232
C027708P 34.867°N, 111.767°W 1,286
C023185P 34.417°N, 111.567°W 1,302
C025825P 34.317°N, 111.45°W 1,406
C021654P 34.75°N, 112.45°W 1,448
C028657P 34.617°N, 112.75°W 1,464
C026320P 34.233°N, 111.333°W 1,479
C024453P 34.75°N, 112.117°W 1,509
C029158P 34.933°N, 112.817°W 1,551
C024508P 34.967°N, 111.75°W 1,565
C020487P 35.233°N, 112.483°W 1,568
C020494P 35.217°N, 112.483°W 1,570
C026796P 34.567°N, 112.433°W 1,587
C027720P 35.133°N, 112.917°W 1,598
C027716P 35.333°N, 112.883°W 1,600
C020482P 35.3°N, 112.483°W 1,617
C020490P 35.283°N, 112.467°W 1,623
C026571P 34.383°N, 111.467°W 1,662
C026315P 34.4°N, 111.267°W 1,678
C021193P 34.4°N, 111.367°W 1,681
C021216P 34.8°N, 112.867°W 1,742
C020492P 35.267°N, 112.667°W 1,750
C029572P 34.683°N, 112.167°W 1,830
C025780P 34.933°N, 111.633°W 1,972
C029359P 35.233°N, 112.183°W 2,057
W03103P 35.133°N, 111.667°W 2,132
C023009P 35.167°N, 111.717°W 2,171
C023160P 35.267°N, 111.733°W 2,239
C023828P 34.75°N, 111.417°W 2,280
C025567P 34.7°N, 112.133°W 2,336

Climate stations are listed in geographic sequence collectively from north
to south and west to east. Station numbers are in parentheses. Modeled
current (1988–2006) and forecasted climate data for the future (2046–2064
and 2080–2098) time period simulations were applied to these climate sta-
tion locations.
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Table S6. SWAT parameters used to calibrate Verde River Basin hydrologic model

Parameter Process Range of values Mean value (SD) Units Description

CANMX Evaporation 0–100 50 (34) mm H2O Maximum canopy storage
EPCO Evaporation 0–1 0.51 (0.35) na Plant uptake compensation factor
ESCO Evaporation 0–1 0.43 (0.35) na Soil evaporation compensation factor
SOL_AWC Evaporation 0–1 0.54 (0.39) mm/mm Available soil water capacity
BIOMIX Infiltration 0–1 0.46 (0.35) na Biological mixing factor
CN2 Runoff 35–100 66 (24) na Curve number
SFTMP* Runoff −20–20 −1.03 °C Snowfall temperature
SLSUBBSN Runoff 10–150 80 (51) m Average slope length
SMFMN* Runoff 0–20 17 mm H2O/°C-day Melt factor for snow on December 21
SMFMX* Runoff 0–20 4 mm H2O/°C-day Melt factor for snow on June 21
SMTMP* Runoff −20–20 2.16 °C Snow melt base Temperature
SURLAG* Runoff 0.04–24 23.16 na Surface runoff lag coefficient
TIMP* Runoff 0–1 0.80 na Snow pack temperature lag factor
TLAPS Runoff −10–10 −0.19 (6.13) °C/km Temperature lapse rate
CH_K2 Streamflow 0–150, 295, 500† 143 (140) mm/hr Channel hydraulic conductivity
CH_N2 Streamflow 0.00001–0.5 0.23 (0.18) na Channel mannings roughness coefficient
ALPHA_BF Subsurface 0–1 0.49 (0.36) days Base flow alpha factor or recession constant
GW_DELAY Subsurface 0–500 247 (170) days Groundwater delay
GW_REVAP Subsurface 0.02–0.2 0.11 (0.07) na Groundwater “revap” coefficient (water movement

from shallow aquifer to the root zone)
GWQMN Subsurface 0–5,000 3,293 (1,547) mm H2O Threshold depth of water in the shallow aquifer

required for return flow to occur
REVAPMN Subsurface 0–500 6 (4) mm H2O Threshold depth of water in shallow aquifer for “revap”

or percolation to deep aquifer to occur

Range of values was applied to 422 individual subbasins that compose the VRB hydrologic model. Mean (SD) values are based on SWAT best parameter
values for the 422 individual subbasins.
*Basin-wide parameters are a single calibrated value applied to all subbasins.
†CH_K2 maximum values were 150 for the majority of the basin. Upper portions of the basin including Williamson Wash tributary and subbasins draining to the
Verde River at Paulden had increased CH_K2 values of 295 and 500, respectively, to reflect the naturally high hydraulic conductance of these ephemeral
channels.
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Table S8. Overall and seasonal mean differences in metrics of flow continuity

Name

Zero-flow days (difference) Zero-flow periods (difference)
Duration of zero-flow periods

(difference)

Overall Winter Spring Summer Overall Winter Spring Summer Overall Winter Spring Summer

Main stem VerdeP 6.2 0.6 3.8 1.5 0.5 0.1 0.3 0.2 0.5 1.5 0.2 0.2
East VerdeP, RK 34 4.8 0.2 3.6 1.1 0.1 0.0 0.2 0.0 1.9 −0.1 1.0 1.3
West Clear CreekP, RK 60 6.9 −0.2 7.1 1.3 0.4 0.0 0.3 0.2 −0.4 −0.7 1.7 0.2
Wet Beaver CreekP, RK 70 6.3 1.0 3.2 1.8 0.2 0.1 0.1 0.1 0.0 6.7 0.1 1.6
Dry Beaver CreekI, RK 6* 17.9 2.0 10.0 4.5 1.4 0.5 0.7 0.3 0.8 −0.1 1.2 0.5
Oak CreekP, RK 86 11.9 1.6 7.0 2.7 1.1 0.2 0.4 0.5 0.7 0.9 1.2 0.8
Sycamore CreekP, RK 114 7.3 1.6 4.4 0.8 0.8 0.2 0.4 0.2 0.9 1.3 1.0 0.1
Hell CanyonE, RK 132 1.7 0.0 1.1 0.6 0.2 0.0 0.2 0.0 0.1 0.2 −0.6 0.3
Granite CreekE, RK 150 1.4 0.6 0.9 −0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.2 −0.1
Williamson WashI, RK 158 5.2 0.4 3.7 0.9 0.2 0.0 0.2 0.0 1.1 1.9 0.7 0.5
Partridge CreekE, RK 180 1.0 0.1 0.5 0.3 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.2
Unnamed tributaryE, RK 224 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Network-wide 6.1 0.6 4.0 1.4 0.5 0.1 0.3 0.2 0.5 1.2 0.5 0.4

Number of zero-flow days, number of zero-flow periods, and duration (days) of zero-flow periods; between present-day and midcentury simulation periods
for the Verde River main stem, 11 tributaries, and network-wide. P, I, and E superscripts indicate present-day perennial, intermittent, and ephemeral hydrologic
regime, respectively. RK indicates the river kilometer (referenced upstream from Horseshoe Reservoir) along the Verde River main stem at each major tributary
confluence. Positive and negative values indicate an increase or decrease in continuity metric in the future simulation period compared with present-day
period, respectively. Differences are taken between modeled current and forecasted midcentury continuity metrics.

Table S9. Native fish species of the Verde River Basin and associated morphological
characteristics used to predict median movement distance per year for mobile individuals of the
population

Scientific name and common name
Maximum body
length, mm Aspect ratio

Median annual
dispersal distance, km

Poeciliopsis occidentalis, Gila topminnow 60 1.54 0.54
Agosia chrysogaster, longfin dace 100 1.29 0.98
Meda fulgida, spikedace 91 1.64 1.04
Rhinichthys osculus, speckled dace 110 1.49 1.25
Catostomus clarkia, desert sucker 330 1.36 5.71
Gila robusta, roundtail chub 430 1.81 10.88
Catostomus insignis, Sonora sucker 800 1.98 29.42

Following ref. 25.
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