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Model estimation and analysis
Training set selection RefDB [1] is a database of X-ray and
NMR structures with associated chemical shifts that have
been re-referenced to be internally consistent, and thereby
constitutes an ideal training set for the model in this paper.
The version used in this paper was downloaded in April 2011.
This dataset was filtered to exclude any proteins which were
in the same SCOP superfamily [2] or had the same CATH
architecture [3] as proteins used for testing in this paper (see
Fig. S4 for the complete list). For each of the remaining set
of 1349 structures, sequences of amino acid labels, dihedral
angle pairs and chemical shift values were extracted, and the
DSSP program [4] was used to assign the secondary structure.

The Ubiquitin simulations were added later, and conse-
quently, Ubiquitin had not been excluded from the original
training set. A separate model was therefore prepared for
this purpose, using the same criteria as above to exclude any
Ubiquitin-related proteins from the dataset (See Fig. S4).

The effect of redundancy in the dataset was probed by
experimenting with weighting the individual sequences based
on the size of the corresponding protein family, but no ap-
parent effect on model quality was observed, and we therefore
used equal weights for all RefDB entries for the final model
presented in this paper.

Training procedure The number of parameters of the model,
np, is a sum of the contributions from the transition matrix
(60− 1), the torus node (5: κ1, κ2, κ3, µ1, µ2), the cis/trans
node (1), the secondary structure node (2), the amino acid
node (19), and 6 chemical shift nodes (2: µ, σ), multiplied by
the number of hidden node states:

np = 60(59 + 5 + 1 + 2 + 19 + 12) = 5880 [1]

The 1349 proteins give rise to 138283 observations of each
of the emission nodes, and there is thus more than enough
data to reliably estimate the parameters in the model, which
is evident from the similar likelihood scores obtained in re-
peated estimations of the same model (Fig. S1). We used the
stochastic EM (SEM) algorithm [5] to estimate the parame-
ters. In each iteration, the procedure consisted of two steps:
1) for each protein in the training set, all hidden nodes were
resampled using the forward-backtrack algorithm [6, 7], which
assigned the input data for each residue in the training set to
a specific hidden node component; 2) the parameters were
updated using maximum likelihood as if the model was fully
observed. The SEM algorithm has been shown previously to
work well for estimating models of this type [6, 5, 8].

The number of hidden node states was determined by
training models of different size, and using the Bayesian In-
formation Criterion [9] to select the appropriate model. Since
the training process is stochastic, each model was trained five
times, and the highest scoring model (with 60 states in our
case) was selected for use in this paper (Fig. S1).

Information encoded in the hidden nodes The hidden node
states do not have a direct physical interpretation. They are
merely a convenient mechanism for encoding the sequential
dependencies along the protein chain, using discrete states
rather than for instance the continuous (φ, ψ) angular values.
The hidden node states can be understood as a classification
of local structure similar to the classic secondary structure
classification, but using 60 states rather than the usual three.
Each state corresponds to a particular distribution in (φ, ψ)
angular space, and to a distribution of amino acids that de-
scribes the preferences of particular amino acids to adopt this
state. Likewise, they correspond to a particular chemical shift
signal that correlates with the associated (φ, ψ) distribution.
The transition matrix encodes the probability of moving from
one state to the other, and is thus similar in spirit to a Zimm-
Bragg helix coil transition model [10], but generalized to a
higher number of structural states. As an example, we high-
light three states in Fig. S3, representing three different sec-
ondary structure preferences, and corresponding differences in
amino acid and chemical shift distributions.

Analysis of correlation length in the model An eigen-analysis
of the hidden node transition matrix can provide an estimate
of the correlation length in the model, measured in terms
of residues along the chain. The highest eigenvalue will be
unity, corresponding to the stationary state of the model,
while lower values indicate the slowest decaying states in the
model [11]. For the model in this paper, the next-to high-
est eigenvalue is 0.84, which implies a correlation length of
τ = 1/(1 − 0.84) = 6.25. Fragment libraries will typically
contain fragments that are longer than this, which implies
that certain longer range local signals are not captured in the
current model. A natural topic for future research would be
to extend our model to capture these effects, for instance by
employing higher order Markov models or multiple layers of
hidden nodes.

Simulation setup
Choice of moves We chose Monte Carlo moves similar to a set
that has been used successfully in the past to fold peptides
and small proteins [12]. The set consists of a single side chain
move (uniform proposals of side chain χ angle updates), and
two backbone moves: a pivot-like move which alters a single
backbone dihedral pair, and a semi-local move which alters
a stretch of dihedral angles, but restrains the movement of
the endpoint of the stretch [13]. The pivot-move used either
unbiased proposals for the dihedral changes (unbiased sim-
ulations), or dihedral angles sampled from the CS-TORUS
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model. As described in the main text, the CS-TORUS sup-
ports efficient resampling of entire stretches of dihedral angles
using the forward-backtrack algorithm [6, 7]. The choice of al-
tering only a single dihedral angle pair at a time was made to
ensure a fair comparison between unbiased and biased simu-
lations. The acceptance rate of standard pivot moves drops
when altering many dihedral angle pairs at once, which would
penalize the unbiased simulations excessively.

Generalized Ensembles Simulations were conducted using
generalized ensembles in the MUNINN software library [14,
15]. Rather than sampling from the Boltzmann (canoni-
cal) distribution, generalized ensembles replace the exp(−βE)
term with a weight function w(E): PC(x) = Z−1

C w(E(x)). In
the multicanonical ensemble, the goal is a uniform distribution
over energies, which is obtained by setting the weight function
to the inverse of the density of states, g(E). After conducting
a simulation in this ensemble, it is possible to reconstruct av-
erage properties according to the Boltzmann distribution at
a given temperature using a reweighting technique. The mul-
ticanonical method can thus be viewed as a method which
simultaneously collects statistics at different Boltzmann dis-
tributions corresponding to a range of temperatures. For our
purpose, it is convenient to rewrite the Boltzmann factor in
units of 1/kT0: PMC(x) ∝ exp(−γ 1

kT0
E(x)), where T0 is the

temperature at which we wish to extract statistics, and we
specify our temperature range in terms of the scaling factor γ.
In a biased simulation, we have a factor PDBN arising from the
proposal distribution, PMC(x) ∝ exp(−γ 1

kT0
E(x))PDBN (x).

This factor can be viewed as an implicit energy, but it should
be noted that it does not scale with temperature. However,
we can set up the simulation such that the bias will can-
cel out at T0 by constructing the modified energy Ẽ(x) =
E(x) − ln(PDBN (x)). At γ = 0, only the proposal distribu-
tion is active, corresponding to a simulation where the only
energy is the chemical shift signal. At γ = 1, the proposal
bias fully cancels the corresponding negative bias term in the
explicit energy function, corresponding to an ensemble where
only the original force field is used. This procedure corre-
sponds to variant five in Table S2, which gives an overview of
different simulation strategies that are available when using
a probabilistic proposal distribution. For further details, we
refer to ref. [16] and [17].

Trajectory analysis The round-trip time is measured based on
the Q-factor reaction coordinate, which is related to the frac-
tion of native contacts formed, and has previously been re-
ported as a good reaction coordinate for protein dynamics
studies [18, 19, 20]. We use a similar definition of Q-factor as
was recently used for folding time calculations in molecular
dynamics simulations [21]. In order to find the ’native con-
tacts’, we first divide all the conformations into 5 or 10 clusters
using K-means clustering [22, 23], selecting the cluster with
the lowest mean RMSD as the folded state. From this clus-
ter, native contacts were defined as those which were closer
than 10 Å for more than 80% of the time, only considering
Cα atoms, and only atom-pairs separated by more than four
(for the shorter systems: GB1-hairpin, Trp-cage and Beta3s)
or seven (for the larger Top7-Cfr) residues along the sequence.
Using these contacts, the Q-factor was then defined as

Q =

Naa∑
i=1

ni∑
j=1

1

1 + e10(dij−(d0ij+1))

/
Naa∑
i=1

ni [2]

where Naa is the number of amino acid resiudes, ni is the num-
ber of contacts of residue i, dij is the Cα-Cα distance between

residue i and residue j, and d0ij is the distance between the
same contacts in the native state. According to the Q value,
the trajectory is partitioned into segments: folded( Q > 0.9),
unfolded ( Q < 0.1) and “transition path” segments. At any
given point in time along the trajectory, the system is labeled
as an up walker (+) or a down walker (−). The label ’+’ is left
unchanged upon visits to Q = 0.1 but changed to ’−’ when
it reaches Q = 0.9. Let τup and τdown represent the average
length of the up-walker and down-walker trajectory segment,
respectively. The round-trip time is counted as the time (MC
steps) the system takes to move from one boundary to the
other and back again, which can be found as τ = τup + τdown.
The round-trip time of all our simulations are shown in Fig. 3
and the time evolution of the Q-factor reaction coordinate is
illustrated in Fig. S5.

Performance The CS-TORUS represents no significant perfor-
mance bottleneck when used in simulation. As is normally the
case, the pairwise interactions from the force field dominate
the computational cost. The simulations in this study were
done using the PROFASI force field, which is extremely effi-
cient due to an efficient caching mechanism, and the choice
of rather short pair-wise cutoffs [24]. Even with this choice
of force-field, however, there was no significant impact when
using the CS-TORUS model compared to the unbiased case.
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Fig. S1. Bayesian Information Criterion (BIC) [25] scores for different values of the

hidden node size. For each size, five models were trained. The red circle represents

the model chosen for the simulations in this article. For the Ubiquitin simulations in

the article, a separate model was used (since these simulations were added later, and

Ubiquitin was not excluded from the training set for the original model). This model

was trained using the exact same procedure, on a data set excluding any Ubiquitin

related proteins (see main text for the selection criteria), resulting in a similar BIC

curve.

Table S1. The coverage of chemical shift data for each of the simulated proteins.

The numbers specify the fraction of residues for which a given chemical shift value

was available. N/A is used to highlight that a given type of chemical shift value were

not available for any of the residues.

protein length C CA CB HA H N

GB3 56 0.96 1.00 0.93 0.98 0.93 0.98
Ubiquitin 76 0.91 1.00 0.91 0.95 0.92 0.92
GB1-hairpin 16 1.00 1.00 0.94 N/A N/A 1.00
Trp-cage 20 N/A N/A N/A 0.75 0.85 N/A
Beta3s 20 N/A 1.00 N/A 0.95 1.00 N/A
Top7-Cfr 49 0.96 0.86 0.84 0.98 0.94 0.94

Fig. S2. Comparison of sampling accuracy of the model when using different

chemical shift atom types (CA, CB, C, H, HA, N), in addition to the amino acid

information (AA). The plot shows the average angular deviation (in radians) from the

crystal structure for all proteins in the training set for which chemical shifts for all six

atom types were recorded. For each protein, 10 samples were drawn from the model,

and the angular deviation was calculated as described in ref. [6].
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Fig. S3. Examples of emission probabilities for three hidden node states, representing three different secondary structure preferences: state 18 is helix prone, state 60

corresponds to beta structures while state 1 is mainly used for Prolines, and is one of the few states with a non-zero probability for adopting a cis state. Note that since Proline

has no H (HN) atom, the H distribution for node 1 is due to the other (sparsely populated) amino acids for this node. Similarly, the N signal for node 1 is extremely broad,

which is presumably due to the fact that Proline N atoms are often not assigned in NMR experiments since they do not have an associated hydrogen (and are therefore not

visible in HSQC-based experiments).
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Original training set: 108m, 109m, 1a43, 1a5j, 1a6j, 1a7g, 1a91, 1aab, 1ab1, 1aba, 1adw, 1ae3, 1aep, 1af8, 1agt, 1ahl, 1ail, 1ake,
1akh, 1akp, 1ans, 1aoo, 1apo, 1aq5, 1aq5, 1ass, 1atb, 1atx, 1auu, 1avs, 1axh, 1az6, 1b0c, 1b10, 1b1v, 1b2v, 1b3c, 1b56, 1b5a, 1b64, 1b72,
1b88, 1bbi, 1bbl, 1bci, 1bcx, 1bd9, 1bdo, 1bds, 1bed, 1bf4, 1bfc, 1bgf, 1bhi, 1bhu, 1bi7, 1bja, 1bk8, 1bku, 1bm4, 1bm9, 1bnz, 1bo0, 1bpv,
1bqv, 1bqz, 1bri, 1brj, 1bv8, 1bw5, 1bwo, 1bwx, 1bxl, 1byf, 1bzb, 1c3t, 1c49, 1c4z, 1c55, 1c5a, 1c6w, 1c76, 1c7f, 1c7w, 1c89, 1c8a, 1c8c,
1cb9, 1cbh, 1ccv, 1ce3, 1cex, 1cfe, 1cho, 1cix, 1cku, 1ckv, 1ckw, 1ckx, 1cm2, 1cmz, 1cnr, 1col, 1com, 1com, 1cpz, 1cqm, 1cr8, 1crb, 1csg,
1cw5, 1cw6, 1cx1, 1cxw, 1cy5, 1cz5, 1d03, 1d1d, 1d1o, 1d5g, 1d8k, 1d9s, 1dav, 1dbd, 1dcd, 1dcj, 1dd2, 1dd5, 1de3, 1df6, 1dfj, 1dfu, 1dhn,
1div, 1dk0, 1dk3, 1dkc, 1dl0, 1dp3, 1dpu, 1dqc, 1dqe, 1dsb, 1dtk, 1du9, 1dv0, 1dwy, 1dx7, 1dx8, 1dyt, 1e0e, 1e0m, 1e17, 1e3y, 1e8b, 1e9t,
1edn, 1egj, 1egx, 1eh1, 1ehx, 1eih, 1eij, 1eik, 1ejf, 1ejm, 1ejq, 1ejq, 1ek8, 1el0, 1emx, 1emz, 1enf, 1eoq, 1epg, 1et1, 1ev0, 1exk, 1exp, 1eyf,
1ez9, 1ezg, 1ezt, 1f0z, 1f2l, 1f2m, 1f53, 1f62, 1f81, 1f8h, 1f94, 1f95, 1fbr, 1fd3, 1fd9, 1fdq, 1fe4, 1fex, 1ffj, 1fho, 1fil, 1fj7, 1fjc, 1fkh, 1fmm,
1fo1, 1fov, 1fpw, 1ftt, 1fu9, 1fwo, 1fzt, 1fzy, 1g03, 1g26, 1g2h, 1g47, 1g4c, 1g4f, 1g5v, 1g6a, 1g6h, 1g6m, 1g6p, 1g7f, 1g7o, 1g8i, 1g9e, 1g9p,
1gaw, 1ggq, 1ggw, 1gh9, 1gjx, 1gk5, 1gl5, 1gn0, 1gnu, 1go5, 1gpr, 1guj, 1gwy, 1gxe, 1gxq, 1h0j, 1h0z, 1h20, 1h2o, 1h3z, 1h4a, 1h4b, 1h67,
1h70, 1h7y, 1h8b, 1ha6, 1ha8, 1ha9, 1hb8, 1hc9, 1hc9, 1hcb, 1hcc, 1hd6, 1hej, 1hfc, 1hfz, 1hh8, 1hhn, 1hj0, 1hll, 1hoe, 1hof, 1hp2, 1hpc,
1hq2, 1hqb, 1hs5, 1hst, 1hum, 1huu, 1hvw, 1hzk, 1i11, 1i1j, 1i25, 1i26, 1i2v, 1i4f, 1i5k, 1i6f, 1i8x, 1iar, 1iaz, 1ibi, 1ica, 1icf, 1ich, 1ie5, 1ieh,
1ifc, 1ifw, 1igv, 1iho, 1ihq, 1ijp, 1ijz, 1iko, 1ilo, 1ip0, 1ip2, 1ipb, 1iqs, 1irr, 1irz, 1iu1, 1iv6, 1iv7, 1ivm, 1ivo, 1iw0, 1iw4, 1iwt, 1ix5, 1iyc,
1iym, 1iyr, 1iyt, 1j0f, 1j0t, 1j26, 1j2n, 1j3g, 1j3t, 1j54, 1j56, 1j5j, 1j5k, 1j7d, 1j7h, 1j7m, 1j8k, 1j9i, 1jaj, 1jas, 1jba, 1jbi, 1jbj, 1jc2, 1jc6,
1jcu, 1jdq, 1je3, 1jfj, 1jfn, 1jgk, 1jh3, 1jiw, 1jjd, 1jjg, 1jjz, 1jkn, 1jl9, 1jlz, 1jns, 1jo6, 1joc, 1jr2, 1jr6, 1jrm, 1js2, 1jse, 1ju8, 1jvo, 1jw2,
1jw3, 1jwe, 1jxc, 1jzu, 1k36, 1k42, 1k46, 1k7b, 1ka5, 1kba, 1kcy, 1kdj, 1kf3, 1kf8, 1kft, 1kg1, 1kio, 1kj6, 1kjt, 1kkg, 1kma, 1kmv, 1kmx,
1kn6, 1kn7, 1kqq, 1kri, 1krw, 1ks0, 1ktm, 1ktz, 1kv4, 1kvn, 1kvz, 1kx9, 1kzw, 1l1m, 1l1p, 1l2m, 1l3g, 1l3y, 1l4s, 1l4v, 1l6t, 1l6x, 1l7b,
1l7y, 1lbj, 1ld6, 1lfc, 1liq, 1lkj, 1ll8, 1lmm, 1lo1, 1lp1, 1lsi, 1lu0, 1lw6, 1lwm, 1lwr, 1m25, 1m2f, 1m31, 1m36, 1m3g, 1m3v, 1m4f, 1m58,
1m5z, 1m7t, 1m8a, 1m9l, 1mb6, 1mft, 1mg8, 1mhi, 1mi4, 1mid, 1mjc, 1mke, 1mm2, 1mm3, 1mmq, 1mms, 1mox, 1mpz, 1mr6, 1msz, 1mtx,
1mwz, 1mxe, 1myo, 1n0s, 1n0z, 1n27, 1n2d, 1n4c, 1n6z, 1n8l, 1n9d, 1n9j, 1naq, 1nbl, 1nd4, 1ne3, 1ne5, 1nee, 1nei, 1ner, 1ng2, 1ng7, 1nho,
1ni7, 1njq, 1nla, 1nlp, 1nmr, 1nnv, 1no8, 1noa, 1nq4, 1nr3, 1nra, 1nso, 1ntc, 1nw2, 1nw2, 1nxi, 1ny4, 1ny8, 1ny9, 1nya, 1nzp, 1o5u, 1o6x,
1o82, 1o8r, 1o8t, 1ob1, 1obo, 1oc0, 1off, 1oh1, 1okh, 1om2, 1omy, 1onj, 1op4, 1oqk, 1oqr, 1orl, 1os3, 1os3, 1osp, 1ov2, 1ovh, 1ovx, 1ow5,
1owa, 1owx, 1oy2, 1ozz, 1p2o, 1p4w, 1p68, 1p6q, 1p6r, 1p6s, 1p6t, 1p6z, 1p7a, 1p7m, 1p8a, 1p8g, 1p94, 1p9j, 1pa4, 1pb5, 1pba, 1pd7,
1pex, 1pey, 1pf9, 1pfj, 1php, 1pht, 1pjz, 1pn5, 1poh, 1ppf, 1ps2, 1pt4, 1pu1, 1pun, 1puz, 1pv0, 1pv3, 1pve, 1pvz, 1pz4, 1q02, 1q2f, 1q2u,
1q2z, 1q56, 1q5f, 1q6u, 1q71, 1q7x, 1q8k, 1q8l, 1q8x, 1qa9, 1qav, 1qe6, 1qfn, 1qg7, 1qj8, 1qk7, 1qk9, 1qky, 1qlo, 1qlx, 1qlz, 1qm3, 1qog,
1qry, 1qst, 1qu6, 1qwv, 1qxf, 1qxn, 1qz8, 1r1t, 1r1u, 1r21, 1r3b, 1r4k, 1r5e, 1r5r, 1r5s, 1r69, 1r6h, 1r6r, 1r73, 1r79, 1r7j, 1r8u, 1r9k, 1r9p,
1rdg, 1rdu, 1rg6, 1rgh, 1rgw, 1ri0, 1rji, 1rjj, 1rjv, 1rkl, 1rl1, 1rmk, 1rn1, 1rpg, 1rpj, 1rq6, 1rq8, 1rqu, 1rro, 1rrz, 1rw2, 1rwu, 1rwy, 1ry4,
1ryk, 1rzs, 1rzw, 1s04, 1s3s, 1s40, 1s62, 1s6d, 1s6i, 1s6j, 1s6l, 1s6n, 1s6u, 1sa8, 1sai, 1sb6, 1sce, 1sce, 1se9, 1sf0, 1sfc, 1sg7, 1sh1, 1siy, 1sj6,
1sjq, 1sjr, 1sko, 1sm7, 1snc, 1snl, 1snm, 1sou, 1sq8, 1sr2, 1srb, 1srk, 1srz, 1ss6, 1ssl, 1st7, 1sxd, 1sxe, 1sxl, 1t0g, 1t0k, 1t0y, 1t17, 1t1h,
1t2y, 1t3k, 1t4z, 1tba, 1tcf, 1te4, 1te7, 1th5, 1ti3, 1tiz, 1tjf, 1tkv, 1tn3, 1top, 1tot, 1tp9, 1tph, 1tph, 1tpk, 1tpx, 1tq1, 1tqz, 1tte, 1ttg,
1ttx, 1tuk, 1tuz, 1tvg, 1tvi, 1tvj, 1tvq, 1tw4, 1two, 1txe, 1txx, 1tym, 1u06, 1u07, 1u2g, 1u2p, 1u3m, 1u5l, 1u5m, 1u5s, 1u6f, 1u7j, 1u89,
1uap, 1ub1, 1ubq, 1uc6, 1uck, 1ud7, 1udr, 1ue9, 1uem, 1ueo, 1uep, 1uew, 1uff, 1ufg, 1ufm, 1ufn, 1ufx, 1ug7, 1ugl, 1uhf, 1uhi, 1uht, 1uhu,
1ujo, 1ujs, 1ujt, 1uju, 1ujv, 1ujx, 1ukx, 1ul7, 1umq, 1uoh, 1utx, 1uuc, 1uug, 1uw0, 1uzc, 1v31, 1v32, 1v4r, 1v5k, 1v5m, 1v5n, 1v5p, 1v5q,
1v5r, 1v5s, 1v5u, 1v63, 1v66, 1v6p, 1v6r, 1v86, 1v88, 1v9v, 1v9w, 1va9, 1vae, 1vb0, 1vc1, 1vcx, 1vd0, 1vdi, 1vdq, 1vj6, 1vp6, 1vpc, 1vsa,
1vyf, 1vyn, 1w0t, 1w41, 1w6b, 1w6v, 1w80, 1wcj, 1wej, 1wey, 1wez, 1wf1, 1wf2, 1wf5, 1wf9, 1wfg, 1wfi, 1wfj, 1wfm, 1wfn, 1wfo, 1wfq,
1wfs, 1wft, 1wfv, 1wfw, 1wfy, 1wfz, 1wg5, 1wgq, 1wgr, 1wgs, 1wgu, 1wgv, 1wgw, 1wgy, 1wh3, 1wh4, 1wh5, 1wh6, 1wh7, 1wh8, 1wh9,
1wha, 1whn, 1whr, 1whu, 1wi0, 1wi8, 1wik, 1wil, 1win, 1wj1, 1wjd, 1wji, 1wjj, 1wjk, 1wjl, 1wjn, 1wjo, 1wjp, 1wjq, 1wjr, 1wjs, 1wjt, 1wju,
1wjz, 1wk0, 1wk1, 1wkt, 1wkx, 1wlm, 1wlx, 1wpi, 1wqk, 1wqq, 1wqu, 1wt7, 1wtq, 1wu0, 1wum, 1wvk, 1wwy, 1wxl, 1wxn, 1wyl, 1wyn,
1wyo, 1wyw, 1wzv, 1x05, 1x1f, 1x1g, 1x22, 1x32, 1x3q, 1x5b, 1x5i, 1x5k, 1x6b, 1x6d, 1x6e, 1x6f, 1x6h, 1x8r, 1x9a, 1x9b, 1xbl, 1xd3, 1xdg,
1xfl, 1xhj, 1xhs, 1xjh, 1xke, 1xlq, 1xm0, 1xmt, 1xn5, 1xn6, 1xn7, 1xn9, 1xna, 1xne, 1xo8, 1xoy, 1xpa, 1xpn, 1xq8, 1xrd, 1xrk, 1xs8, 1xsc,
1xsf, 1xsw, 1xu6, 1xwe, 1xwn, 1xyj, 1xyk, 1xyq, 1xyw, 1y0j, 1y0j, 1y15, 1y1b, 1y1c, 1y2g, 1y4o, 1y5k, 1y62, 1y7n, 1y93, 1ycq, 1ydu, 1yel,
1yez, 1yh5, 1yjt, 1ykg, 1yky, 1yla, 1ynr, 1yob, 1yp7, 1yqa, 1ysb, 1ysm, 1yu7, 1yua, 1yvc, 1yws, 1ywu, 1yww, 1yx3, 1yyb, 1yzc, 1z1m,
1z3r, 1z6h, 1z6s, 1z9i, 1zdn, 1zdv, 1zfs, 1zgu, 1zit, 1zk6, 1zkh, 1zli, 1zlq, 1znd, 1zq3, 1zr7, 1zr9, 1zrf, 1zts, 1zu1, 1zu2, 1zv6, 1zwv, 1zyn,
1zza, 1zzp, 2a00, 2a0a, 2a0b, 2a0n, 2a2p, 2a36, 2a37, 2a4h, 2a5d, 2a5e, 2a7y, 2adf, 2adr, 2adz, 2afg, 2afj, 2afp, 2aih, 2aje, 2akk, 2akl, 2al3,
2al4, 2alg, 2aoj, 2aq0, 2arw, 2asw, 2asy, 2av5, 2avg, 2axd, 2axl, 2ayj, 2ayx, 2b3a, 2b3i, 2b3w, 2b59, 2b5x, 2b6f, 2b7e, 2b86, 2b88, 2b89,
2b8x, 2b95, 2bay, 2bbg, 2bc5, 2bem, 2bf5, 2bid, 2bjx, 2bky, 2bky, 2bl5, 2bru, 2buo, 2bvo, 2bvu, 2bye, 2bz2, 2bzb, 2c0s, 2c6y, 2ca5, 2cbs,
2cdn, 2cg7, 2ch4, 2cjr, 2cly, 2cnj, 2cnp, 2cnr, 2co8, 2coa, 2coc, 2cod, 2cof, 2com, 2cpb, 2cu7, 2cue, 2cuf, 2cum, 2cwi, 2d07, 2d3g, 2d7m,
2d7n, 2d7o, 2d7p, 2d7q, 2d82, 2d9t, 2d9y, 2d9z, 2dbj, 2dc2, 2dez, 2dgc, 2dhj, 2di8, 2di9, 2dia, 2dib, 2dic, 2diz, 2dj4, 2djs, 2dk9, 2dkq,
2dlg, 2dmb, 2dmc, 2dml, 2dmq, 2dn6, 2dn7, 2do8, 2dtq, 2e29, 2e45, 2e6i, 2eb8, 2ecc, 2ech, 2end, 2ers, 2esp, 2etl, 2ewl, 2exd, 2exf, 2exn,
2ezh, 2f05, 2f09, 2f1e, 2f30, 2f3y, 2f3z, 2f5m, 2f91, 2fa4, 2fb7, 2fe0, 2ffk, 2fft, 2fi2, 2fj3, 2fj6, 2fjy, 2fk4, 2fke, 2fki, 2fm4, 2fnb, 2fnf, 2frw,
2fs1, 2fvn, 2fvt, 2fxp, 2fy9, 2fz5, 2g0l, 2g0u, 2g1d, 2g7j, 2g9j, 2g9j, 2g9o, 2ga5, 2gab, 2gbs, 2ge9, 2git, 2gjf, 2gl1, 2gm2, 2gmg, 2goo, 2gov,
2gqb, 2gs0, 2gtg, 2gvs, 2gw6, 2gyk, 2gyt, 2gzo, 2gzz, 2h0p, 2h2r, 2h3j, 2h3k, 2h5m, 2h7a, 2h80, 2hcc, 2hdm, 2heq, 2hg7, 2hga, 2hgc, 2hgk,
2hgu, 2hh8, 2hi3, 2hi6, 2hj8, 2hjj, 2hjq, 2hoa, 2hpu, 2hsh, 2hst, 2hsx, 2htj, 2hym, 2hym, 2i32, 2i3b, 2i9a, 2i9y, 2ida, 2ido, 2idy, 2if1, 2ife,
2iim, 2iln, 2ilx, 2in2, 2io2, 2ion, 2irf, 2itl, 2j03, 2j4t, 2jm4, 2jmp, 2jmu, 2jn0, 2jn4, 2jn6, 2jn7, 2jn9, 2jna, 2jne, 2jng, 2jnu, 2jny, 2jo6, 2joe,
2jol, 2joq, 2jov, 2joy, 2joz, 2jq5, 2jqo, 2jr5, 2jra, 2jrj, 2jrm, 2jrp, 2jrr, 2jrz, 2js4, 2ktx, 2mb5, 2mfn, 2mob, 2nmo, 2noc, 2npr, 2nwg, 2nwm,
2nwt, 2nxn, 2o3b, 2oa4, 2oi3, 2orc, 2out, 2ovo, 2ow9, 2pea, 2pjf, 2pjg, 2pji, 2pkt, 2plh, 2pp4, 2pph, 2pst, 2q00, 2rn2, 2sgd, 2sni, 2uub,
2uyz, 2uzg, 2vpf, 2xbd, 2z2i, 3eza, 3icb, 3lri, 3ncm, 3pdz, 3pyp, 3ssi, 3wrp, 451c, 4ake, 4hir, 4icb, 5cro, 5hpg, 5pnt, 7hsc, 7rxn, 8abp, 8tfv,
9pcy

Ubiquitin training set: excluded compared to above 1c3t, 1gnu, 1kjt, 1l7y, 1mg8, 1s3s, 1se9, 1t0y, 1ubq, 1ud7, 1v86, 1wf9,
1wfy, 1wgr, 1wgy, 1wh3, 1wjn, 1wju, 1wyw, 1xd3, 1zgu, 1zkh, 2al3, 2b3a, 2bye, 2d07, 2d3g, 2hj8, 2io2, 2pea, 2uyz

Ubiquitin training set: included compared to above 1b1h, 1clv, 1cwc, 1cyn, 1eio, 1f2r, 1f3v, 1f93, 1fcl, 1fd6, 1h4h, 1i8h, 1lq7,
1m15, 1mw4, 1q10, 1rb9, 1rx2, 1rx4, 1skm, 1u7e, 1uea, 1uwx, 1x27, 1xct, 1zxh, 2aiz, 2axi, 2brz, 2c7p, 2crd, 2fi4, 2fi5, 2g46, 2gfe, 2h61,

2h61, 2hze, 2pg1, 2pg1, 2pld, 2psp

Fig. S4. PDB IDs of proteins used as the training set of the model. The Ref-DB [1] chemical shift annotated files are available for download from

http://refdb.wishartlab.com/.
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Fig. S5. Run time trajectories from a representative thread from each simulation. From the left to the right column: Unbiased simulation, Biased move simulation, Biased

energy simulation, Compensated bias simulation. From the top to the bottom row: GB1-hairpin, Trp-cage, Beta3s, Top7-Cfr.
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Fig. S6. Analysis of the unbiased and the compensated bias simulations for the Top7-Cfr system. a) The progression of convergence over time (number of iterations), b)

The structures corresponding to the different peaks in the free energy landscape (native structure in blue). The structures corresponding to the high RMSD peaks (in grey)

have beta structure instead of the helix, which is at odds with the chemical shift signal, and is therefore never sampled by CS-TORUS.
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Table S2. Five strategies for simulations using a generative probabilistic model. 1) Standard Metropolis-Hastings simulation with uniform proposal distribution. 2) Biased

simulation using biased moves. 3) Biased simulation using an explicit bias in the potential. 4) The standard correction when conducting Metropolis-Hastings simulations with a

non-uniform sampling bias. 5) Compensated bias simulations, using generalized ensembles a range of γ values are explored; at γ = 1, this corresponds to method 4). Variants

1, 2, 3, and 5 were explored in this paper (see Fig. 3(a), 3(b), 3(c), and 3(d), respectively).

Proposal Evaluation in acceptance criterion Effective probability target

1 uniform exp(−βE(x)) exp(−βE(x))
2 PDBN (x) exp(−βE(x)) exp(−βE(x))PDBN (x)
3 uniform exp(−βE(x) + ln(PDBN (x))) exp(−βE(x))PDBN (x)
4 PDBN (x) exp(−βE(x)− ln(PDBN (x))) exp(−βE(x))
5 PDBN (x) exp(γ(−βE(x)− ln(PDBN (x)))) γ = 0⇒ PDBN

γ = 1⇒ exp(−βE(x))
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