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Materials and Methods 

1. Meta-analyses and selection of education-associated candidate SNPs 

The first stage of our two-stage procedure consisted of conducting a GWAS meta-analysis on 

years of schooling, using the same analysis plan as Rietveld et al. (1) for the years-of-schooling 

variable (referred to in Rietveld et al. as “EduYears”) and the same cohorts, except omitting 

the individuals that we include in the Cognitive Performance Sample (all individuals in the 

cohorts ALSPAC, ERF, LBC1921, LBC1936, and MCTFR, and subsamples of the cohorts 

QIMR and STR) described in section “Cognitive Performance Sample” below. Thus, compared 

with the meta-analysis sample size of N = 126,559 in Rietveld et al., the sample size for our 

meta-analysis of years of schooling is N = 106,736. We obtained permission to use these data 

under the SSGAC data sharing policy 

(http://ssgac.org/documents/DatasharingpolicySSGAC.pdf). Our meta-analysis found 927 

single-nucleotide polymorphisms (SNPs) meeting the inclusion threshold of p-value < 10-5, 

which was chosen based on power calculations prior to conducting our study (see section 15.E 

of this SI Appendix). We pruned this set of SNPs for linkage disequilibrium using the clumping 

command in PLINK and the HapMap II CEU (r23) data. The physical threshold for clumping 

was 1000 kB, and the R2 threshold for clumping was 0.01. This pruning procedure resulted in 

a set of 69 approximately independent SNPs, which is our set of “education-associated SNPs.” 

These are listed in Supplementary Table S4. 

We note that the education-associated SNPs (Table S4) are independent from APOE, a gene 

that has previously been associated with cognitive decline in older individuals (2–6). The 

APOE gene is located on chromosome 19, while none of our education-associated SNPs are 

located on that chromosome; thus, APOE status is inherited independently from all of our 

education-associated SNPs. 

For the polygenic-score analyses in the Health and Retirement Study (HRS) described in 

section 14 below, we conducted the same meta-analysis, except that we additionally exclude 

the HRS cohort. The sample size of this meta-analysis is N = 98,110. 

2. Cognitive Performance Sample 

The Cognitive Performance Sample that we use in the second stage of our two-stage procedure 

consists of CHIC (the Childhood Intelligence Consortium (7)) and five additionally recruited 

GWA samples. CHIC consists of six studies: the Avon Longitudinal Study of Parents and 

Children (ALSPAC, N = 5,517), the Lothian Birth Cohorts of 1921 and 1936 (LBC1921, N = 

464; LBC1936, N = 947), the Brisbane Adolescent Twin Study subsample of Queensland 

Institute of Medical Research (QIMR, N = 1,752), the Western Australian Pregnancy Cohort 

Study (Raine, N = 936), and the Twins Early Development Study (TEDS, N = 2,825). The five 

additional samples are the Erasmus Rucphen Family Study (ERF, N = 1,076), the Generation 

R Study (GenR, N = 3,701), the Harvard/Union Study (HU, N = 389), the Minnesota Center 

for Twin and Family Research Study (MCTFR, N = 3,367) and the Swedish Twin Registry 

Study (STR, N = 3,215). This brings the total sample size to 24,189 individuals from 11 studies. 

In most of these cohorts, cognitive performance was elicited before participants completed 

schooling (for details, see section 3). Exceptions are ERF and HU, which constitute ≈6% of the 

Stage 2 sample. In STR, cognitive performance was measured among males during military 

conscription at the age of 18. Some of these individuals may have also already completed 

schooling. However, some of the individuals in ERF and HU may have still been in school 

when cognitive performance was measured.  
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Participating studies were recruited from January 2013 – March 2013, and summary results 

were uploaded before the end of April 2013. All participants provided written informed 

consent, and the studies were performed in accordance with the respective Local Research 

Ethics Committees or Institutional Review Boards. The descriptive statistics and study designs 

are provided in Table S1. 

To provide additional data for examining the within-family explanatory power of the polygenic 

score (see section 13), an additional cohort was recruited: Generation Scotland (GS). The 

sample consists of 1,081 siblings. 

3. Cognitive performance measures 

Measures of cognitive performance for the studies that are part of CHIC, and the cognitive 

performance measures for the other five GWA studies, are as follows: 

ALSPAC: Cognitive performance at the age of 8 years was measured with the Wechsler 

Intelligence Scale for Children (WISC-III). A short version of the test consisting of alternate 

items only (except the Coding task) was applied by trained psychologists. Verbal (information, 

similarities, arithmetic, vocabulary, comprehension) and performance (picture completion, 

coding, picture arrangement, block design, object assembly) subscales were administered. Each 

subtest was age-scaled according to population norms, and a summary score for total cognitive 

performance was derived. We calculated the first two principal components of the genome-

wide data using Eigenstrat. As inputs to the analysis reported here, we generated sex- and 

principal-component-adjusted Z-standardized cognitive performance scores for unrelated 

ALSPAC children for whom total cognitive performance and genome-wide data were 

available. To do so, cognitive performance scores within a range of ±4 SD relative to the total 

ALSPAC sample were regressed on sex and the principal components. The residuals were Z-

transformed. Using the resulting data, genome-wide association analysis was conducted. 

ERF: Scores on the following cognitive tests were used to create the fluid-type general 

cognitive ability factor: Stroop 3 (time needed to complete Stroop color-word card), TMT-B 

(time needed to complete Trailmaking Test part B), phonemic fluency (with D, A, T, number 

of words mentioned beginning with each letter, one minute each, sum of the three trials), 15-

word Auditory Verbal Learning Test (AVLT-sum) (sum of immediate (5 iterations) and 

delayed recall (once)), WAIS block design test (n of correct answers, Wechsler scoring). The 

tests, the method of application, and key references are described in (8). Principal components 

analysis was applied to these 5 tests. The first unrotated principal component, which accounted 

for 50.1% of the total test variance, is the measure of g. The mean age at reporting is 33.2 (SD 

= 7.1). 

GenR: The phenotype has been constructed using assessments of the Snijders-Oomen Non-

Verbal Intelligence Test (SON-R 2.5–7). The overall cognitive performance score was 

calculated based on two subtests: Mosaics (performance) and Categories (reasoning). The 

mean age at reporting is 6.17 (SD = 0.50). 

GS: Scores on the following cognitive ability tests were used to create the general cognitive 

ability factor: Wechsler Digit Symbol Substitution Task, Wechsler Logical Memory Test, 

Verbal Fluency (sum of letters C, F, and L), and the Mill Hill Vocabulary Scale. The tests, the 

method of application and key references have been described in detail elsewhere (9). The 

number of siblings used in the analysis was 1081 (mean age 41.1 (SD 11.0), range 18-77). The 

Pearson correlations (rs) among the 4 tests ranged from 0.07 to 0.40 (mean 0.22). Principal 

components analysis was applied to these 4 tests. The first unrotated principal component 

(FUPC) accounted for 42% of the total test variance. Loadings on the FUPC were as follows: 



5 

 

Wechsler Digit Symbol Substitution Task = 0.56, Wechsler Logical Memory Test = 0.63, 

Verbal Fluency = 0.71, Mill Hill Vocabulary Scale = 0.68. 

HU: A composite score of several cognitive performance subtests was generated in the 

following way. A shortened version of Raven’s Advanced Progressive Matrices (RAPM) (10); 

a 10-item vocabulary test; the Vocabulary, Similarities, and Arithmetic subtests of the 

Multidimensional Aptitude Battery II; and the number correct in a speeded version of the 

Shepard-Metzler Mental Rotation (SMMR) task were administered. RAPM, Arithmetic, and 

SMMR were standardized to have mean zero and variance one in the sample. The Vocabulary, 

Similarities, and separate 10-item vocabulary test were factor analyzed, and Bartlett’s method 

was used to calculate a verbal factor score on the basis of the three observed scores. This verbal 

score was then standardized. The standardized verbal, RAPM, Arithmetic, and SMMR scores 

were added to form a raw composite, which was itself standardized separately for each sex. 

The composite IQ formed in this way showed a correlation of ~0.70 with self-reported SAT 

scores, which is quite good considering the restriction of range in SAT scores (a standard 

deviation only two-thirds of that observed in the total population of European-descent SAT 

examinees). The mean age at reporting is 25.48 (SD = 6.63). 

LBC1921 and LBC1936: The measure of cognitive performance was the Moray House Test 

(MHT) No. 12. This is one of a series of tests of cognitive performance devised by Godfrey 

Thomson at the Moray House College, University of Edinburgh, from the late 1920s onwards. 

The MHT is a group test of cognitive performance with a time limit of 45 minutes. The test has 

71 items and a maximum possible score of 76. It was also known as the “Verbal Test” because 

the items have a predominance of verbal reasoning. The test has a variety of items, as follows: 

following directions (14 items), same–opposites (11), word classification (10), analogies (8), 

practical items (6), reasoning (5), proverbs (4), arithmetic (4), spatial items (4), mixed 

sentences (3), cypher decoding (2), and other items (4). Mean age at reporting is 10.9 years 

(SD = 0.28). 

MCTFR: Measurement of general cognitive ability in the Minnesota sample was based on an 

abbreviated form of the Wechsler Intelligence Scale for Children-Revised (WISC-R) for those 

16 years or younger or Wechsler Adult Intelligence Scale-Revised (WAIS-R) for those older 

than 16 years. The short forms consisted of two Performance subtests (Block Design and 

Picture Arrangement) and two Verbal subtests (Information and Vocabulary), the scaled scores 

on which were prorated to determine Full-Scale IQ (FSIQ). FSIQ estimates from this short 

form have been shown to correlate greater than 0.90 with FSIQ from the complete test. The 

mean age at reporting is 14.2 (SD = 2.7). 

QIMR: Cognitive performance was measured using a shortened version of the computerized 

Multi-dimensional Aptitude Battery (MAB), a general intelligence test similar to Wechsler 

Adult Intelligence Scale-Revised. The shortened MAB includes three verbal subtests 

(information, arithmetic, vocabulary) and two performance subtests (spatial, object assembly).  

Scaled scores for cognitive performance were computed in accordance with the manual. 

Raine: Cognitive performance was estimated based on four cognitive tests carried out at 

approximately 10 years of age (Peabody Picture Vocabulary Test, Raven’s Colored Progressive 

Matrices, Symbol Digits Modalities Test (SDMT) written score and SDMT oral score. The first 

principal component from the four cognitive measures was used for analyses. 

STR: Men in the sample were matched to conscription data provided by the Military Archives 

of Sweden. Data on cognitive ability are available for most men in the sample born in 1936 or 

later. These men were required by law to participate in military conscription around the age of 

18. They enlisted at a point in time when exemptions from military duty were rare and typically 
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only granted to men who could document a serious handicap that would make it impossible to 

complete training. For the men born after 1950, the military data have been digitalized. For 

men born 1936-1950, we manually retrieved the information from the Military Archives. The 

first test of cognitive ability used by the Swedish Military was implemented in 1944, and it has 

subsequently been revised and improved on a few occasions. (11) discusses the history of 

psychometric testing in the Swedish military and provides evidence that the measure of 

cognitive ability is a good measure of g. For men in the sample who did the military 

conscription before 1959, the cognitive ability test consisted of 5 subtests: logical, verbal, 

mathematical, spatial, and technical. The first subtest about logical ability was called 

“Instructions” and measured the ability to understand complicated instructions. The second 

subtest about verbal ability was called “Selection,” and in these questions the subjects had to 

pick out one out of five words that differed from the four other words. The third subtest was 

called “Multiplication” and consisted of multiplying a two-digit number by a one-digit number. 

The fourth subtest was called “Levers.” With the guidance of a graph depicting a system of 

levers, the subjects answered questions about the effect of a force applied to a specific point in 

the system.  The final test was called “Technical comprehension,” in which the subjects 

answered questions about technical problems with the guidance of graphs. In 1959 the 

cognitive ability test was revised, and men in the sample who did the military conscription in 

1959 or later took this revised test. The logical and verbal ability subtests were kept. The 

mathematical subtest (“Multiplication”) was dropped from the test. The spatial ability test 

(“Levers”) was replaced by a test of spatial ability called “Composition,” in which the subjects 

had to indicate which pieces fit with a specific figure. The technical ability test (“Technical 

comprehension”) was revised (it was modernized). For both men who did the military 

conscription before and after 1959, we use data for the 4 subtests of logical, verbal, spatial, and 

technical ability (since subtests of these abilities were included at the military conscription both 

before and after 1959). We do not include the mathematical ability test since it was only given 

to subjects who did the military conscription in 1959 and later. At the military conscription, 

each subtest was given a raw score and a standardized 1-9 stanine score. The norm tables for 

the stanine scores were updated each year to ensure that there was no trend in the stanine scores 

over time. We use the stanine scores of the four subtests of logical, verbal, spatial and technical 

ability. We use the first principal component of these four stanine scores as the measure of 

cognitive performance. 

TEDS: Individuals were tested at 12 years using two verbal and two nonverbal measures: 

WISC-III-PI Multiple Choice Information (General Knowledge) and Vocabulary Multiple 

Choice subtests (12), the WISC-III-UK Picture Completion (12) and Raven’s Standard 

Progressive Matrices (13). Test scores were adjusted for age within each testing period, and 

the first principal component was derived. 

Within each cohort the cognitive performance measure was adjusted for sex and age and 

standardized to have mean 0 and standard deviation 1. 

4. Genotyping and imputation 

All cohorts were genotyped using commercially available genotyping arrays. The study-

specific details on genotype platform, genotype calling algorithm, imputation software, and 

imputation reference dataset are provided in Table S2. 

5. Quality control 

In CHIC extensive quality control has been performed at the meta-analysis stage (for details, 

see (7)). We followed CHIC’s protocol and cleaned each GWA summary file from the five 

additionally recruited replication studies. First, the SNPs with a Minor Allele Frequency 
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(MAF) < 1%, imputation quality score < 40%, Hardy-Weinberg p-value < 10-6 and call rate < 

0.95 were excluded. Quantile-Quantile plots of the cleaned summary files were visually 

inspected, and the genomic control (GC) inflation factor λ (14) was calculated for each cleaned 

summary file. The Quantile-Quantile plots (Supplementary Figure 1) did not reveal 

stratification problems. This is confirmed by the values of λ’s, which are all close to 1. Second, 

following (7), we calculated the average effective sample size per cohort (as a function of the 

allele frequency and the standard error of the effect size from the association) and compared it 

with the actual sample size. We found that the average effective sample sizes were consistent 

with the reported sample sizes in all cohorts. 

6. Association analysis 

Each cohort was asked to follow a prespecified analysis plan (preregistered on the Open 

Science Framework website prior to conducting our study; see https://osf.io/z7fe2/). This plan 

requested from each study summary results of the ordinary least squares regression of the 

standardized measure of cognitive performance on the imputed SNPs. At least four principal 

components of the Identity-by-State (IBS) matrix (to control for subtle population 

stratification) were either added as covariates, or used in the standardization of the phenotype. 

Only individuals from recent Caucasian descent were included. Association software used by 

the studies is reported in Table S2. 

7. Meta-analysis 

The meta-analysis was performed with inverse-variance weighting using METAL (15). The 

necessary inputs from the study-specific GWA summary results were: SNP ID, coded allele 

(allele to which regression coefficient refers), non-coded allele, strand, beta (regression 

coefficient), standard error, p-value, and allele frequency for the coded allele. 

8. Correction of effect sizes for winner’s curse 

The “winner’s curse” refers to the fact that the estimated effect size for a SNP (and therefore 

the R2 associated with the SNP) newly discovered to be statistically significant tends to be 

much higher than the unbiased effect size estimated subsequently in replication samples. It 

occurs because, although OLS gives an unbiased unconditional estimate of the true parameter 

value, the expected value of the estimate is biased away from zero conditional on the parameter 

meeting a threshold for statistical significance. This bias is more highly pronounced the more 

stringent the significance threshold (and therefore especially pronounced in GWAS because 

the significance threshold for “genome-wide significant” is especially stringent). In Subsection 

A, we walk through the (well-known) derivation of the analytic form for the expected value of 

the winner’s curse. In Subsection B, we discuss several known methods for correcting for it. 

Subsection C contains a comparison of these methods in a simulation study of the current 

analysis of cognitive performance. We conclude in Subsection D by applying the winner’s 

curse corrections to both Rietveld et al.’s (1) findings—a context where we can compare the 

winner’s-curse-corrected estimates to the unbiased, replication-sample estimates—and to the 

findings from the current analysis of cognitive performance. 

 

A. Derivation of the winner’s curse 

We derive the winner’s curse for the simple case where outcome Y is truly related to a SNP’s 

genotype  in accordance with the simple linear regression model: }2,1,0{g
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where , and  and the SNP’s MAF m are known. If the sample size n is large 

and if the SNP is in Hardy-Weinberg equilibrium, then the OLS estimate is drawn from the 

normal distribution , where  (and  is known because 
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estimation (MLE), Bayesian estimation, and empirical-Bayes estimation. 

 

B.1. Inverting the conditional expectation of the OLS estimator 

One approach is motivated by the seemingly straightforward idea of inverting the above 

conditional expectation equation (2) that is a function of the true parameter value: 
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While  is not analytically invertible, it can be inverted numerically. However, 
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formula: since  and , it follows that 

. Intuitively, when the uncorrected estimate is large in magnitude, it is very 

likely to have been resulted from a true  that is large in magnitude and hence very likely that 

we would have observed a statistically significant estimate regardless of our sample realization; 

therefore, the fact that the observed estimate was statistically significant provides little 

additional information about the value of . 

Second and on the flipside, when the estimated coefficient is close to the significance threshold, 

the bias correction may be quite large. Intuitively, it is actually fairly likely that a barely 

statistically significant estimate resulted from a true  that is below the threshold. 
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method, equation (3) is evaluated using . Similar to with the MLE correction, 

the Bayesian (and empirical Bayes) correction will be small when the uncorrected estimate is 

far from the significance threshold and large when it is close. Intuitively, when the observed 

estimate is large in magnitude, the probability that the true  that is below the threshold is 

negligible, so the bias correction has very little impact on the posterior mean. 

In the empirical Bayes approach, the data are used to estimate appropriate values for  and 

. To develop intuition, we first consider a method (simpler than the method we use) that would 

be appropriate if one had access to OLS estimates for a large random sample of SNPs (for 

example, from complete GWAS meta-analysis results), . Since for each SNP the 

choice of reference allele is arbitrary, the mean of the true effects across the S SNPs is zero: 

. Now, note that since  and , it follows that 

. Therefore,  can be estimated as the variance of all of the  estimates 

minus the mean of the square of their estimated standard errors: 

. 

We do not use this approach because assuming  would be extremely conservative in our 

context, where the SNPs we study are not a random sample—rather, they were selected as 

candidates for cognitive performance because they had strong impacts in a previous GWAS on 

educational attainment. 

The empirical-Bayes approach that we employ exploits information available from the GWAS 

results on educational attainment to inform our choice of . Specifically, we set  equal to 

the magnitude of a SNP’s effect that would be needed in order for the SNP to explain the same 

fraction of variance in cognitive performance as it explains in educational attainment. To be 

more precise, let  be the estimated effect of SNP s on years of schooling taken from 

Rietveld et al. (2013). The fraction of variance in years of schooling explained by the SNP can 

be calculated as , where  is the MAF of SNP s and  is the 

variance of years of schooling. We can calculate that SNP s would have the same R2 for 

cognitive performance if , where  is the putative effect of SNP s on 

cognitive performance, and  is the variance of cognitive performance. Thus, we set the 

mean of our prior for the effect of the SNP on cognitive performance as . 

While not as conservative as setting a prior of zero, this prior mean is still likely to be 

conservative (i.e., too close to zero) to the extent that a SNP’s effect on educational attainment 

works through a more direct effect on the mediating phenotype of cognitive performance; in 

that case, the SNP would be expected to explain a larger fraction of variance in cognitive 

performance than in years of schooling. We calculate the prior parameter  similarly as in the 

mean-zero empirical-Bayes procedure above (but rather than estimating the variance about 

zero, we estimate the variance about the mean of the prior): 
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(18) prove that there is no winner’s curse correction that is unbiased for all values of , but an 

advantage of a Bayesian approach is that the estimates will be on average unbiased. As an 

intuitive rationale for a choice for a prior, note that the Bayesian method with a diffuse prior 

will be unbiased on average across all real-valued effect sizes, while the empirical Bayes 

method is unbiased across a weighted average of effect sizes with the weights given by the 

prior. Thus, the empirical-Bayes-corrected estimate should be less biased if the true effect size 

is local to the mean of the selected prior but more biased if the true value is distant from the 

mean. 

As a final note on implementation: all of the above approaches require a value for 

, which we have assumed is known, but it is in fact not known because m and 

 are not known. For m, we just use the empirical frequency of the minor allele in our data. 

We estimate  iteratively, starting with the naive estimate of , . Then we calculate 

. Using , we estimate . We iterate this procedure until it 

converges, giving us estimates of both  and . (In the implementations below, we ran the 

algorithm for ten iterations, but convergence was virtually always apparent after only two.) 

 

C. Simulation Study 

We now examine and compare the MLE and Bayesian methods via simulation. To roughly 

match the analysis of the top three SNP associations with cognitive performance from the main 

text, we set the sample size n = 25,000, MAF m = 0.4734, dependent-variable variance  

(that is, the dependent variable is standardized), and significance threshold α = 0.05/69 (the 

conventional significance threshold after Bonferroni correction for analysis of 69 SNPs). For 

each fixed true value of , in each iteration i of the simulation, we draw an n-length genotype 

vector gi, and we draw an n-length error . In each iteration, we estimate the 

naïve , which we keep if it passes the significance threshold and ignore otherwise. If we 

keep , we then estimate  using maximum likelihood and  using the diffuse-

prior Bayesian method described above. (We do not perform simulations for an empirical 

Bayes approach since it is not clear what the right choice should be for an empirical prior for 

the simulation.) We perform 1,000,000 replications of this simulation. 

Supplementary Figure 3 below shows the winner’s-curse corrected estimate as a function of 

the true , grouped in bins of the true  that are 0.002 units wide. For each estimate, the light 

dotted lines in the corresponding color show the interval that contains 95% of the estimates. 

The figure suggests that there can be significant bias from the winner’s curse in this 

parameterization when the true  is less than 0.04, but this bias becomes negligible for higher 

values. It is also evident that neither correction procedure gives an unbiased estimate of the 

true  for every particular value of . In this example, it seems that MLE performs slightly 

better when the true  is very small, while the Bayesian method performs better for medium 

values of . If an empirical-Bayes approach were used, it would perform better than the 

Bayesian approach for the more common values of  and worse elsewhere. 
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D. Applications 

We now apply these winner’s-curse-correction methods to actual data. We begin with the 

findings of (1) for educational attainment, where we can compare the unbiased replication-

stage estimates to the results from applying the winner’s-curse-correction methods to the 

inflated discovery-stage estimates. The first and fourth columns of Supplementary Table S5, 

respectively, report the discovery-stage estimates and the replication-stage estimates for the 

three SNPs that (1) report passed a significance threshold of p < 5 × 10-8 (the linear regression 

coefficients for the SNP associated with years of education are from (1)’s Table 1, and the 

logistic regression coefficients for the SNPs associated with college completion have been 

provided by the SSGAC). The second and third columns, respectively, show the discovery-

stage estimates corrected by MLE and by the Bayesian method with a diffuse prior. 

Supplementary Table S6 is the same, except that it shows the 10 SNPs that passed a suggestive 

significance threshold of p < 10-6 (including the three that are genome-wide significant). The 

results in the tables indicate that in these data, both correction methods do a reasonable job of 

predicting the effect size that is estimated in the replication. 

Finally, we apply the winner’s-curse-correction methods to the cognitive performance findings 

reported in the main text. The first column of Supplementary Table S7 shows the effect size 

estimates for the three education-based SNPs that passed the (Bonferroni-corrected) 

significance threshold of p < 0.05/69. The second, third, and fourth columns, respectively, show 

the estimates corrected by MLE, by the Bayesian method with a diffuse prior, and by empirical 

Bayes. 

There are two reasons why the corrections as applied to the cognitive performance findings are 

large relative to the corrections as applied to Rietveld et al.’s (1) findings (despite the fact that 

the more stringent significance threshold of genome-wide significance used in (1) would tend 

to generate a larger correction, all else equal).  First, the sample size on which the uncorrected 

estimates are based is much larger in (1) than for the cognitive performance estimates 

(approximately 100,000 versus 25,000, respectively). Second and more subtly, simulations (not 

reported here) show that the uncorrected estimates for the cognitive performance results fall 

within the region around the significance threshold where the corrections are relatively large. 

To provide another way of assessing the magnitude of the SNP associations with cognitive 

performance, the fifth and sixth columns of Supplementary Table S7 show the R2 associated 

with the uncorrected estimates and with the empirical-Bayes-corrected estimates. The R2, 

which is defined as the ratio of the variance explained by the SNP to the total phenotypic 

variance, is here simply equal to the variance explained by the SNP, because the phenotypic 

variance has been normalized to 1: 

, 

where  is either the uncorrected (naïve) effect size estimate or the empirical-Bayes-corrected 

estimate. The results reported in the table suggest that the winner’s curse adjustment reduces 

the SNPs’ R2 from ≈0.0006 to ≈0.0002. 

9. Bayesian analysis of the credibility of the SNP associations 

Here, we report a heuristic Bayesian calculation along the lines of (20) and (21) to assess the 

likelihood that the three individual SNP associations we find with cognitive performance are 

false positives attributable to sampling variation. Several simplifying assumptions make the 

calculations especially straightforward. First, we assume that each SNP has only two (rather 

22 ˆ)1(2 mmR 
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than three) possible genotypes. Second, we assume for each of the three SNPs, there are only 

two possibilities: either there is no true association (the null hypothesis H0), or there is a true 

association that explains a known fraction of phenotypic variance, R2 (the alternative 

hypothesis H1). Let the prior probability of H1 be denoted by π; hence the prior probability of 

H0 is 1–π. Third, we assume the information available to us is that for each SNP, using a two-

sided t-test, we rejected the null hypothesis of no association at the standard significance 

threshold after Bonferroni correction for testing 69 SNPs, i.e., we rejected H0 at the significance 

threshold α = 0.05/69 ≈ 0.00072.  

By Bayes’ Rule, the probability that there is a true association given that we observed a 

significant association is: 

 

 

where “power” (as well as the significance test) is two-sided. Using (22) 

(http://pngu.mgh.harvard.edu/~purcell/gpc/qtlassoc.html), we calculate statistical power for 

several different values of R2 and for the sample size of N = 24,189 (the actual sample size of 

the Cognitive Performance Sample). 

Supplementary Table S8 shows posterior probabilities that there is a true association, given 

specific values for R2 and π. The larger value for R2 is 0.0006, which roughly corresponds to 

the estimated magnitude of the association in the Cognitive Performance Sample for each of 

the three SNPs that are statistically significant after Bonferroni correction (their R2’s are 

0.00064, 0.00058, and 0.00056; see Supplementary Table S4). Because this estimate is likely 

to be inflated by the winner’s curse, we also examine the smaller value of R2 = 0.0002. This 

value roughly corresponds to the estimated magnitude of the association for each of the three 

SNPs after adjustment for the winner’s curse, as discussed in Supplementary Information 

section 8 (these winner’s-curse-adjusted R2’s are 0.00027, 0.00019, and 0.0017; see 

Supplementary Table S7). 

In the simple set-up here, we view a prior probability π in the range of 0.2% to 2% as the right 

order of magnitude for an arbitrarily selected SNP to be associated with cognitive performance 

with effect sizes of order of magnitude R2 = 0.0002. To see why, begin by taking one extreme: 

suppose all independent associated SNPs had effect sizes R2 = 0.0002. Since the proportion of 

variance in cognitive performance explained by the linear, additive effect of all SNPs jointly is 

roughly 0.40 (23, 24), there would be 0.40 / 0.0002 = 2,000 independent associated SNPs. 

Given that there are approximately 1 million independent loci in the human genome (25), each 

of the loci would have prior probability 2,000 / 1 million = 0.2%. However, in reality, most 

SNPs associated with cognitive performance surely have smaller effect sizes than R2 = 0.0002. 

In this simple set-up with only two hypotheses, if we consider any SNP whose association is 

more than an order of magnitude smaller than R2 = 0.0002 as consistent with the “null 

hypothesis,” then the largest number of independent SNPs that are non-null is 20,000 (because 

0.40 / 0.00002 = 20,000). In that case, each locus has prior probability 20,000 / 1 million = 2%. 

Since the 69 SNPs we study are not arbitrary but are instead selected from those most strongly 

associated with educational attainment, the prior probability for each of those SNPs should be 

much higher than for a randomly selected locus in the genome—indeed, this observation is 

what motivates the proxy-phenotype method in the first place. Therefore, we view π = 0.1% as 

an extremely conservative lower bound for the prior probability on the three SNPs being true 

positives. Since we suspect that a number of the 69 SNPs we study are probably truly associated 

with cognitive performance, we believe that priors of π = 5% and π = 10% are more reasonable. 
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Given priors of π = 5% or π = 10%, together with a reasonable assumption about the true effect 

size (the winner’s-curse-adjusted R2 of 0.0002), Supplementary Table S8 indicates that the 

evidence very strongly evidence favors H1 over H0: the posterior probability of each SNP 

association being a true positive is 90% or 95%, respectively.  According to the table, a proper 

Bayesian thinker should be skeptical only when the prior probability becomes so conservative 

that the first stage of selecting SNPs on the basis of their being associated with years of 

schooling is treated as uninformative (π less than 1%). 

10.  Selection of theory-based candidate SNPs 

To select a set of SNPs that would fairly represent those that would be nominated as candidates 

on theoretical grounds, we required a method of constraining the search. One challenge for 

candidate-gene approaches is that any of the thousands of genes that are expressed in the central 

nervous system could be selected as a theoretical candidate for association with cognitive 

performance. Therefore, we chose to use only SNPs that had at least one published positive 

association with IQ, g, or a measure of general cognitive ability, including higher-order facets 

of IQ such as verbal or spatial IQ (but not episodic memory, working memory, dementia, 

MMSE, autism, schizophrenia, etc.) in a healthy sample, regardless of whether there are any 

published negative associations (non-replications), as of May 2013. PubMed was used for the 

searches, and the results were required to be publications in peer-reviewed journals (not 

conference abstracts, etc.). This selection method should be biased in favor of “good 

candidates” in the sense that they are more likely to be true associations than would be a 

randomly chosen set of common SNPs in central-nervous-system-expressed genes. We 

excluded SNPs that originated as discoveries in GWAS studies, SNPs that were only significant 

in association with IQ as large haplotypes, and polymorphisms that are not SNPs. The first 

exclusion was applied because GWAS-discovered SNPs are not traditional candidates, since 

they were by definition derived in an atheoretical manner. The latter two were applied so as to 

restrict our set of theory-based candidates to individual SNPs that could be compared directly 

to the set of SNPs nominated from the results of the years-of-schooling (proxy phenotype) 

GWAS. Finally, we confirmed that none of the positive associations reported in the literature 

for the theory-based SNPs used a cohort included in the Cognitive Performance Sample. Our 

set of theory-based SNPs is listed in Supplementary Table S3. 

(While the SNPs comprising the two-SNP haplotype for APOE, rs429358 + rs7412, were 

retained on our initial list, these SNPs were not available in the cohort GWAS results.) 

11.  Testing the Q–Q plots for the education-associated and the theory-

based candidates 

To test whether the Q–Q plot for the education-associated SNPs (Figure 2 in the main text) 

differs from the null of a uniform distribution, we use as our test statistic 

 

where s indexes the S = 69 education-associated SNPs, and  is the squared z-statistic from 

the regression of cognitive performance on SNP s. This squared z-statistic captures the strength 

of the association between cognitive performance and SNP s (while ignoring the sign of the 

association, which depends on the arbitrary choice of reference allele). Under the null 

hypothesis, each , and thus , which has mean 1 and variance 2. 

Therefore, under the null: 
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We calculate a p-value for the test of whether the realized value of the test statistic, Z = z, 

differs from zero using the inverse cdf of the standard normal distribution. As reported in the 

main text, for the education-associated SNPs, we calculate z = 5.98, corresponding to p-value 

= 1.12×10–9. 

We test the theory-based SNPs analogously, but with S = 24. As reported in the main text, we 

calculate z = 1.19, corresponding to p-value = 0.12. 

To calculate the 95% confidence bounds around the null hypothesis shown in Figure 2, we use 

the fact that the sth order statistic out of S from a Uniform(0,1) random variable has a Beta(s, 

S–s+1) distribution (33, p. 230). These confidence bounds differ for the two sets of SNPs 

because S differs. 

12.  Biological annotation 

In this section, we describe the methods used in our biological annotation analyses. In order to 

focus on the SNPs most strongly implicated in cognitive performance, we study a subset of the 

69 education-associated SNPs described in Supplementary Information section 1. Specifically, 

we analyze the 14 SNPs that reach a nominal significance level of 5% in the meta-analysis of 

cognitive performance in the Cognitive Performance Sample. (A more stringent significance 

threshold would retain too few SNPs for substantial analysis.) Throughout, we refer to these 

SNPs as the Nominally-Significant Education-Associated SNPs (the NSEA SNPs).  

We conduct five types of analyses. In Subsection A, we examine which non-synonymous 

coding variants are known to be in strong linkage disequilibrium with the NSEA SNPs. In 

Subsections B and C, we investigate if the NSEA SNPs are associated with gene expression 

levels in, respectively, blood and three distinct brain regions. In Subsection D, to shed light on 

the biological function of the genes implicated in our analyses, we conduct a gene function 

prediction analysis. Subsection E, which builds on the analysis from Subsection D, tests 

whether the loci implicated in our analyses are more enriched for nervous system functioning 

than SNPs that are similar to our 14 SNPs in terms of minor allele frequency, gene proximity, 

and gene density, but that are otherwise randomly selected from the GWAS data.   

Our analyses here differ in a number of ways from those reported in (1), in which similar 

biological annotation analyses were conducted in an expanded version of our Education 

Sample on SNPs reaching p < 5×10-8 (genome-wide significance) or p < 10-5 (suggestive 

significance) for association with educational attainment (with the p-value threshold depending 

on the biological analysis). First and most importantly, by restricting attention to the NSEA 

SNPs, all of our analyses are based on a set of SNPs for which there is especially strong reason 

to believe that at least some are related to cognitive performance (as opposed to other 

endophenotypes that matter for educational attainment). Second, our eQTL look-ups (in 

Subsections B and C) have substantially more statistical power because our gene-expression 

databases have larger sample sizes. In particular, the brain sample we work with is four times 

larger than the one analyzed in (1). Third, the gene-prediction analyses we conduct (in 

Subsection D) are more expansive. Specifically, our analyses include predictions from mouse 

models about the phenotypic effects of a gene and inferences about the types of tissue in which 

the gene is expressed. Finally, we report (in Subsection E) formal tests of the hypothesis that 

the loci implicated in our analyses are more likely than would be expected by chance for 

otherwise-similar SNPs to be in the vicinity of genes with neuronal functionality. Such formal 
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tests are novel, as far as we are aware. Subsection F provides a summary of the evidence for 

biological candidates. 

 

A. Non-Synonymous Variants in Strong LD with Candidate SNPs 

We used the software tool HaploReg to identify missense variants in close linkage 

disequilibrium (r2 ≥ 0.5) with at least one of the 14 NSEA SNPs. In total we identified 8 such 

non-synonymous variants in the 1000 Genomes database tagged by 6 NSEA SNPs. These 8 

variants are within 8 genes: JMJD1C, RECQL4, LRRC14, SH2B1, SDCCAG8, DNAJC28, 

GART, and SBNO1. See Supplementary Table S9 for more information about these variants.   

 

B. Blood cis-eQTL Lookup  

We conducted gene expression analyses from blood using publicly available data 

(downloadable from http://genenetwork.nl/bloodeqtlbrowser/) from a recently published paper 

by (27). (27) conducted cis-eQTL mapping by testing, for a large set of genes, all SNPs within 

250 kb of the transcription start site of the gene for association with total RNA expression level 

of the gene. The publicly available data contain, for each gene, a list of all SNPs that were 

found to be significantly associated with gene expression using a False Discovery Rate (FDR) 

of 5%. For a detailed description of the quality control measures applied to the original data 

and an overview of the statistical framework, see (27). Their meta-analysis is based on a pooled 

sample of 5,311 individuals with gene expression levels measured from full blood. We looked 

up the 14 NSEA SNPs in this publicly available data and found 8 that were significantly 

associated with gene expression levels in a total of 19 different genes and transcripts: LRRC24, 

GPT/PPP1R16A, VPS28, MFSD3, TUFM, SPNS1, CCDC101, SULT1A2/SULT1A1, LAT, 

SDCCAG8, GART, ITSN1, RILPL2, SETD8, STK24, TANK, and PSMD14. The effect sizes and 

statistical significance for the NSEA SNPs and strongest eQTL signal for each gene are 

presented in Supplementary Table S10. 
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C. Brain cis-eQTL Lookup  

To investigate if any of the NSEA SNPs are associated with gene expression levels in human 

neural tissue, we utilized data from the Harvard Brain Tissue Research Center. The total sample 

of 742 individuals is comprised of 376 Alzheimer patients, 193 Huntington patients, and 173 

individuals without a known neurological disorder. The dataset contains data on expression 

probes obtained from postmortem brains and measured in three distinct neural regions: 

prefrontal cortex, visual cortex, and cerebellum (28). The probe data on the Huntington patients 

have not previously been reported.  

 

The quality control and probe-data normalization steps are each extensive and are described in 

detail in Zhang et al. After these steps, 39,579 probes were taken forward as dependent 

variables for subsequent eQTL analysis. 

 

As is standard, we tested the probes for association with all of the SNPs in the GWAS data; 

below, we report the results from “looking up” our prioritized SNPs in the results. We 

eliminated SNPs with a minor allele frequency below 0.01, SNPs that failed a test of Hardy-

Weinberg equilibrium at a nominal p-value < 10-6, and SNPs with a call rate below 95%.  After 

quality control, 838,958 SNPs remained. We used a Kruskal-Wallis test to test all SNPs within 

one Mb of the transcription start site of each gene for association with gene expression level of 

a given probe. We adjusted the resulting p-values to control for testing of many SNPs and 

probes. To take into account the correlation structures among the probes and among the SNP 

genotypes, we estimated an empirical FDR: the ratio of the average number of eQTLs found 

in datasets with randomly permuted sample labels to the number of eQTLs identified in the 

original data set. Since the number of tests was large, we found that the empirical null 

distribution converges after a relatively small number of permutation runs; thus, we used ten 

permutation runs to estimate the empirical FDR. We focus on the associations that survive after 

constraining the empirical FDR to be less than 10% (which corresponds to a nominal p-value 

cutoff of approximately 5×10−5).  

 

In the meta-analytic results for the three different brain regions, we looked up a total of 580 

SNPs: the original 14 SNPs together with all SNPs in high linkage disequilibrium (r2 > 0.5) 

with one of these 14 SNPs. We observed 40 significant cis-effects for 27 of these 580 SNPs 

(significant at FDR 10%, as described in the previous paragraph): 13 for prefrontal cortex, 10 

for visual cortex, and 15 for cerebellum. These 27 SNPs, which proxy for 6 of the 14 NSEA 

SNPs, regulate gene expression for 18 distinct transcripts (some of which are genes and some 

of which are non-coding, regulatory RNAs): LRRC14, LRRC24, KIFC2, AF075035, EIF3C, 

LAT, NUPR1, NFATC2IP, TUFM, SDCCAG8, SBNO1, C12ORF65, MPHOSPH9, TMEM50B, 

GART, IFNGR2, AK026896, and AF33979. Supplementary Table S11 lists the effect-sizes, p-

values, LD metrics, and brain regions. 

 

D. Co-expression-driven Gene Functional Prediction  

We used a recently developed method (extensively described and implemented by (29)) to gain 

insight into the putative functions of the genes in the vicinity of the NSEA SNPs. Gene function 

prediction is based on the idea that genes with shared expression profiles are likely to have 

related biological functions. For example, if there are 50 genes known to play a role in 

apoptosis, then a gene with unknown function that is strongly co-expressed with these 50 genes 

is likely to be part of apoptotic pathways as well. The method described in (29) uses data on 

co-expression profiles to predict the likely functions of as-of-yet uncharacterized genes and 

refine our understanding of the function of other genes (achieving this by reconstituting the 
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existing gene sets – described below). In addition to proposing the method, (29) also report 

evidence that a prediction coming out of the framework was validated by subsequent wet-lab 

experiments. 

 

To apply the method, we queried the co-expression database described by (29) with our list of 

genes (our list is explained below). The query for each gene returned the probable function of 

the gene or the reconstituted pathway in which it operates (more specific details are given 

below). In the remainder of this paragraph, we briefly summarize the information from which 

the co-expression database was generated. The database was generated by linking information 

about gene expression obtained from published data on approximately 80,000 gene expression 

profiles (from the database Gene Expression Omnibus (GEO) (30), which itself was generated 

using data from humans, animals, and/or cell lines) with three other distinct types of 

information: 

 

1. A list of pathways and gene sets that a given gene is believed to be involved in, obtained 

from the databases: REACTOME pathways (31), Gene Ontology terms (32), and KEGG 

pathways (33). 

2. The phenotypic effects of perturbing the normal functioning of a given gene in mice 

(e.g., knock-out models, overexpression), obtained from the Mouse Genetics Initiative 

database (http://www.informatics.jax.org). 

3. More than 200 specific tissues, organs, or cell types within which a given gene is highly 

expressed in the co-expression dataset, for which annotation was obtained from searching the 

U.S. National Library of Medicine’s Medical Subject Headings (MeSH) database 

(http://www.nlm.nih.gov/mesh/). 

 

(In contrast to the functional prediction analysis that we describe here, the analogous analysis 

in (1) was conducted at a time when the co-expression database included only information from 

#1 in the above list.) 

 

In our analyses, we queried a list of 83 genes that were derived from the list of 14 NSEA SNPs: 

we included every gene that is located within 250 kb of the 14 SNPs; and if the SNP is located 

within a gene desert (defined by having no gene located within 250 kb base pairs of the SNP), 

we included the nearest gene. Two of the 14 SNPs were located within a gene desert: rs1487441 

(nearest annotated gene POU3F2 is located ~700kb away) and rs1606974 (nearest annotated 

gene NRXN1 is located ~600kb away). 

 

Among the 83 genes we queried, we found that 15 genes are in relevant gene sets related to 

reconstituted pathways and biological functions (for specific predictions, see Supplementary 

Table S12), 23 genes are predicted to cause relevant neuronal phenotypes in mouse models (for 

specific predictions, see Supplementary Table S13), and 29 genes are highly expressed in 

nervous-system-related tissues and cell types (for specific tissues and cell types, see 

Supplementary Table S14). Given that there is overlap between the genes in these three sets, 

our co-expression analyses identified 36 genes in total as potential biological candidates for 

cognitive performance (see Supplementary Table S15 for a list of these genes). (Note that 

APOE, which may be associated with cognitive decline in older individuals (6) is not among 

our list of genes. This is perhaps as expected given our results from section ‘Polygenic score 

analyses in the Health and Retirement Study’, in which we find that a polygenic score 

comprised of our educated-associated SNPs is associated with the level of cognitive function 

in older individuals but not with cognitive decline.) 
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While the full list of all implicated reconstituted pathways is available online at 

http://www.ssgac.org1, we conclude our discussion of this analysis by listing the top 5 most 

frequently occurring search terms from the analysis for each category (with the count given in 

square brackets) listed in the Supplementary Tables S12, S13 and S14: 

1. Gene Ontology: Biological Processes – neuron-neuron synaptic transmission [3]; 

neurotransmitter secretion [3]; regulation of neurotransmitter levels [3]; synaptic transmission, 

glutamatergic [3]; axonogenesis [2]. 

 

2. Gene Ontology: Cellular Compound – synapse [6]; dendrite [5]; synapse part [5]; 

cation channel complex [4]; synaptic membrane [4]. 

 

3. Gene Ontology: Molecular Function – cation channel activity [5], gated channel 

activity [5]; voltage-gated cation channel activity [5]; voltage-gated channel activity [5]; 

voltage-gated ion channel activity [5]. 

 

4. KEGG – Calcium signaling pathway [4], Neuroactive ligand-receptor interaction [3], 

axon guidance [2], Long-term potentiation [2]. 

 

5. REACTOME – Neuronal System [6] Potassium Channels [5]; Transmission across 

Chemical Synapses [5]; Voltage gated Potassium channels [5]; Ras activation uopn Ca2+ infux 

through NMDA receptor [4]; Unblocking of NMDA receptor, glutamate binding and activation 

[4]. 

 

6. Mouse Genome Informatics – abnormal brain wave pattern [5]; abnormal excitatory 

postsynaptic currents [5]; abnormal excitatory postsynaptic potential [5]; abnormal inhibitory 

postsynaptic currents [5]; abnormal CNS synaptic transmission [4]. 

 

7. Site-specific expression – Prefrontal Cortex [12]; Visual Cortex [12]; Occipital Lobe 

[12]; Cerebral Cortex [11]; Entorhinal Cortex [11]. 

 

E. Evaluating for Enrichment of Genes Related to Neuronal Function 

Our prediction analyses showed that all 12 NSEA SNPs not located in a gene desert were within 

250 kb of at least one gene predicted to be related to neuronal function. While this finding 

seems impressive, it is well understood that many genes can been linked to neuronal function. 

It is therefore important to evaluate whether the 12 non-desert NSEA SNPs in our analysis are 

more associated with neuronal function than would be expected by chance. To do so, we 

calculated an empirical p-value using a matching procedure that we describe in this section. 

  

As a first step, for each of the 12 non-desert NSEA SNPs, we randomly sampled a vector of 

1,000 “matched SNPs” that resembled the NSEA SNPs in terms of minor allele frequency, gene 

density, and distance to nearest gene. For each NSEA SNP, we generated the 1,000 matched 

SNPs using the following algorithm: 

1. We identified the set of all SNPs covered by our GWAS data that have a minor allele 

frequency within 5 percentage points of the given NSEA SNP’s minor allele frequency. 

 

                                                           
1 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a 

separate appendix to the submitted manuscript.  
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2. We discarded SNPs from this set whose gene density differed from the given NSEA 

SNP’s gene density by more than 10%, where “gene density” is defined as the total number of 

genes containing a SNP that is in LD r2 > 0.5 with the focal SNP. 

 

3. We then further discarded SNPs from the set whose distance to the nearest gene exceeds 

the given NSEA SNP’s distance to nearest gene by more than 20 kb. 

 

4. Finally, from the remaining SNPs in the set, we randomly sampled 1,000 of them. (Up 

to this point in the algorithm, there were always more than 1,000 SNPs remaining in the set.)  

As a second step, for each of the 12 NSEA SNPs and each of their respective 1,000 matched 

SNPs, we coded a SNP as either “enriched for neuronal functioning” or “not enriched for 

neuronal functioning.” We did so using a version of the gene function prediction procedure 

outlined in section 4, but we modified the procedure in two ways. First, to make our definition 

of “enriched for neuronal functioning” in this analysis more stringent and specific to 

reconstituted pathways, we only used the type of information listed in bullet point #1 from 

section 4: the pathways and gene sets that a given gene is believed to be involved in. 

Specifically, we manually annotated all of the 6,004 functionality terms from the relevant 

databases (737 REACTOME pathways, 5,083 Gene Ontology terms, and 184 KEGG 

pathways), categorizing each as either “related to neuronal function” or “not related to neuronal 

function” depending on the direct or indirect involvement in the central nervous system via 

anatomy, cellular structure, or physiological processes (information drawn from published 

literature). We have posted this annotated list on the following website: http://www.ssgac.org2. 

Second, rather than identifying genes in the vicinity of a SNP as those genes containing a SNP 

within a window of 250 kb around the focal SNP (as we did in section 4), here we identify 

genes in the vicinity of a SNP as those genes containing a SNP that is in LD r2 > 0.5 with the 

focal SNP; this latter definition is generally more stringent and therefore may be considered 

more appropriate for the kind of enrichment analysis we conduct here. For each gene in the 

vicinity of one of the NSEA SNPs or in the vicinity of one of the matched SNPs, we code the 

gene as “related to neuronal function” if and only if at least one of its predicted functionality 

terms is categorized as “related to neuronal function.” We then code each NSEA SNP as 

“enriched for neuronal functioning” if and only if at least one of the genes in its vicinity is 

“related to neuronal function,” and we code each of its respective matched SNPs analogously. 

 

In the final step, we tested the null hypothesis that the 12 NSEA SNPs are no more “enriched 

for neuronal functioning” than would be expected by chance. Using the definition of “enriched 

for neuronal functioning” from the previous paragraph, 10 out of the 12 NSEA SNPs are 

“enriched for neuronal functioning.” For comparison, among the 1,000 random matched sets, 

we observed 88 sets with at least 10 out of 12 SNPs “enriched for neuronal functioning.” Hence, 

the empirical p-value is 0.088. While this p-value does not reach the standard statistical 

significance threshold of 0.05, we nonetheless view it as fairly strong evidence in favor of the 

biological significance of the NSEA SNPs: our procedure of matching the SNPs on minor allele 

frequency, gene density, and distance to nearest gene leads to a very conservative test because 

if the properties of the NSEA SNPs—say, their distance to nearest gene—is typical of functional 

SNPs, then the SNPs matched to them are also reasonably likely to be functional. Thus, our 

test does not just require that the NSEA SNPs are more likely to be “enriched for neuronal 

functioning” than any randomly chosen SNPs, but more likely than SNPs that are already 

chosen to be reasonably likely to be functional. 

                                                           
2 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a 

separate appendix to the submitted manuscript. 
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(We note that our approach is an improvement compared to current standard practice in 

enrichment analysis. Instead of investigating only established functions and links to pathways, 

we apply functional prediction, which extends over known biology and is likely more accurate 

and stringent. It is not common practice yet to conduct the kind of statistical test that we 

introduce here, and we suspect that our results are statistically stronger than those that would 

be obtained from many published findings using related bioinformatics procedures.) 

 

F. Summary of the Evidence for Biological Candidates 

In this section we briefly summarize the cumulative evidence arising from our extensive 

bioinformatics annotation analyses regarding which genes are associated with cognitive 

performance. In Supplementary Table S15 we outline the positive findings from our 4 different 

computational approaches (described above), in total 8 distinct categories: (1) non-

synonomous variants; (2) blood eQTL; (3) brain eQTL–prefrontal; (4) brain eQTL–visual; (5) 

brain eQTL–cerebellum; (6) functional prediction–GO, KEGG, REACTOME; (7) functional 

prediction–mouse phenotypes; and (8) functional prediction–tissue expression. In the last two 

columns of Supplementary Table S15, we additionally report the results from looking for 

overlap between our list of 83 genes and the genes implicated in two recent analyses of neural 

function: 

1. (28) report functional modules constructed using brain-derived gene expression profiles 

from three regions (prefrontal cortex, visual cortex and cerebellum). We looked up which if 

any of our 83 genes were reported as clustered into any of the 62 network modules containing 

at least 50 genetic nodes as defined in (28). Here, we find that six of the genes (POU3F2, 

CPSF1, AKT3, NMS, TMED2 and TMEM50B) map to the neuropeptide hormone specific 

module (Fisher’s exact test (FET) enrichment p-value = 0.004, analytical framework explained 

extensively at (28). Furthermore, we combined all neuronal specific modules (synaptic 

transmission; neurogenesis; neuropeptide hormone and/or nerve myelination) from (28): this 

approach implicates 12 of the following genes – POU3F2, CPSF1, KCNMA1, AKT3, KIFC2, 

FARP1, NMS, NRXN1, SCRT1, TBR1, TMED2 and TMEM50B, in neuronal-related module 

functions (FET enrichment p-value = 0.015). 

 

2. (34) identifies genes that code for proteins isolated from the postsynaptic density from 

human neocortex [hPSD]. We looked up which if any of our 83 genes were reported as part of 

this protein complex. This exercise implicates the following genes: FARP1, ITSN1, NRXN1, 

and TUFM. 

In total we found some supportive evidence for 56 out of the 83 genes. Furthermore, 21 genes 

were prioritized by at least 3 of the methods, 12 genes by at least 4 methods, and 6 genes by 

up to 5 methods. These 6 genes that have highly convergent evidence of biological functionality 

are: LRRC14, KIFC2, NRXN1, C12ORF65, ITSN1 and TMEM50B. Furthermore, the results 

from the above two analyses of blood and brain cis-eQTLs indicate that the NSEA SNPs or 

respective proxies affect the gene expression levels of almost half of the 21 top-ranking 

implicated genes, and hence these analyses may reveal potential regulatory mechanisms.  As 

noted in the main text, in total 4 of the highly prioritised genes (KCNMA1, NRXN1, POU3F2, 

and SCRT) are predicted (in the analysis in the section “Co-expression-driven Gene Functional 

Prediction” above) to be involved in a particular reconstituted neurotransmitter pathway, 

labeled in REACTOME as “unblocking of NMDA receptor, glutamate binding and activation.” 
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13.  Polygenic score analyses in family samples 

 

A. Results from analyses in family samples 

 

We used a polygenic score to explain cognitive performance in MCTFR, QIMR, STR, and in 

the additionally recruited cohort Generation Scotland (GS). To construct the weights for the 

polygenic score used for each of these cohorts, we performed a meta-analysis on cognitive 

performance, excluding respectively MCTFR, QIMR, STR, and no cohorts (for GS, we use the 

complete cognitive performance meta-analysis since GS was not included in the meta-

analysis). This resulted in a meta-analysis of N = 20,822 for MCTFR, N = 22,437 for QIMR, 

N = 20,974 for STR, and N = 24,189 for GS. We constructed a linear polygenic score by 

weighting the 69 education-associated SNPs by the coefficient estimates obtained from these 

meta-analyses (in QIMR, the SNP rs2970992 was excluded because it exhibited a very high 

number of Mendelian errors and extreme Hardy-Weinberg irregularity: HWE test p = 1.98×10-

17). In MCTFR the sample is restricted to 1,346 siblings from 673 families. In QIMR the sample 

is restricted to 5 siblings from 1 family, 4 siblings from 19 families, 3 siblings from 129 

families, and 2 siblings from 479 families, yielding a total of 1469 pseudo-independent 

siblings. In STR the sample is restricted to 810 DZ twins from 405 distinct families. In GS 

there are 1,081 siblings from 476 independent families. In each regression the standard errors 

are clustered (35) at the family level to take into account the non-independence of individuals 

within a family. The results are reported in Supplementary Table S16. Using both within-family 

and between-family variation (the top panel: “Without family dummies”), pooling the 

coefficients across GS, MCTFR, QIMR, and STR with inverse-variance weighting (the right-

most column), we find that the score is significantly protectively associated with cognitive 

performance (p-value = 8.17×10-4). Using only within-family variation (the bottom panel: 

“With family dummies”), the pooled coefficient has the same sign but is smaller with a larger 

standard error, and is thus not statistically significant (p-value = 0.36). 

 

B. Power calculations for within-family analysis 

 

In the main text, we claim that “even without stratification, the non-significance of the within-

family coefficient is not surprising given the low power of this test.” Here we substantiate that 

claim. 

We estimate the power of this analysis by simulation. We assume that cognitive performance 

Y of sibling i from family j is determined according to the following simple model: 

 

, 

 

where  is the polygenic score,  is a family effect, and  is the residual from a 

projection of  on  and  in the population and is therefore uncorrelated with both by 

construction. The variables  and  are standardized to have mean 0 and variance 1. We 

assume that  and that the family effects are distributed normally in the 

population: . Since we are interested in testing our power to detect a polygenic 

score effect within families under the assumption that the size of the effect is the same as it is 

without family effects, we assume that  is uncorrelated with . 
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To match the empirical fact that the correlation of cognitive performance between siblings is 

about 0.5, we assume that . Now, note that the explanatory power of the 

polygenic score is given by:  

 

.
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In the simulations below, we examine two different values for β, 0.045 and 0.065. For each β, 

the value of  is set to satisfy β2 + 2σ
2 = 1 (which ensures that Yij has variance 1 and that R2 

= β2). Given this, the two values of β correspond to R2 equal to 0.20% and 0.42%, 

respectively, which roughly correspond to the lower and upper end of the range of R2’s we 

estimate for the score across samples (in Table S16). 

 

For each assumed true value of β, we conduct 500 simulation runs. In each run, we generate 

data as follows for a sample of 2,182 families that matches the data used in our estimation: 

1,950 two-sibling families, 181 three-sibling families, 42 four-sibling families, 4 five-sibling 

families, 3 six-sibling families, and 2 seven-sibling families. We generate SNP-level data for 

the parents by assuming that the allele frequency for 69 SNPs matches the empirical 

frequency measured in our data, that parental genotypes are drawn independently, and that all 

SNPs are in Hardy-Weinberg equilibrium. Children are then simulated by drawing one allele 

from each parent with equal probability. The weights to calculate the score are drawn from a 

normal distribution (with mean 0 and variance scaled such that sij has variance 1). This data-

generating process produces scores that have a within-family correlation of 0.5. 

 

Given the data in each run, we estimate β in two regressions. In the first, we regress Yij on sij 

(i.e., we not include family dummies as covariates); this is the “Without family dummies” 

model in table S17 discussed below. In the second, we regress Yij on sij and zj; this is the 

“With family dummies” model in table S17 discussed below. Note that in the second model, 

we are estimating the family effect as a fixed effect (even though we model it as a random 

effect, which is normally distributed, for the purpose of doing the power calculation) because 

in the analysis of the actual data we estimate the family effect as a fixed effect. In both 

regressions, we take into account the non-independence of individuals within a family by 

clustering standard errors within family (35), just as we do in the analysis of the actual data. 

 

We estimate power as the fraction of the 500 runs in which we reject the null hypothesis β = 

0 with a p-value less than 0.05. Table S17 shows the average regression output over the 500 

simulations for the two different values of β, 0.045 and 0.065. 

 

As can be seen in table S17, power is much higher in the model estimated without family 

dummies; it is very nearly 80% even at the lower end of the range of R2’s. With family 

dummies, however, the range of R2’s corresponds to power between 31.2% and 64.2%. Thus, 

our power to detect a significant effect in the within-family analysis is relatively low even if 

the true effect size is at the upper end of our range of estimates. 

14.  Polygenic score analyses in the Health and Retirement Study 

 

A. HRS data description 
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The Health and Retirement Study (HRS; (36)) is a representative sample of Americans over 

the age of 50 who have been surveyed every two years since 1992. The survey data from all 10 

waves of the study are publicly available. The total sample size of the HRS is 30,671, including 

respondents who entered the sample in wave 1, replenishment samples who entered in 

subsequent waves, and spouses of respondents. However, for all analyses using the HRS 

described in this section and elsewhere in this paper, the sample is restricted to genotyped 

individuals from European ancestry (N = 8,652). Because testing individual SNPs in a sample 

of this size would have low power, we instead analyze a polygenic score. 

To combine the education-associated SNPs into a linear polygenic score that exploits their joint 

explanatory power, we generated a linear combination of the SNPs’ number of reference 

alleles, weighted by their coefficient estimates from the GWAS meta-analysis of years-of-

schooling (as in (37)). In particular, we use the results from the meta-analysis that excludes the 

HRS; this meta-analysis is described in section 1 above. We construct the score in the HRS 

using the 60 out of 69 education-associated candidate SNPs available in the imputed genotype 

data. 

We obtained the cognitive measures from the HRS datafile as prepared by RAND (RAND v.L, 

available at http://hrsonline.isr.umich.edu). This datafile contains cognitive scores harmonized 

across all waves of the study in which the data were collected. We use the two summary 

cognitive-health measures that are available in more than one wave: Total Word Recall (TWR) 

and Total Mental Status (TMS). TWR is the sum of scores on immediate and delayed word-

recall tasks. In each task, the recall list contains 10 words, and scores ranged from 0-20. TMS 

is a dementia battery. It is the sum of scores for the following tasks: serial 7’s (repeatedly 

subtracting the number 7), backwards counting from 20, and naming objects, the current date, 

and the current President and Vice-President. The resulting range is 0-15. Because these 

batteries focus on identifying cognitive problems and early signs of dementia (rather than 

measuring cognitive ability among healthy individuals), the resulting variables are viewed as 

measures of cognitive health (for discussion, see (38) p.10, which is posted online as part of 

the HRS data documentation: 

http://hrsonline.isr.umich.edu/sitedocs/dmc/Lachman_hrscognitive.pdf). Below, we also 

report results for Total Cognition (TC), which is the sum of TWR and TMS, resulting in a range 

of 0-35. Consistent measures for TWR, TMS, and TC are available in wave 3-9. 

Prior to wave 4, all cognitive tests were administered to all respondents. Starting in wave 4, all 

cognitive tests were administered to new respondents, but for those who had participated in a 

prior wave, the respondent’s age determined which cognitive measures were administered. 

Respondents 65 years or older received the full set of cognitive tests. Respondents under 65 

received the full TWR battery but only two of the tasks comprising TMS (serial 7’s and 

backwards counting from 20). For this reason, we have more observations for the TWR 

measure than for the TMS and TC measures. 

 

 

B. HRS regression results 

 

For each of the cognitive measures—TWR, TMS, and TC—we run two sets of regressions: 

one in which the dependent variable is the cognitive measure itself (the “levels” regressions), 

and one in which the dependent variable is the difference between the cognitive measure in the 

current wave and the previous wave (the “changes” regressions). All dependent variables are 
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standardized to have mean 0 and standard deviation 1. In all analyses we control for gender 

and an age spline. Knots of the age spline are at 60, 70, and 80, except for the changes 

regressions for TMS and TC, in which the knots are at 70 and 80 because there are only 9 

respondent-wave observations with age < 60. We exclude these nine observations from the 

analysis. For each dependent variable we run two regression specifications. The first includes 

as a regressor (in addition to gender and the age spline) the polygenic score, and the second 

additionally includes as regressors the interactions of the polygenic score with the age spline. 

Because the data include observations from the same respondent in multiple waves, we cluster 

the standard errors (35) at the respondent level. 

Supplementary Table S18 displays the regression results, with each column representing a 

different regression specification. The odd-numbered columns include only controls for sex 

and an age spline, while the even-numbered columns additionally control for interactions 

between the score and the age spline. For each column, the “ΔR2” row shows the increase   from 

including the score variables (either just the score, or the score and its interactions, depending 

on the specification) in the regression. 

In the levels regressions (columns 1-6), the increasingly negative coefficients on the age spline 

indicate that cognitive performance is decreasing with age, as expected. The coefficients on the 

indicator for being female show that females on average have higher scores in TWR and lower 

scores on TMS, with the net effect on TC being higher scores. Turning to the main coefficient 

of interest, in all of the levels regressions a higher value for the score is associated with a higher 

level of cognitive performance. In terms of magnitude, a one standard-deviation increase in the 

score is associated with approximately a 0.04 increase in TWR, a 0.06 increase in TMS, and a 

0.06 increase in TC. 

In the levels regressions that include an interaction between the score and the age spline 

(columns 2, 4, and 6), we find that the effect of the score is approximately unaffected by age, 

except possibly for the age category ≥80, where there appears to be some reduction in the 

magnitude of the protective effect of the score (but statistically significantly only for TWR). 

This pattern is consistent with the results shown in Figure 3 in the main text.  

In the changes regressions (columns 7-12), the negative coefficients on the age spline again 

reflect that cognitive performance is decreasing with age, and indeed at an increasing rate. The 

negative coefficient on the indicator for being female in the ΔTMS regressions suggests that 

the decline is slower for females for this measure, but the coefficients are not statistically 

distinguishable from zero for the other measures. The coefficient on the score is not 

significantly distinguishable from zero for any of the measures in the changes regressions. 

Thus, even though the score is associated with a higher level of cognitive performance, it does 

not appear to be protective against declines in cognitive performance. 

In the changes regressions that include an interaction between the score and the age spline 

(columns 8, 10, and 12), we again find a negative coefficient for the age category ≥80 

(statistically significant for ΔTWR and ΔTC). This negative coefficient means that cognitive 

performance declines more quickly for those respondents over the age of 80 who have higher 

values of the score—and hence had higher cognitive performance on average at younger ages. 

This negative coefficient in the changes regressions is thus consistent with the negative 

coefficient on the analogous interaction term in the levels regressions. 

To probe the robustness of the results to population stratification, we repeated the levels 

regressions for TWR, TMS, and TC, omitting the interaction between the polygenic score and 

the age spline as a regressor, and instead including different numbers of principal components 

of the genome-wide data. For each dependent variable, 20 additional regressions are performed, 
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in which principal components are iteratively added. Supplementary Figure S4 shows how the 

coefficients for the polygenic score change as principal components are added. The coefficients 

for the polygenic score may decline slightly as principal components are added, but the decline 

is very small, and the coefficients with 20 principal components and essentially the same as 

those without any principal components. Thus, we find no evidence that population 

stratification is driving the HRS results. 

Table S19 presents the same analyses as those in Table S18, however, in these analyses years 

of education (0-17+) is added as control variable to the model. There is a slight decrease in 

sample size, because years of education is missing for a few individuals. In the levels 

regressions (columns 1-6), the coefficient for the polygenic score remains statistically 

significant, but the magnitude of the coefficient is about half as large as when educational 

attainment is not included as a control, and ΔR2 is much smaller. In the changes regressions 

(columns 7-12), the polygenic score is not statistically significant. 

 

C. HRS sign tests on the education-associated SNPs 

 

We also tested whether the direction of the SNPs’ effects on educational attainment generally 

coincide with the direction of their effects on cognitive performance. For each of the three 

dependent variables, we ran 60 regressions, using the 60 out of 69 SNPs available in the HRS 

data as regressors instead of the polygenic score in regression specifications (2), (4), and (6) 

from Table S18. For each SNP, we compared the sign of the SNP’s coefficient with the sign of 

the same SNP’s coefficient from the meta-analysis of educational attainment that excludes the 

HRS. We computed the p-value using a binomial distribution with probability 50% of matching 

the sign. The resulting p-values are: 0.0067 for TWR (39 out of 60 SNPs with identical sign), 

0.0775 for TMS (35 out of 60 SNPs with identical sign), and 0.0775 for TC (35 out of 60 SNPs 

with identical sign). 

15.  Statistical Framework for the Proxy-Phenotype Method as Applied 

to Cognitive Performance 

 

A. Statistical power of GWAS vs. candidate-SNP (including proxy-phenotype) method 

for gene discovery 

Consider the problem of estimating the association between a phenotype of interest Y, say 

cognitive performance, and the genotype  of each of k = 1, 2, …, K SNPs. The standard 

approach is to estimate K separate linear regressions of Y on each . After standardizing Y 

and  so that each has mean 0 and variance 1, the regression equations to be estimated can 

be written as 

(1) , 

for k = 1, 2, …, K. (For simplicity, we omit the covariates, which would typically include age, 

sex, and possibly principal components of genetic data, and to avoid cluttering notation, we 

suppress indexing variables by individual.) Because Y and  are standardized, in a large 

sample the estimated regression coefficient βk is equal to the correlation between Y and , 

and the coefficient of determination is . 
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In terms of statistical power, the key difference between a GWAS approach to gene discovery 

and a candidate-SNP approach is the size and composition of the set of K SNPs. In GWAS, the 

set includes all SNPs measured by the dense SNP genotyping platform (typically 0.5-2.5 

million). The statistical significance threshold is set at the “genome-wide significance” level 

of α = 5×10-8, which can be interpreted as a Bonferroni correction for the effective number of 

independent loci in European populations (25, 39). In contrast, in a candidate-SNP approach—

either theory-based or proxy-phenotype-based—K is a much smaller number of SNPs that the 

researcher considers to be reasonable candidates for association with the phenotype. In a 

theory-based method, the candidates are chosen on the basis of what is known or believed about 

their biological function, while in a proxy-phenotype method, the candidates are chosen on the 

basis of their association with a proxy phenotype. Either way, in terms of statistical power, the 

advantage of a candidate-SNP approach is that the Bonferroni-corrected significance threshold 

can be set at the much less stringent level of α = 0.05 / K. The potential disadvantage is that the 

effect sizes of the most strongly associated SNPs in a candidate-SNP approach may be smaller 

than in a GWAS, since the method of choosing the candidates may not succeed in selecting 

those that are most strongly associated with the phenotype of interest. 

Table S20 calculates power for GWAS vs. candidate-SNP methods of gene discovery that 

could be pursued in our Cognitive Performance Sample of size N = 24,189. The columns show 

different effect sizes for a SNP: R2  {0.02%, 0.04%, 0.06%, 0.08%}, a range from the size of 

our estimated winner’s-curse-adjusted effect size for cognitive performance of R2 ≈ 0.02% up 

to four times that size. The top row shows statistical power to detect each of these effect sizes 

at the genome-wide significance threshold, α = 5×10-8. The bottom row shows statistical power 

to detect each of these effect sizes at the experiment-wide significance threshold for 69 SNPs, 

α = 0.05 / 69 ≈ 0.00072. 

As explained in the next subsection below, our calculations prior to the study (based on the 

results of Rietveld et al., (1)) led us to expect an effect size of R2 ≈ 0.08% for the strongest 

associations in our set of proxy-based candidate SNPs. In that case, our power to detect such 

associations would have been 85%. In contrast, a direct GWAS on cognitive performance in 

our Cognitive Performance Sample would have had power of 15% to detect these SNPs. Given 

our estimated winner’s-curse-adjusted effect size for cognitive performance of R2 ≈ 0.02%, our 

actual power to detect the largest associations we found was 12%–which in turn suggests that 

there are roughly 8 times as many SNPs with the same effect sizes as the 3 significant SNPs 

we identified (since 1/0.12 = 8.33). A direct GWAS on cognitive performance in our sample 

would have had power of only 0.06% to detect these SNPs. Therefore, even if there are 25 

SNPs with associations of magnitude R2 ≈ 0.02% with cognitive performance, a GWAS with 

the available sample size would very likely not have detected any of them. 

 

 

 

B. Statistical power of proxy-phenotype method under plausible effect sizes for 

cognitive performance 

Prior to conducting this study, we calculated expected effect sizes using the formal framework 

introduced by Rietveld et al. (1) (SOM pp. 22-27) and the results reported in that paper. Here 

we sketch a slightly simplified version of that framework (also note that our notation here 

differs somewhat). Let s = 1 , …, S index the SNPs that are causally related to cognitive 

performance or any other genetically-influenced factor that matters for educational attainment. 


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We assume that cognitive performance is a simple linear function of the individual’s genotype 

and determined by: 

, 

where  is the individual’s genotype at SNP s (as above, normalized to have mean zero and 

variance one), βY,s is the effect of  on Y, and  is a random variable with mean zero that 

we assume is independent of the ’s. The error term εY captures all other factors besides the 

SNPs, including exogenous environmental factors, that affect cognitive performance. 

We assume that the proxy phenotype P, in this context educational attainment, is determined 

by a simple linear function of cognitive performance and other factors: 

. 

X captures genetically-influenced factors that affect educational attainment, including 

personality traits (such as perseverance) and early-life health conditions. The error term  

captures all other factors, including exogenous environmental factors that affect P. We assume 

that  is a random variable with mean zero and is independent of Y and X. We normalize P, 

Y, and X so that they have mean zero and variance one (hence regression coefficients are equal 

to partial correlation coefficients). Without loss of generality, we assume that both Y and X are 

oriented in the direction that increases educational attainment:  and . 

To complete the model, we write X as an analogous linear function of the individual’s genotype: 
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where  is the partial correlation coefficient of  with X, and  is a random variable 

with mean zero that we assume is independent of the ’s. Now, educational attainment P can 

be expressed as a function of the SNP genotypes by substituting equations (2) and (4) into 

equation (3): 
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where  is the effect of SNP s on educational attainment, and 

PXXYYYu    is a mean-zero composite error term that is independent of the ’s. 

Note that a GWAS of educational attainment P estimates the ’s in equation (5). Note that if 

, then either 0, sY  or  or both. Therefore, if the GWAS of P credibly 

identifies a SNP, then that SNP can serve as a plausible “candidate SNP” for genetically 

influenced factors that matter for P. 

To generate a first-pass estimate of the effect size of SNPs associated with cognitive 

performance, we begin with the special case in which genetic factors matter for educational 

attainment exclusively through cognitive performance: . In that case, . 

Rearranging, the R2 from a regression of cognitive performance on SNP s is equal to the R2 

from a regression of educational attainment on SNP s is divided by the squared phenotypic 

correlation: . The largest SNP effects on educational attainment are likely to have 
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a coefficient of determination of roughly 0.0003 (see Table S20), and since , these 

same SNPs will be the ones with the largest effects on cognitive performance. Using  ≈ 

0.0003 and an estimated phenotypic correlation of  = 0.6 (40, 41) gives  ≈ 0.0008 (our 

reading of the evidence is that estimates of the phenotypic correlation have generally been in 

the range 0.4-0.6; our high-end estimate of the correlation yields a lower, and hence more 

conservative, estimate of the SNP effect size). As mentioned in the previous subsection, this 

was our best guess of the effect size before we conducted our study and was the basis of our ex 

ante power calculations. Although we anticipated that the largest SNP effects on cognitive 

performance would have  ≈ 0.0008, what we found was  = 0.0006, which became 

 = 0.0002 after correction for the winner’s curse (Table S7). 

The more realistic case where  opens up the possibility that the SNPs most strongly 

associated with cognitive performance are not the same SNPs as those most strongly associated 

with educational attainment. To see this, note that since , the SNPs with 

the largest effect on educational attainment—those most likely to be picked out from a GWAS 

of educational attainment as candidate SNPs—will tend to be those for which both  and 

 are positive and large in magnitude. Rietveld et al. use the term “mono-directional” to 

refer to such a SNP: a SNP that has pleiotropic effects on Y and X such that it affects P in the 

same direction through both pathways. A SNP has a stronger association with educational 

attainment than it does with cognitive performance if . 

 

C. Explaining the negative correlation between coefficients for educational attainment 

and cognitive performance 

As noted in the main text, Figure 1 shows a negative correlation between the coefficients on 

educational attainment and the coefficients on cognitive performance. Also as mentioned in the 

text, this negative correlation seems somewhat robust to dropping the most conspicuous 

possible outlier, although we view the evidence for negative correlation as relatively weak. 

Here we note that according to the framework developed in this section, a negative correlation 

between  and  implies that  and  are negatively correlated. In words, SNPs that 

affect cognitive performance more strongly tend to affect other factors that matter for 

educational attainment (such as personality traits) less strongly, and vice-versa. 

 

 

 

 

D. Relating the genetic correlation between educational attainment and cognitive 

performance to the above framework 

According to the framework above, a GWAS of educational attainment (EA) generates good 

candidate SNPs for cognitive performance (CP) because CP is an important causal factor in 

determining EA. Moreover, if CP is the primary genetically-influenced factor that matters for 

EA ( 0X ), then the effect size of the SNPs on CP is expected to be larger when the 

phenotypic correlation between EA and CP ( ) is smaller, because the smaller phenotypic 
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correlation means that the effect of the SNP on EA is more attenuated relative to its more direct 

and larger effect on CP. 

Intuitively, it might seem that the genetic correlation between EA and CP would be at least as 

relevant as the phenotypic correlation. In this subsection, we address the relevance of the 

genetic correlation within the context of our formal framework; we conclude that the high 

genetic correlation can be viewed as providing a justification for using EA as a proxy 

phenotype for EA, but the argument is somewhat loose. 

What can be shown formally and straighforwardly is that the statistical power of the proxy-

phenotype approach is increasing in corr . The assumption that CP is the only 

genetically-influenced factor that matters for EA ( ) implies that corr . If 

other genetically-influenced factors also matter for EA ( ), then corr  can be 

smaller than 1, and the SNPs with the largest effects on EA may not be those with the largest 

effects on CP. 

The genetic correlation is a different object: corr . In words, the genetic 

correlation is the correlation between the population polygenic score for EA and the population 

polygenic score for CP. It follows from this definition that if the genetic correlation is high, a 

polygenic score estimated from EA is likely to explain more of the variance in CP. However, 

the genetic correlation does not have direct implications about the statistical power for 

identifying individual SNPs unless the (unconditional) genetic correlation is equal to the 

genetic correlation conditional on including only the SNPs with largest effect sizes in the 

polygenic score. The evidence discussed in subsection C above casts some doubt on this 

assumption. Therefore, while in general we view the high genetic correlation between EA and 

CP as supportive of our use of EA as a proxy phenotype, we view our overall framework as 

providing a more solid justification. 

 

E. Setting the p-value threshold for the proxy-based SNPs 

The power calculations in Table S21 take as given the fact that we included 69 SNPs in the set 

of proxy-based candidates. We used 69 SNPs because this is the number that passed our 

inclusion threshold of p < 10-5 from the first-stage GWAS on educational attainment. In this 

subsection, we explain why we chose this particular inclusion threshold. 

We chose our inclusion threshold of p < 10-5 prior to conducting any analyses on cognitive 

performance, on the basis of power calculations using the results from the first-stage GWAS 

on educational attainment. Our goal was to design the study in a way that would maximize the 

expected number of true positive results in the second stage analyses on cognitive performance. 

The optimal threshold trades off between two opposing effects. On the one hand, a less 

stringent threshold yields a larger number of candidates that are forwarded to the second stage. 

A larger set of candidates is more likely to contain true positives. On the other hand, a larger 

number of candidates requires that a more stringent experiment-wide significance level needs 

to be applied in the second stage to adjust for multiple testing, which decreases power to pick 

out the true positives from among the set of candidates.  

Our calculations are reported in Table S21. Row (1) reports the number of LD-pruned SNPs in 

the first stage GWAS on EA that passed the p-value threshold of the respective column. Row 

(2) is the observed average R2 of these SNPs on EA. The R2 estimates deviate slightly from 

those reported in (1) due to the slightly different set of subjects that were included in the two 
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analyses. The ex-post power (i.e., assuming that the observed average R2 is the true effect size) 

to find such an effect size in our EA sample is reported in row (3), again always for the p-value 

threshold of the respective column. Row (4) reports the posterior belief that a randomly chosen 

SNP from the set included in the column is truly associated with EA. To calculate this value, 

we used Bayes’ formula, with a conservative prior belief equal to 0.01%, power equal to row 

(3), and α equal to the respective p-value threshold of the column (see Section 9 for the formula 

we use, as well as a discussion of why we consider the larger prior belief of 0.02% to be quite 

conservative).  

Row (5) reports the Bonferroni-adjusted p-value threshold for stage 2, given a family-wide 

significance level of 0.05 and the number of independent hypotheses that will be tested, given 

by row (1). Row (6) uses the statistical proxy-phenotype framework reported above to calculate 

the expected average R2 of SNPs in the second stage on CP. We assumed a phenotypic 

correlation of 0.6 between EA and CP, and we assumed that the selected SNPs influence EA 

only through their influence on CP. Row (7) calculates the expected power for a two-sided test 

given the available sample size in the second stage on CP, as well as the p-value threshold 

given by row (5) and the expected effect size given by row (6).  

Row (8) reports the expected number of true positive SNPs that would be discovered in the 

study overall, given by multiplying the number of candidate SNPs given by row (1), the 

posterior belief that these candidates are truly associated with EA (row 4), and the expected 

power of stage 2 (row 7). The choice of the p-value threshold we have chosen for our study (p 

< 10-5) was given by the column that maximized the value of row (8). The optimal p-value 

threshold turns out to depend only on the results of the first-stage GWAS on EA, and not on 

our assumptions about prior beliefs, phenotypic correlation, or available sample size in stage 

2. These assumptions influence the absolute magnitudes in row (8) but not their relative 

magnitudes. 

Finally, row (9) reports the expected posterior belief that a SNP associated with CP at the 

Bonferroni-adjusted p-value is truly associated with CP, using Bayes’ formula, prior beliefs 

equal to row (4) and power equal to row (7). These calculations were included with the analysis 

plan that was forwarded to cohorts participating in early 2013. The analysis plan was also 

posted on Open Science Framework on 14 Apr 2013 (see https://osf.io/z7fe2/).  
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Supplementary Figures 
Figure S1. Quantile-Quantile plots and Genomic Control λ for the summary results of the five GWA studies after quality control. 

     
ERF, λ = 1.039 GenR, λ = 0.975 HU, λ = 1.001 MCTFR, λ = 1.006 STR, λ = 1.015 
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Figure S2. Quantile-Quantile plots of the cognitive performance meta-analysis results for the theory-based and education-associated candidate SNPs. The joint plots show in 

black the QQ-plot for the education-associated candidate SNPs, and in red the theory-based candidate SNPs. 

   
Theory-based candidate SNPs Education-associated candidate SNPs Joint plot 
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Figure S3. Simulation study of winner’s curse corrections: MLE versus diffuse-prior Bayesian. The x-axis is the 

true effect size 𝛽, grouped in bins that are 0.002 standard-deviation units wide. The y-axis is the estimated effect 

size. The dots show the naïve OLS estimate (red), the MLE-corrected effect size estimate (green), and the 

Bayesian-corrected effect size estimate (blue). The light dotted lines are 95% confidence intervals around the 

estimates. For the simulation parameters, see section 8. 
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Figure S4. Coefficient on the polygenic score in the regressions explaining the level of TWR, TMS, and TC and controlling for an increasing number of principal 

components. TWR = Total Word Recall, TMS = Total Mental Score. 

   
TWR TMS TC 
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Supplementary Tables 
 

Table S1. Study design, numbers of individuals, and quality control for GWAS cohorts. “Call rate” refers to the genotyping success rate, i.e., the minimum percentage of 

successfully genotyped SNPs.  

Study Sample QC   

Short name Full name Study design Total 

sample 

size (N) 

Call rate Other exclusions Sample in 

analysis (N) 

References 

ALSPAC Avon Longitudinal Study of 

Parents and Children 

Prospective pregnancy 

cohort 

8,340 ≥97%  1) Gender mismatches 

2) Minimal or excessive 

heterozygosity 

3) Cryptic relatedness (IBD > 

0.1 and IBD < 0.8) 

4) Non-European ancestry 

5) Missing cognitive 

performance phenotype 

5,517 (42)  

ERF Erasmus Rucphen Family study Family-based 3,658 ≥95% 1) Failing IBS checks 

2) Sex chromosome checks 

3) Ethnic outliers removed 

4) Age < 45 years 

5) Missing cognitive 

performance phenotype 

1,076 (43) 

GenR Generation R Birth-cohort 6,135 ≥97.5% 1) Duplicate samples 

2) Gender mismatch 

3) Relatedness 

4) Missing cognitive 

performance phenotype 

3,701 (44) 

GS Generation Scotland Family-based 10,000 ≥98% 1) Sample call rate 0.95 

2) SNPs diverging from HWE 

with a significance p<1×10-3 

3) SNPs with a MAF <0.01 

4) Missing cognitive 

performance phenotype 

5) Only siblings 

1,081 (45) 

HU Harvard/Union Study Population-based 415 ≥93% 1) Ethnic outliers removed 

2) Participants more than 6 SD 

away from any of the top 10 

principal components 

389 (46) 
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3) Missing cognitive 

performance phenotype 

LBC1921 Lothian Birth Cohort 1921 Population-based 

birth-cohort 

517 ≥95% 1) Unresolved gender 

discrepancy 

2) Relatedness 

3) Non-Caucasian descent 

4) Missing cognitive 

performance phenotype 

464 (47) 

LBC1936 Lothian Birth Cohort 1936 Population-based 

birth-cohort 

1,005 ≥95% 1) Unresolved gender 

discrepancy 

2) Relatedness 

3) Non-Caucasian descent 

4) Missing cognitive 

performance phenotype 

947 (48) 

MCTFR Minnesota Center For Twin and 

Family Research 

Family-based 7,438 ≥99% 1) >5000 uncalled SNPs 

2) Low GenCall score 

3) Extreme hetero- or 

homozygosity 

4) Sample mix-up or unable to 

confirm known genetic 

relationships 

5) Missing cognitive 

performance phenotype 

3,367 (49) 

QIMR Brisbane Adolescent Twin Study, 

Queensland Institute of Medical 

Research 

Population-based 3,899 ≥95% 1) Non-European ancestry 

2) Missing cognitive 

performance phenotype 

1,752 (50) 

Raine Western Australian Pregnancy 

Cohort Study 

Prospective pregnancy 

cohort 

1,593 ≥97% 1) Gender mismacht 

2) Relatedness 

3) Low heterozygosity 

4) Missing cognitive 

performance phentoype 

936 (51) 

STR Swedish Twin Registry Family-based 9,836 ≥97% 1) Sex-check (heterozygosity of 

X-chomosomes) 

2) Deviations in heterozygosity 

of more then 5 SD from the 

population mean 

3) Cryptic relatedness check 

4) Missing cognitive 

performance phenotype 

3,215 (52) 

TEDS Twins of Early Development Study Family-based 3,747 Exact 

percentage 

unknown 

(done by 

1) Low call rate 

2) Heterozygosity outliers 

3) Intensity outliers 

4) Ancestry outliers 

2,825 (53) 
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external 

genotyping 

center) 

5) Relatedness/duplicates 

6) Gender mismatches 

7) Samples were re-genotyped 

on a panel of 30 SNPs using 

Sequenom and were excluded 

because of low concordance 

(<90%). 

8) Missing cognitive 

performance phenotype 
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Table S2. Information on genotyping methods, imputation, and assocation analysis. 
Study Genotyping platform Genotyping calling algorithm Imputation software Imputation reference dataset Association software 

ALSPAC Illumina HumanHap550 GenomeStudio MACH HapMap 2 CEU Mach2QTL 

ERF Illumina 318K, Affymetrix 

250K, Illumina 350K, 

Illumina 610K 

GenCall & BRLMM MACH/Minimac 1000Genomes I v3 (GIANT) ProbABEL 

GenR Illumina 610K Quad, 660W 

Quad 

GenomeStudio MACH HapMap2 PLINK 

GS Illumina 

HumanOmniExpressExome-

8 v1.0  

GenomeStudio MACH HapMap 2 CEU N.A. 

HU Affymetrix 6.0 Birdseed MACH HapMap2 PLINK 

LBC1921 Illumina Human610_Quadv1 GenomeStudio MACH HapMap 2 CEU Mach2QTL 

LBC1936 Illumina Human610_Quadv1 GenomeStudio MACH HapMap 2 CEU Mach2QTL 

MCTFR Illumina 660W Quad BeadStudio Minimac HapMap2 CEU RFGLS (R) 

QIMR Illumina 610, Illumina 370, 

Illumina 317 

BeadStudio MACH HapMap 2 CEU Merlin 

Raine Illumina Human660W BeadStudio MACH HapMap 2 CEU Mach2QTL 

STR Illumina 

HumanOmniExpress-12v1_A 

GenomeStudio IMPUTE HapMap2 CEU Merlin-offline 

TEDS Affymetrix GeneChip 6.0 Affymetrix Genotyping 

Console 

IMPUTE2 HapMap 2/3 CEU SNPTEST 
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Table S3. Results for the theory-based candidate SNPs; SNPs are ordered according to their p-value in the cognitive performance meta-analysis. The chromosome and basepair 

position are from the NCBI genome annotation (build 36). The frequency of the coded allele is from the cognitive performance meta-analysis. 

      Years of Education Cognitive Performance 

SNP ID Chromosome Basepair Coded allele Non-coded 

allele  

Frequency 

coded allele 

Beta coeff. 

(standardized) 

p-value Beta coeff. 

(standardized) 

p-value 

rs1042713 5 148186633 a g 0.380 -0.004 4.05×10-1 0.029 2.65×10-3 

rs1800497 11 112776038 a g 0.201 -0.004 5.16×10-1 -0.025 2.95×10-2 

rs2830102 21 26456898 t c 0.314 -0.005 2.62×10-1 0.021 5.59×10-2 

rs1612902 19 56191007 t c 0.566 0.008 7.60×10-2 -0.020 5.75×10-2 

rs2274185 1 158587804 c g 0.942 -0.001 8.94×10-1 0.037 7.95×10-2 

rs2251621 8 31007504 a g 0.041 0.010 3.83×10-1 -0.052 9.09×10-2 

rs1799990 20 4628251 a g 0.636 0.011 2.16×10-2 0.015 1.44×10-1 

rs4680 22 18331271 a g 0.522 -0.002 6.10×10-1 0.013 1.69×10-1 

rs1800855 4  26100215 a t 0.785 -0.007 2.07×10-1 -0.016 2.35×10-1 

rs8191992 7  136351848 a t 0.542 0.001 7.93×10-1 -0.012 2.55×10-1 

rs237895 3  8782423 t c 0.394 0.006 2.41×10-1 -0.012 2.70×10-1 

rs714939 2  75688615 a g 0.385 -0.006 1.56×10-1 0.009 3.48×10-1 

rs821616 1  230211221 a t 0.719 0.010 4.71×10-2 0.008 4.35×10-1 

rs6489630 12  5474885 t c 0.191 0.000 9.40×10-1 0.009 4.72×10-1 

rs1130214 14  104330779 a c 0.297 - - 0.008 4.74×10-1 

rs2725385 8  31047688 t c 0.291 -0.015 1.33×10-3 -0.007 4.90×10-1 

rs2760118 6  24611569 t c 0.349 -0.003 5.61×10-1 0.005 6.03×10-1 

rs9536314 13  32526138 t g 0.844 -0.009 1.41×10-1 0.007 6.03×10-1 

rs363043 20  10174146 t c 0.294 -0.002 6.33×10-1 0.005 6.19×10-1 

rs17571 11  1739170 a g 0.081 -0.015 5.80×10-2 0.009 6.32×10-1 

rs760761 6  15759111 a g 0.212 -0.003 5.56×10-1 0.006 6.51×10-1 

rs12239747 1  158587689 a g 0.939 -0.005 6.61×10-1 0.002 9.11×10-1 

rs6265 11  27636492 t c 0.186 0.010 7.65×10-2 -0.001 9.48×10-1 

rs16944 2  113311338 a g 0.347 -0.003 5.43×10-1 0.000 9.71×10-1 
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Table S4. Results for the education-associated candidate SNPs; SNPs are ordered according to their p-value in the cognitive performance meta-analysis. The chromosome and 

basepair position are from the NCBI genome annotation (build 36). The frequency of the coded allele is from the cognitive performance meta-analysis. 

      Years of Education Cognitive performance 

SNP ID Chromosome Basepair Coded allele Non-coded 

allele  

Frequency 

coded allele 

Beta coeff. 

(standardized) 

p-value Beta coeff. 

(standardized) 

p-value 

rs1487441 6 98660615 a g 0.473 0.026 1.78×10-9 0.036 1.24×10-4 

rs7923609 10 64803828 a g 0.521 -0.021 1.06×10-6 -0.034 2.58×10-4 

rs2721173 8 145715237 t c 0.473 -0.020 8.61×10-6 -0.034 2.88×10-4 

rs8049439 16 28745016 t c 0.595 0.021 1.48×10-6 0.027 4.36×10-3 

rs1606974 2 51727103 a g 0.124 0.031 5.39×10-6 0.042 5.93×10-3 

rs2970992 2 100688741 a c 0.493 -0.020 8.27×10-6 -0.025 7.03×10-3 

rs3127447 10 78923267 a c 0.529 0.020 6.21×10-6 0.024 9.95×10-3 

rs7847231 9 117248892 a c 0.620 -0.020 6.73×10-6 -0.024 1.20×10-2 

rs4658552 1 241479559 t c 0.632 0.021 2.01×10-6 0.023 1.61×10-2 

rs1892700 21 33938007 a g 0.256 -0.023 2.96×10-6 -0.024 2.39×10-2 

rs7980687 12 122388664 a g 0.200 0.029 7.14×10-8 0.028 2.66×10-2 

rs1187220 18 33605724 t c 0.323 -0.024 3.48×10-7 -0.027 3.47×10-2 

rs3783006 13 97909210 c g 0.457 0.023 3.11×10-7 0.022 3.84×10-2 

rs7309 2 161800886 a g 0.491 -0.022 2.21×10-7 -0.019 4.26×10-2 

rs10166311 2 162575859 a g 0.326 0.023 9.50×10-7 0.019 5.13×10-2 

rs3789044 1 202855724 a g 0.219 0.028 5.44×10-8 0.022 5.62×10-2 

rs2635047 18 42990334 t c 0.483 0.020 5.76×10-6 0.019 5.94×10-2 

rs17176043 14 36064553 a g 0.946 0.043 7.17×10-6 -0.045 5.98×10-2 

rs1198575 1 98334848 t c 0.189 -0.026 2.37×10-6 -0.025 7.17×10-2 

rs889956 2 57258338 a g 0.397 -0.023 1.52×10-7 -0.017 7.76×10-2 

rs7594192 2 199159337 a g 0.250 0.026 1.28×10-7 0.018 9.98×10-2 

rs3753275 1 8348487 t c 0.824 -0.030 3.97×10-7 -0.020 1.01×10-1 

rs9289301 3 128627683 c g 0.155 0.031 7.77×10-7 0.024 1.03×10-1 

rs9858213 3 49706865 t g 0.288 0.028 4.85×10-9 0.018 1.05×10-1 

rs11191193 10 103792398 a g 0.653 0.023 5.65×10-7 0.014 1.65×10-1 

rs6732189 2 161281027 a g 0.526 -0.023 8.44×10-8 0.013 1.66×10-1 

rs4073894 7 104254200 a g 0.202 0.024 9.32×10-6 0.017 1.73×10-1 

rs2066955 12 80614747 a c 0.237 0.023 4.77×10-6 0.015 1.87×10-1 

rs2966 6 33797498 t c 0.452 0.022 3.60×10-7 -0.012 1.89×10-1 

rs188133 15 45489734 a g 0.683 -0.021 9.29×10-6 -0.013 2.01×10-1 

rs11742741 5 24198698 a t 0.515 -0.022 2.61×10-7 -0.012 2.02×10-1 

rs10783779 12 54778147 t g 0.607 -0.021 6.25×10-6 -0.012 2.05×10-1 

rs4468007 9 123634160 t c 0.554 0.021 3.38×10-6 0.011 2.74×10-1 
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rs9940536 16 77713418 t c 0.321 0.022 3.47×10-6 0.011 2.94×10-1 

rs3731896 2 219854646 t c 0.174 0.029 5.21×10-6 -0.013 3.06×10-1 

rs1970584 9 125150127 a c 0.060 0.048 4.64×10-7 -0.021 3.45×10-1 

rs6712515 2 100172946 t c 0.471 -0.026 2.21×10-9 -0.009 3.51×10-1 

rs1478110 9 1711478 t c 0.480 -0.023 3.54×10-7 -0.011 3.59×10-1 

rs1239771 18 75666608 t c 0.218 0.024 9.54×10-6 0.011 3.72×10-1 

rs12640626 4 176863266 a g 0.570 0.022 7.63×10-7 0.009 3.75×10-1 

rs2955259 4 171110419 a g 0.569 0.024 7.04×10-8 0.009 3.77×10-1 

rs2053831 14 84049789 a g 0.776 0.023 8.35×10-6 -0.010 3.94×10-1 

rs7788657 7 13888666 t c 0.436 0.056 8.78×10-7 0.018 4.86×10-1 

rs4451621 10 12471373 t c 0.536 -0.023 9.73×10-7 0.008 4.37×10-1 

rs1056667 6 26618543 t c 0.628 0.023 5.25×10-7 0.007 4.45×10-1 

rs10028773 4 120484707 c g 0.675 0.020 7.45×10-6 0.007 4.63×10-1 

rs1360382 9 23369719 a g 0.042 -0.024 3.41×10-7 -0.007 4.81×10-1 

rs17013497 1 207061559 t c 0.135 0.030 6.78×10-6 0.010 4.95×10-1 

rs6984449 8 19372239 a g 0.601 0.022 1.40×10-6 -0.006 5.09×10-1 

rs6882046 5 88004620 a g 0.727 -0.024 8.63×10-7 -0.006 5.57×10-1 

rs10519388 5 113879949 t c 0.835 -0.029 5.21×10-7 0.007 5.64×10-1 

rs362987 20 10225452 a c 0.522 0.020 7.80×10-6 0.005 6.19×10-1 

rs9537938 13 57551696 a g 0.672 0.023 4.85×10-7 -0.005 6.21×10-1 

rs7729356 5 107425114 a c 0.341 0.021 3.53×10-6 -0.004 6.55×10-1 

rs11590526 1 116229090 t c 0.077 -0.039 8.50×10-6 0.008 6.63×10-1 

rs1875714 8 68590101 t c 0.628 0.022 2.07×10-6 0.004 6.63×10-1 

rs12075 1 157441978 a g 0.577 -0.022 1.33×10-6 -0.004 6.64×10-1 

rs1105881 15 39859822 c g 0.643 0.020 6.67×10-6 0.004 6.92×10-1 

rs10904180 10 4127661 t g 0.820 0.026 8.00×10-6 0.005 7.18×10-1 

rs13401104 2 236770257 a g 0.176 -0.032 2.74×10-8 -0.004 7.67×10-1 

rs4818225 21 41551765 a g 0.338 0.021 5.61×10-6 0.003 7.79×10-1 

rs334147 2 127972527 t g 0.929 -0.046 8.67×10-6 -0.005 8.16×10-1 

rs6025281 20 54994407 t c 0.566 -0.021 1.75×10-6 -0.002 8.36×10-1 

rs10500871 11 20172332 t c 0.322 -0.022 3.31×10-6 -0.002 8.73×10-1 

rs1995082 16 75564938 t g 0.865 -0.029 1.97×10-6 -0.002 9.12×10-1 

rs247929 12 44581175 c g 0.513 -0.020 8.36×10-6 0.001 9.13×10-1 

rs12134600 1 72408584 a c 0.116 0.038 6.18×10-8 -0.001 9.38×10-1 

rs1550582 8 135611266 a g 0.262 0.022 7.16×10-6 -0.001 9.38×10-1 

rs2930713 9 7639442 t g 0.523 0.021 2.47×10-6 0.000 9.97×10-1 
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Table S5. Winner’s curse corrections (MLE and Bayesian) applied to Rietveld et al.’s (2013) SNPs associated with educational attainment at the genome-wide significance 

threshold (p < 5×10-8). Standard errors are reported in parentheses. 
SNP Discovery-stage estimates  Replication- stage estimates 

 Naïve 

(Uncorrected) 

MLE 

Corrected 

Bayesian (diffuse) 

Corrected 

  

rs9320913 0.106 0.070 0.065  0.077 

 (0.018)    (0.034) 

rs11584700 -0.014 -0.011 -0.009  -0.016 

 (0.002)    (0.005) 

rs4851266 0.012 0.009 0.008  0.011 

 (0.002)    (0.004) 
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Table S6. Winner’s curse corrections (MLE and Bayesian) applied to Rietveld et al.’s (1) SNPs associated with educational attainment at a suggestive significance threshold 

(p < 10-6). The SNPs are listed in the same order as in (1) Table 1 (the first four in order of increasing p-value for association with years of schooling, and the last six in order 

of increasing p-value for association with college completion). SNPs rs9320913, rs11584700, and rs4851266 are also listed in Supplementary Table S5 above (though the 

corrected estimates here are different because the significance threshold is different). Standard errors are reported in parentheses. 
SNP Discovery-stage estimates  Replication- stage estimates 

 Naïve 

(Uncorrected) 

MLE 

Corrected 

Bayesian (diffuse) 

Corrected 

  

rs9320913 0.106 0.096 0.087  0.077 

 (0.018)    (0.034) 

rs3783006 0.096 0.035 0.050  0.056 

 (0.018)    (0.035) 

rs8049439 0.090 0.008 0.039  0.065 

 (0.018)    (0.033) 

rs13188378 -0.136 -0.011 -0.058  0.091 

 (0.027)    (0.067) 

rs11584700 -0.014 -0.013 -0.012  -0.016 

 (0.002)    (0.005) 

rs4851266 0.012 0.011 0.010  0.011 

 (0.002)    (0.004) 

rs2054125 0.023 0.011 0.010  0.006 

 (0.004)    (0.008) 

rs3227 0.011 0.008 0.007  0.002 

 (0.002)    (0.004) 

rs4073894 0.012 0.008 0.006  0.000 

 (0.002)    (0.005) 

rs12640626 0.010 0.001 0.005  0.000 

 (0.002) 0.096   (0.004) 
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Table S7. Winner’s curse corrections (MLE, Bayesian, and empirical Bayes) applied to the cognitive-performance associations that pass the significance threshold (p < .05/69). 

Standard errors are reported in parentheses. Since the phenotypic variance has been normalized to 1, the estimated R2 is calculated simply as the amount of phenotypic variance 

explained: R2 = 2m(1-m)β2, where m is the MAF and β is the effect size estimate. 
SNP Effect size estimates  Estimated R2 

 Naïve 

(Uncorrected) 

MLE 

Corrected 

Bayesian 

(diffuse) 

Corrected 

Empirical Bayes 

Corrected 

 Naïve 

(Uncorrected) 

Empirical Bayes 

Corrected 

rs1487441 0.036 0.022 0.023 0.023  0.064% 0.027% 

 (0.009)       

rs7923609 -0.034 -0.013 -0.020 -0.020  0.058% 0.019% 

 (0.009)       

rs2721173 -0.034 -0.008 -0.019 -0.018  0.056% 0.017% 

 (0.009)       
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Table S8. Posterior probability of true association as a function of effect size (R2) and prior probability (π). 

  Effect size (R2) 

  
R2 = 0.0002 

(power = .1186) 

R2 = 0.0006 

(power = .6658) 

Prior (π) 

0.1% 14% 48% 

1% 62% 90% 

5% 90% 98% 

10% 95% 99% 
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Table S9. Results for the functional annotation analysis for the 14 NSEA SNPs and respective proxies at consderable LD (r2 > 0.5). 

SNP ID Proxy SNP LD Coded Allele Non-coded allele Minor allele freqency Gene name Sequence change Amino acid change 

rs7923609 rs1935 0.75 c g 0.47 JMJD1C GAG ⇒ GAC E [Glu] ⇒ D [Asp] 

rs2721173 rs4251691 0.9 c t 0.46 RECQL4 CGG ⇒ CAG R [Arg] ⇒ Q [Gln] 

 rs13277542 0.8 t g 0.47 LRRC14 GAA ⇒ GCA E [Glu] ⇒ A [Ala] 

rs8049439 rs7498665 0.69 a g 0.34 SH2B1 ACA ⇒ GCA T [Thr] ⇒ A [Ala] 

rs4658552 rs2275155 0.64 a t 0.33 SDCCAG8 GAA ⇒ GAT E [Glu] ⇒ D [Asp] 

rs1892700 rs139852262 0.55 caatta c 0.25 DNAJC28  Frameshift 

 rs8971 0.58 t c 0.25 GART GAT ⇒ GGT D [Asp] ⇒ G [Gly] 

rs7980687 rs1060105 0.95 c t 0.23 SBNO1 AGT ⇒ AAT S [Ser] ⇒ N [Asn] 
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Table S10. Results for the gene expression cis-eQTL analysis in blood. SNP ID – nominally significant cognitive performance associated variant; FDR – false discovery rate; 

LD – linkage disequilibrium; ArrayID – Illumina probe identifier; * – denotes a probe not annotated; NSEA - Nominally-Significant Education-Associated SNPs: Best eQTL-

SNP – the strongest eQTL SNP for a given probe. 

   NSEA Best eQTL-SNP    

SNP ID 
Coded 

Allele 
eQTL p-vaule Zscore FDR (5%) SNP ID eQTL p-vaule Zscore FDR (5%) Gene name ArrayID 

rs7923609 a 3.4×10-5 4.1 6.1×10-4 rs10761725 4.1×10-7 5.1 5.7×10-6 * 1850242 

rs2721173 t 2.1×10-27 -24.0 <<1.0×10-7 rs6989368 7.2×10-132 -24.4 <<1.0×10-7 LRRC24 2810687 

  1.2×10-48 -14.7 <<1.0×10-7 rs750472 1.6×10-56 -15.8 <<1.0×10-7 
GPT/ 

PPP1R16A 
3140408 

  3.4×10-27 -10.8 <<1.0×10-7 rs3735840 9.8×10-198 34.4 <<1.0×10-7 VPS28 1190110 

    1.0×10-14 7.7 <<1.0×10-7 rs3757966 7.5×10-15 7.8 <<1.0×10-7 MFSD3 1510703 

rs8049439 c 9.8×10-198 57.7 <<1.0×10-7 rs8049439 9.8×10-198 57.7 <<1.0×10-7 TUFM 6370097 

  9.8×10-198 35.6 <<1.0×10-7 rs8045689 9.8-×10198 50.8 <<1.0×10-7 SPNS1 1230192 

  2.1×10-49 -14.8 <<1.0×10-7 rs480400 1.9×10-84 19.5 <<1.0×10-7 CCDC101 1240113 

  1.2×10-4 3.8 2.0×10-3 rs13331691 1.4×10-7 5.3 2.5×10-6 
SULT1A2/ 

SULT1A1 
7510711 

  2.5×10-3 3.0 0.03 rs4788115 1.6×10-5 -4.3 2.8×10-4 LAT 3610288 

    2.9×10-3 3.0 0.04 rs4788115 1.2×10-8 -5.7 <<1.0×10-7 LAT 460259 

rs4658552 c 3.1×10-17 8.4 <<1.0×10-7 rs2275155 3.2×10-21 9.5 <<1.0×10-7 SDCCAG8 460458 

rs7980687 a 1.1×10-5 -4.4 1.8×10-4 rs1662 4.7×10-93 20.5 <<1.0×10-7 RILPL2 1660286 

    4.3×10-4 3.2 6.5×10-3 rs12366872 3.4×10-17 8.4 <<1.0×10-7 SETD8 2350735 

rs1892700 a 2.8×10-36 12.4 <<1.0×10-7 rs2834217 9.8×10-198 -34.8 <<1.0×10-7 * 4480647 

  1.3×10-13 -7.4 <<1.0×10-7 rs12626309 1.7×10-21 -9.5 <<1.0×10-7 GART 20544 

  4.8×10-10 6.2 <<1.0×10-7 rs2251854 1.8×10-102 -21.5 <<1.0×10-7 ITSN1 2507 

   2.1×10-5 4.3 3.7×10-4 rs2834237 5.0×10-7 5.0 6.5×10-6 GART 3780435 

rs3783006 c 6.0×10-6 4.5 1.0×10-4 rs4389009 1.7-×10-40 -13.3 <<1.0×10-7 STK24 6180050 

    1.4×10-3 3.2 0.02 rs9513427 9.7×10-6 4.4 1.7×10-4 STK24 4480373 

rs7309 a 5.8×10-10 -6.2 <<1.0×10-7 rs1921310 1.8×10-13 -7.4 <<1.0×10-7 TANK 2230113 

    3.2×10-4 -3.6 4.9×10-3 rs11884495 2.0×10-4 -3.7 0.003 PSMD14 2600025 
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Table S11. Results for the gene expression cis-eQTL analysis in brain tissues. SNP ID – nominally significant cognitive performance associated variant; FDR – false 

discovery rate; LD – linkage disequilibrium; DistanceArrayID – Affimetrix probe identifier;  # – genes not considered as biological candidates in subsequent analysis due to 

distance > 250 kb from a NSEA SNP. 

SNP ID Proxy SNP LD (r2) Distance (kb) Brain tissue eQTL P-vaule Gene name ArrayID 

rs2721173 rs9071 1.00 6 077 Prefrontal cortex 1.3×10-89 LRRC14 10025908411 

 rs9071 1.00 6 077 Cerebellum 1.3×10-75 LRRC14 10025908411 

 rs9071 1.00 6 077 Visual cortex 1.5×10-62 LRRC14 10025908411 

 rs4532636 0.67 159 994 Prefrontal cortex 8.4×10-35 LRRC14 10025908411 

 rs4532636 0.67 159 994 Cerebellum 1.2×10-28 LRRC14 10025908411 

 rs4532636 0.67 159 994 Visual cortex 1.2×10-22 LRRC14 10025908411 

 rs748193 0.84 62 314 Cerebellum 4.3×10-7 LRRC24 10023828992 

 rs2721195 0.87 67 418 Cerebellum 4.8×10-6 LRRC24 10031920304 

 rs3757966 0.97 189 Prefrontal cortex 1.3×10-8 KIFC2 10025905398 

 rs3757936 0.67 159 994 Cerebellum 1.3×10-8 KIFC2 10025905398 

 rs2958492 0.65 174 698 Visual cortex 2.3×10-6 AF075035 10025934744 

rs8049439 rs4788102 0.97 35 883 Prefrontal cortex 1.7×10-13 EIF3C 10025912109 

 rs12928404 0.97 9 731 Prefrontal cortex 9.7×10-12 EIF3C 10025912109 

 rs4788102 0.97 35 883 Cerebellum 5.4×10-18 EIF3C 10025912109 

 rs12928404 0.97 9 731 Cerebellum 7.6×10-11 EIF3C 10025912109 

 rs4788102 0.97 35 883 Visual cortex 1.2×10-9 EIF3C 10025912109 

 rs12928404 0.97 9 731 Visual cortex 7.6×10-11 EIF3C 10025912109 

 rs6565259 0.68 61 278 Prefrontal cortex 8.0×10-10 LAT 10023818276 

 rs12928404 0.97 9 731 Prefrontal cortex 1.3×10-5 LAT 10023818276 

 rs1968752 0.80 205 930 Cerebellum 3.5×10-5 NUPR1 10023813116 

 rs12446550 0.76 294 134 Cerebellum 1.4×10-8 NFATC2IP 10025913085 

 rs8049439 – – Prefrontal cortex 2.3×10-5 TUFM 10025905429 

rs4658552 rs10926978 0.86 18 718 Prefrontal cortex 5.1×10-9 SDCCAG8 10025912019 

 rs2484639 0.54 49 431 Visual cortex 3.2×10-7 SDCCAG8 10025912019 

 rs10926975 0.56 15 154 Visual cortex 1.0×10-5 SDCCAG8 10025912019 

 rs10926975 0.56 15 154 Prefrontal cortex 1.0×10-5 SDCCAG8 10025912019 

rs7980687 rs7304782 0.57 103 267 Prefrontal cortex 1.1×10-8 SBNO1 10025903955 

 rs1727302 0.81 189 781 Prefrontal cortex 2.0×10-6 SBNO1 10025903955 
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 rs655293 0.74 294 306 Cerebellum 5.6×10-10 C12ORF65 10025904993 

 rs1060105 0.94 164 920 Cerebellum 1.5×10-7 C12ORF65 10025904993 

 rs1060105 0.94 164 920 Visual cortex 5.8×10-7 C12ORF65 10025904993 

 rs7304782 0.69 103 267 Visual cortex 2.4×10-6 C12ORF65 10025904993 

 rs1790098 0.80 167 230 Prefrontal cortex 2.9×10-8 C12ORF65 10025904993 

 rs1060105 0.94 164 920 Prefrontal cortex 1.1×10-6 C12ORF65 10025904993 

 rs937564# 0.70 345 400 Cerebellum  1.5×10-7 MPHOSPH9# 10025905642 

rs1892700 rs9647066 0.84 13 801 Prefrontal cortex 1.3×10-6 TMEM50B 10023807235 

 rs8971 0.77 132 519 Cerebellum 7.7×10-5 GART 10025903876 

 rs2834213 0.66 223 227 Cerebellum 2.8×10-7 IFNGR2 10025902355 

rs3783006 rs9517337 0.59 70 438 Cerebellum 2.1×10-5 AK026896 10025930847 

 rs7338549 0.64 31 536 Visual cortex 2.6×10-5 AF339799 10025928383 
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Table S12. Results of gene function prediction analysis in 80,000 gene expression profiles. Pathway terms originate from several databases: (1) Gene Ontology Biological 

Processes [GO-BioProc], (2) Gene Ontology Molecular Function [GO-MolFunc], (3) Gene Ontology Cellular Component [GO-CellComp], (4) REACTOME, and (5) KEGG. 

Table lists only genes with terms directly related to neuronal or central nervous system function – full predictions are available at – http://www.ssgac.org3. P-values refer to 

the correlation between the Gene principal component profile and the reconstituted Term principal component profile, uncorrected for multiple testing; all reported terms 

meet False Discovery Rate < 0.05. The Annotated column indicates if the gene has previously been listed as a member of that term (Y) or not (N). Results are sorted 

alphabetically by gene name. 

Gene name Database Pathway term Annotated P-value 

ATXN2L GO-CellComp npBAF complex N 1.4×10-8 

ATXN2L GO-CellComp nBAF complex N 3.0×10-7 

ATXN2L GO-CellComp chromatin remodeling complex N 7.0×10-7 

ATXN2L GO-CellComp SWI/SNF-type complex N 1.4×10-6 

ATXN2L GO-CellComp SWI/SNF complex N 4.7×10-6 

CRYZL1 GO-BiolProc synaptic vesicle endocytosis N 9.1×10-9 

FARP1 GO-BiolProc Axonogenesis N 8.0×10-10 

FARP1 GO-BiolProc axon guidance N 2.0×10-9 

FARP1 GO-CellComp Actomyosin N 1.1×10-8 

FARP1 GO-CellComp Synapse N 2.0×10-8 

FARP1 KEGG Axon guidance N 5.6×10-4 

FARP1 REACTOME Cell-extracellular matrix interactions N 1.8×10-8 

FARP1 REACTOME Axon guidance N 5.9×10-8 

KCNMA1 GO-BiolProc calcium ion transmembrane transport N 2.8×10-12 

KCNMA1 GO-BiolProc calcium ion transport N 2.6×10-6 

KCNMA1 GO-BiolProc synapse organization N 3.9×10-6 

KCNMA1 GO-CellComp Synapse Y 1.4×10-6 

KCNMA1 GO-CellComp synapse part Y 2.8×10-6 

KCNMA1 GO-CellComp Costamere N 3.0×10-6 

KCNMA1 GO-CellComp voltage-gated calcium channel complex N 8.8×10-6 

KCNMA1 GO-CellComp calcium channel complex N 1.3×10-6 

KCNMA1 GO-CellComp postsynaptic density N 3.1×10-5 

                                                           
3 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a separate appendix to the submitted manuscript. 
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KCNMA1 GO-CellComp dendritic spine head N 3.1×10-5 

KCNMA1 GO-CellComp Dendrite N 4.0×10-5 

KCNMA1 GO-CellComp neuron projection terminus Y 4.7×10-5 

KCNMA1 GO-MolFunc calcium channel activity N 2.5×10-9 

KCNMA1 GO-MolFunc voltage-gated calcium channel activity N 1.1×10-8 

KCNMA1 GO-MolFunc cation channel activity Y 1.6×10-8 

KCNMA1 GO-MolFunc voltage-gated cation channel activity Y 5.6×10-8 

KCNMA1 GO-MolFunc gated channel activity Y 5.6×10-7 

KCNMA1 GO-MolFunc solute:cation antiporter activity N 7.4×10-7 

KCNMA1 GO-MolFunc ion channel activity Y 1.2×10-6 

KCNMA1 GO-MolFunc substrate-specific channel activity Y 1.6×10-6 

KCNMA1 GO-MolFunc passive transmembrane transporter activity Y 3.3×10-6 

KCNMA1 GO-MolFunc channel activity Y 3.3×10-6 

KCNMA1 GO-MolFunc cation:cation antiporter activity N 5.1×10-6 

KCNMA1 GO-MolFunc glutamate receptor binding N 9.1×10-6 

KCNMA1 GO-MolFunc voltage-gated channel activity Y 1.7×10-6 

KCNMA1 GO-MolFunc voltage-gated ion channel activity Y 1.7×10-6 

KCNMA1 GO-MolFunc calmodulin binding N 2.1×10-5 

KCNMA1 GO-MolFunc ion gated channel activity Y 2.3×10-5 

KCNMA1 KEGG Calcium signaling pathway N 3.4×10-9 

KCNMA1 KEGG Long-term potentiation N 1.9×10-7 

KCNMA1 KEGG Vascular smooth muscle contraction Y 1.0×10-4 

KCNMA1 REACTOME Voltage gated Potassium channels N 2.1×10-9 

KCNMA1 REACTOME Neuronal System Y 5.7×10-9 

KCNMA1 REACTOME Unblocking of NMDA receptor, glutamate binding and activation N 1.1×10-7 

KCNMA1 REACTOME Potassium Channels Y 5.2×10-7 

KCNMA1 REACTOME Depolarization of the Presynaptic Terminal Triggers the Opening of Calcium Channels N 2.6×10-6 

KCNMA1 REACTOME Reduction of cytosolic Ca++ levels N 5.0×10-6 

KCNMA1 REACTOME Smooth Muscle Contraction N 5.5×10-6 

KCNMA1 REACTOME Platelet calcium homeostasis N 7.5×10-6 
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KCNMA1 REACTOME CREB phosphorylation through the activation of CaMKII N 7.7×10-6 

KCNMA1 REACTOME Transmission across Chemical Synapses N 1.0×10-5 

KCNMA1 REACTOME Ras activation uopn Ca2+ infux through NMDA receptor N 1.7×10-5 

KCNMA1 REACTOME Activation of NMDA receptor upon glutamate binding and postsynaptic events N 2.3×10-5 

KCNMA1 REACTOME Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity N 4.3×10-5 

KCNMA1 REACTOME Trafficking of AMPA receptors N 4.3×10-5 

KIFC2 GO-BiolProc neurotransmitter secretion N 2.3×10-9 

KIFC2 GO-BiolProc regulation of synaptic transmission N 8.7×10-9 

KIFC2 GO-BiolProc regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole N 3.9×10-8 

KIFC2 GO-BiolProc regulation of transmission of nerve impulse N 4.4×10-8 

KIFC2 GO-BiolProc regulation of neurological system process N 9.5×10-8 

KIFC2 GO-BiolProc synaptic vesicle transport N 3.3×10-7 

KIFC2 GO-BiolProc regulation of neurotransmitter levels N 6.2×10-7 

KIFC2 GO-BiolProc regulation of synaptic plasticity N 8.3×10-7 

KIFC2 GO-BiolProc synaptic vesicle exocytosis N 9.0×10-8 

KIFC2 GO-BiolProc glutamate secretion N 1.0×10-6 

KIFC2 GO-BiolProc generation of a signal involved in cell-cell signaling N 2.3×10-6 

KIFC2 GO-CellComp Dendrite N 1.3×10-7 

KIFC2 GO-CellComp dendritic spine head N 1.7×10-7 

KIFC2 GO-CellComp postsynaptic density N 1.7×10-7 

KIFC2 GO-CellComp Synaptosome N 1.8×10-7 

KIFC2 GO-CellComp dendritic spine N 2.8×10-7 

KIFC2 GO-CellComp neuron spine N 2.8×10-7 

KIFC2 GO-CellComp voltage-gated calcium channel complex N 3.0×10-7 

KIFC2 GO-CellComp synapse part N 1.1×10-6 

KIFC2 GO-CellComp Synapse N 1.1×10-6 

KIFC2 GO-CellComp ciliary rootlet N 2.3×10-6 

KIFC2 GO-CellComp cell body N 1.4×10-5 

KIFC2 GO-CellComp synaptic membrane N 2.2×10-5 



55 

 

KIFC2 GO-CellComp calcium channel complex N 2.2×10-5 

KIFC2 GO-MolFunc voltage-gated calcium channel activity N 1.5×10-5 

KIFC2 REACTOME Ras activation uopn Ca2+ infux through NMDA receptor N 6.8×10-9 

KIFC2 REACTOME Depolarization of the Presynaptic Terminal Triggers the Opening of Calcium Channels N 1.2×10-8 

KIFC2 REACTOME CREB phosphorylation through the activation of CaMKII N 9.7×10-8 

KIFC2 REACTOME Transmission across Chemical Synapses N 3.4×10-7 

KIFC2 REACTOME GABA synthesis, release, reuptake and degradation N 4.2×10-6 

KIFC2 REACTOME Neuronal System N 1.1×10-5 

KIFC2 REACTOME Dopamine Neurotransmitter Release Cycle N 2.3×10-5 

KIFC2 REACTOME Serotonin Neurotransmitter Release Cycle N 2.3×10-5 

KIFC2 REACTOME Trafficking of AMPA receptors N 2.9×10-5 

KIFC2 REACTOME Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity N 2.9×10-5 

KIFC2 REACTOME Post NMDA receptor activation events N 3.0×10-5 

KIFC2 REACTOME NCAM signaling for neurite out-growth N 3.1×10-5 

KIFC2 REACTOME Neurotransmitter Release Cycle N 3.4×10-5 

KIFC2 REACTOME CREB phosphorylation through the activation of Ras N 3.4×10-5 

KIFC2 REACTOME Glutamate Neurotransmitter Release Cycle N 3.7×10-5 

NRXN1 GO-BiolProc glutamate signaling pathway N 2.6×10-19 

NRXN1 GO-BiolProc neurotransmitter secretion N 1.5×10-16 

NRXN1 GO-BiolProc gamma-aminobutyric acid signaling pathway N 5.6×10-16 

NRXN1 GO-BiolProc synaptic vesicle exocytosis N 7.5×10-15 

NRXN1 GO-BiolProc regulation of neurotransmitter levels N 3.6×10-14 

NRXN1 GO-BiolProc regulation of synaptic transmission Y 8.4×10-14 

NRXN1 GO-BiolProc neurotransmitter transport N 8.7×10-14 

NRXN1 GO-BiolProc regulation of neurological system process Y 2.9×10-14 

NRXN1 GO-BiolProc regulation of transmission of nerve impulse Y 8.0×10-14 

NRXN1 GO-BiolProc neuron-neuron synaptic transmission Y 1.1×10-12 

NRXN1 GO-BiolProc glutamate secretion N 1.1×10-12 

NRXN1 GO-BiolProc synaptic vesicle transport N 5.8×10-12 



56 

 

NRXN1 GO-BiolProc synaptic transmission, glutamatergic Y 2.1×10-11 

NRXN1 GO-BiolProc signal release N 6.7×10-11 

NRXN1 GO-BiolProc generation of a signal involved in cell-cell signaling N 6.7×10-11 

NRXN1 GO-BiolProc learning or memory Y 2.5×10-10 

NRXN1 GO-BiolProc cellular potassium ion transport N 2.7×10-10 

NRXN1 GO-BiolProc potassium ion transmembrane transport N 2.7×10-10 

NRXN1 GO-BiolProc Axonogenesis Y 3.0×10-10 

NRXN1 GO-BiolProc regulation of excitatory postsynaptic membrane potential Y 4.1×10-10 

NRXN1 GO-CellComp presynaptic membrane Y 1.7×10-26 

NRXN1 GO-CellComp Synapse Y 2.5×10-23 

NRXN1 GO-CellComp Axon Y 5.2×10-23 

NRXN1 GO-CellComp axon part Y 2.2×10-21 

NRXN1 GO-CellComp synapse part Y 4.2×10-21 

NRXN1 GO-CellComp synaptic membrane Y 2.5×10-19 

NRXN1 GO-CellComp ion channel complex N 1.3×10-16 

NRXN1 GO-CellComp outer membrane-bounded periplasmic space N 1.4×10-16 

NRXN1 GO-CellComp periplasmic space N 1.4×10-16 

NRXN1 GO-CellComp cation channel complex N 1.0×10-15 

NRXN1 GO-CellComp main axon N 1.1×10-15 

NRXN1 GO-CellComp Dendrite N 1.6×10-15 

NRXN1 GO-CellComp external encapsulating structure part N 2.2×10-15 

NRXN1 GO-CellComp cell envelope N 2.2×10-15 

NRXN1 GO-CellComp postsynaptic membrane N 2.3×10-14 

NRXN1 GO-CellComp synaptic vesicle membrane N 1.7×10-13 

NRXN1 GO-CellComp Axolemma N 2.8×10-13 

NRXN1 GO-CellComp terminal button N 3.1×10-13 

NRXN1 GO-CellComp external encapsulating structure N 4.3×10-13 

NRXN1 GO-CellComp voltage-gated sodium channel complex N 5. ×10-13 

NRXN1 GO-MolFunc glutamate receptor activity N 2.8×10-25 

NRXN1 GO-MolFunc gated channel activity N 2.2×10-21 
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NRXN1 GO-MolFunc substrate-specific channel activity N 2.4×10-19 

NRXN1 GO-MolFunc GABA receptor activity N 7.7×10-19 

NRXN1 GO-MolFunc passive transmembrane transporter activity N 7.0×10-19 

NRXN1 GO-MolFunc extracellular ligand-gated ion channel activity N 1.1×10-17 

NRXN1 GO-MolFunc GABA-A receptor activity N 6.8×10-17 

NRXN1 GO-MolFunc voltage-gated channel activity N 7.9×10-17 

NRXN1 GO-MolFunc voltage-gated ion channel activity N 7.9×10-17 

NRXN1 GO-MolFunc ionotropic glutamate receptor activity N 1.5×10-16 

NRXN1 GO-MolFunc extracellular-glutamate-gated ion channel activity N 1.7×10-16 

NRXN1 GO-MolFunc ligand-gated channel activity N 4.7×10-16 

NRXN1 GO-MolFunc ligand-gated ion channel activity N 4.7×10-16 

NRXN1 GO-MolFunc voltage-gated cation channel activity N 3.5×10-15 

NRXN1 GO-MolFunc cation channel activity N 5.2×10-12 

NRXN1 GO-MolFunc voltage-gated sodium channel activity N 5.6×10-12 

NRXN1 KEGG Neuroactive ligand-receptor interaction N 9.5×10-6 

NRXN1 KEGG Axon guidance N 2.1×10-5 

NRXN1 KEGG ErbB signaling pathway N 2.7×10-5 

NRXN1 KEGG Long-term potentiation N 3.3×10-5 

NRXN1 KEGG Amyotrophic lateral sclerosis (ALS) N 2.9×10-4 

NRXN1 KEGG Long-term depression N 6.2×10-4 

NRXN1 KEGG Cell adhesion molecules (CAMs) Y 9.8×10-4 

NRXN1 REACTOME GABA A receptor activation N 7.0×10-23 

NRXN1 REACTOME Neuronal System N 2.6×10-22 

NRXN1 REACTOME Ligand-gated ion channel transport N 4.0×10-22 

NRXN1 REACTOME Transmission across Chemical Synapses N 6.4×10-20 

NRXN1 REACTOME Interaction between L1 and Ankyrins N 1.6×10-18 

NRXN1 REACTOME Neurotransmitter Receptor Binding And Downstream Transmission In The Postsynaptic Cell N 1.1×10-17 

NRXN1 REACTOME GABA receptor activation N 6.7×10-17 

NRXN1 REACTOME Class C/3 (Metabotropic glutamate/pheromone receptors) N 2.5×10-16 

NRXN1 REACTOME Unblocking of NMDA receptor, glutamate binding and activation N 1.4×10-14 
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NRXN1 REACTOME Potassium Channels N 5.4×10-14 

NRXN1 REACTOME Ion channel transport N 3.9×10-13 

NRXN1 REACTOME Serotonin Neurotransmitter Release Cycle N 7.6×10-13 

NRXN1 REACTOME Dopamine Neurotransmitter Release Cycle N 7.6×10-13 

NRXN1 REACTOME Voltage gated Potassium channels N 1.7×10-11 

NRXN1 REACTOME L1CAM interactions N 5.0×10-11 

NRXN1 REACTOME GABA synthesis, release, reuptake and degradation N 8.5×10-10 

NRXN1 REACTOME Norepinephrine Neurotransmitter Release Cycle N 1.7×10-9 

NRXN1 REACTOME Activation of NMDA receptor upon glutamate binding and postsynaptic events N 2.2×10-9 

NRXN1 REACTOME Glutamate Neurotransmitter Release Cycle N 5.7×10-8 

NRXN1 REACTOME Ionotropic activity of Kainate Receptors N 5.9×10-8 

PITPNM2 GO-CellComp cation channel complex N 1.7×10-5 

PITPNM2 GO-CellComp asymmetric synapse N 2.3×10-5 

PITPNM2 GO-MolFunc diacylglycerol kinase activity N 7.03×10-7 

PITPNM2 GO-MolFunc cation channel activity N 5.7×10-6 

PITPNM2 GO-MolFunc voltage-gated cation channel activity N 2.5×10-5 

PITPNM2 GO-MolFunc GTPase regulator activity N 3.3×10-5 

PITPNM2 GO-MolFunc nucleoside-triphosphatase regulator activity N 4.3×10-5 

PITPNM2 GO-MolFunc ion channel activity N 5.0×10-5 

PITPNM2 GO-MolFunc gated channel activity N 6.0×10-5 

PITPNM2 GO-MolFunc calmodulin-dependent protein kinase activity N 6.1×10-5 

PITPNM2 GO-MolFunc substrate-specific channel activity N 6.6×10-5 

PITPNM2 GO-MolFunc voltage-gated channel activity N 1.0×10-4 

PITPNM2 GO-MolFunc voltage-gated ion channel activity N 1.0×10-4 

PITPNM2 KEGG Calcium signaling pathway N 1.4×10-4 

PITPNM2 REACTOME Voltage gated Potassium channels N 1.3×10-6 

PITPNM2 REACTOME Potassium Channels N 1.4×10-6 

PITPNM2 REACTOME Effects of PIP2 hydrolysis N 2.1×10-6 

PITPNM2 REACTOME Ras activation uopn Ca2+ infux through NMDA receptor N 1.5×10-5 
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PITPNM2 REACTOME Neuronal System N 2.2×10-5 

PITPNM2 REACTOME PLC-gamma1 signalling N 6.6×10-5 

PITPNM2 REACTOME DAG and IP3 signaling N 8.2×10-5 

PITPNM2 REACTOME Depolarization of the Presynaptic Terminal Triggers the Opening of Calcium Channels N 9.9×10-5 

POU3F2 GO-BiolProc central nervous system neuron differentiation N 2.9×10-28 

POU3F2 GO-BiolProc forebrain generation of neurons N 4.1×10-22 

POU3F2 GO-BiolProc forebrain neuron differentiation N 3.1×10-21 

POU3F2 GO-BiolProc telencephalon development Y 5.8×10-19 

POU3F2 GO-BiolProc forebrain development Y 5.3×10-19 

POU3F2 GO-BiolProc negative regulation of gliogenesis N 9.1×10-18 

POU3F2 GO-BiolProc astrocyte differentiation Y 1.0×10-17 

POU3F2 GO-BiolProc negative regulation of glial cell differentiation N 2.9×10-17 

POU3F2 GO-BiolProc brain development Y 1.6×10-16 

POU3F2 GO-BiolProc central nervous system neuron development N 2.7×10-16 

POU3F2 GO-BiolProc glial cell differentiation Y 4.6×10-16 

POU3F2 GO-BiolProc regulation of neuron differentiation Y 1.6×10-15 

POU3F2 GO-BiolProc pallium development Y 2.8×10-15 

POU3F2 GO-BiolProc cerebral cortex development Y 4.7×10-15 

POU3F2 GO-BiolProc neuron fate commitment N 1.2×10-14 

POU3F2 GO-BiolProc regulation of neurogenesis Y 1.3×10-14 

POU3F2 GO-BiolProc central nervous system projection neuron axonogenesis N 1.5×10-14 

POU3F2 GO-BiolProc positive regulation of neural precursor cell proliferation N 2.2×10-14 

POU3F2 GO-BiolProc Gliogenesis Y 2.8×10-14 

POU3F2 GO-BiolProc cerebral cortex neuron differentiation N 3.0×10-14 

POU3F2 GO-CellComp neuron projection membrane N 2.8×10-7 

POU3F2 GO-CellComp Axolemma N 9.9×10-7 

POU3F2 GO-CellComp Dendrite N 1.2×10-6 

POU3F2 GO-CellComp external encapsulating structure part N 2.6×10-6 

POU3F2 GO-CellComp cell envelope N 2.6×10-6 
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POU3F2 GO-CellComp periplasmic space N 7.5×10-6 

POU3F2 GO-CellComp outer membrane-bounded periplasmic space N 7.5×10-6 

POU3F2 GO-MolFunc ionotropic glutamate receptor activity N 3.7×10-6 

POU3F2 GO-MolFunc ephrin receptor activity N 5.0×10-6 

POU3F2 REACTOME CRMPs in Sema3A signaling N 1.1×10-5 

POU3F2 REACTOME Unblocking of NMDA receptor, glutamate binding and activation N 1.3×10-5 

SCRT1 GO-BiolProc potassium ion transport N 9.3×10-12 

SCRT1 GO-BiolProc visual learning N 2.5×10-11 

SCRT1 GO-BiolProc locomotory behavior N 3.2×10-11 

SCRT1 GO-BiolProc mating behavior N 2.5×10-10 

SCRT1 GO-BiolProc visual behavior N 7.0×10-10 

SCRT1 GO-BiolProc associative learning N 1.1×10-9 

SCRT1 GO-BiolProc Learning N 1.3×10-9 

SCRT1 GO-BiolProc regulation of neurotransmitter levels N 1.4×10-9 

SCRT1 GO-BiolProc ionotropic glutamate receptor signaling pathway N 2.7×10-9 

SCRT1 GO-BiolProc neurotransmitter secretion N 2.9×10-9 

SCRT1 GO-BiolProc neurotransmitter transport N 7.5×10-9 

SCRT1 GO-BiolProc adult locomotory behavior N 8.1×10-9 

SCRT1 GO-BiolProc response to tropane N 1.3×10-8 

SCRT1 GO-BiolProc response to cocaine N 1.3×10-8 

SCRT1 GO-BiolProc neuron-neuron synaptic transmission N 1.3×10-8 

SCRT1 GO-BiolProc neuromuscular process N 2.8×10-8 

SCRT1 GO-BiolProc reproductive behavior N 4.3×10-8 

SCRT1 GO-BiolProc regulation of postsynaptic membrane potential N 5.4×10-8 

SCRT1 GO-BiolProc membrane hyperpolarization N 6.4×10-8 

SCRT1 GO-BiolProc synaptic transmission, glutamatergic N 1.0×10-7 

SCRT1 GO-CellComp axon part N 2.2×10-12 

SCRT1 GO-CellComp main axon N 1.1×10-10 

SCRT1 GO-CellComp synapse part N 1.2×10-8 
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SCRT1 GO-CellComp Axon N 1.2×10-8 

SCRT1 GO-CellComp voltage-gated potassium channel complex N 1.5×10-8 

SCRT1 GO-CellComp potassium channel complex N 1.5×10-8 

SCRT1 GO-CellComp cation channel complex N 3.0×10-8 

SCRT1 GO-CellComp Synapse N 1.2×10-7 

SCRT1 GO-CellComp neuron projection terminus N 2.9×10-7 

SCRT1 GO-CellComp neuronal cell body N 3.0×10-7 

SCRT1 GO-CellComp cell body N 7.0×10-7 

SCRT1 GO-CellComp axon terminus N 1.4×10-6 

SCRT1 GO-CellComp terminal button N 2.8×10-6 

SCRT1 GO-CellComp dendritic spine head N 5.8×10-6 

SCRT1 GO-CellComp postsynaptic density N 5.8×10-6 

SCRT1 GO-CellComp ion channel complex N 7.2×10-6 

SCRT1 GO-CellComp synaptic membrane N 8.8×10-6 

SCRT1 GO-CellComp synaptic vesicle membrane N 9.2×10-6 

SCRT1 GO-CellComp ionotropic glutamate receptor complex N 9.9×10-6 

SCRT1 GO-CellComp periplasmic space N 3.4×10-5 

SCRT1 GO-MolFunc potassium ion transmembrane transporter activity N 4.5×10-10 

SCRT1 GO-MolFunc potassium channel activity N 3.4×10-9 

SCRT1 GO-MolFunc dopamine binding N 4.5×10-9 

SCRT1 GO-MolFunc voltage-gated potassium channel activity N 7.4×10-9 

SCRT1 GO-MolFunc voltage-gated cation channel activity N 2.6×10-8 

SCRT1 GO-MolFunc voltage-gated ion channel activity N 2.4×10-7 

SCRT1 GO-MolFunc voltage-gated channel activity N 2.4×10-7 

SCRT1 GO-MolFunc cation channel activity N 9.1×10-7 

SCRT1 GO-MolFunc gated channel activity N 1.8×10-6 

SCRT1 GO-MolFunc delayed rectifier potassium channel activity N 2.3×10-6 

SCRT1 GO-MolFunc extracellular-glutamate-gated ion channel activity N 4.7×10-6 

SCRT1 GO-MolFunc inorganic cation transmembrane transporter activity N 6.2×10-6 

SCRT1 GO-MolFunc ionotropic glutamate receptor activity N 1.8×10-5 
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SCRT1 KEGG Neuroactive ligand-receptor interaction N 2.92E-06 

SCRT1 KEGG Calcium signaling pathway N 6.67E-04 

SCRT1 REACTOME Voltage gated Potassium channels N 7.6×10-12 

SCRT1 REACTOME Neuronal System N 6.8×10-11 

SCRT1 REACTOME Potassium Channels N 2.1×10-10 

SCRT1 REACTOME Unblocking of NMDA receptor, glutamate binding and activation N 1.7×10-6 

SCRT1 REACTOME Transmission across Chemical Synapses N 7.6×10-6 

SCRT1 REACTOME CREB phosphorylation through the activation of CaMKII N 8.0×10-6 

SCRT1 REACTOME GABA synthesis, release, reuptake and degradation N 3.5×10-5 

SCRT1 REACTOME Trafficking of AMPA receptors N 3.8×10-5 

SCRT1 REACTOME Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity N 3.8×10-5 

SCRT1 REACTOME Amine ligand-binding receptors N 4.0×10-5 

SCRT1 REACTOME Neurotransmitter Release Cycle N 4.6×10-5 

SCRT1 REACTOME Ras activation uopn Ca2+ infux through NMDA receptor N 5.7×10-5 

SCRT1 REACTOME Dopamine Neurotransmitter Release Cycle N 7.0×10-5 

SCRT1 REACTOME Serotonin Neurotransmitter Release Cycle N 7.0×10-5 

TBR1 GO-BiolProc behavioral defense response N 1.8×10-32 

TBR1 GO-BiolProc behavioral fear response N 3.5×10-27 

TBR1 GO-BiolProc fear response N 6.6×10-25 

TBR1 GO-BiolProc hippocampus development N 2.8×10-23 

TBR1 GO-BiolProc pallium development N 8.8×10-23 

TBR1 GO-BiolProc G-protein coupled acetylcholine receptor signaling pathway N 5.3×10-22 

TBR1 GO-BiolProc axonal fasciculation N 2.0×10-21 

TBR1 GO-BiolProc limbic system development N 9.4×10-18 

TBR1 GO-BiolProc neuron recognition N 3.5×10-17 

TBR1 GO-BiolProc telencephalon development N 2.1×10-16 

TBR1 GO-BiolProc multicellular organismal response to stress N 2.0×10-14 

TBR1 GO-BiolProc forebrain development N 4.9×10-14 

TBR1 GO-BiolProc cerebral cortex neuron differentiation N 1.2×10-13 
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TBR1 GO-BiolProc cerebral cortex radially oriented cell migration N 1.5×10-13 

TBR1 GO-BiolProc potassium ion transport N 1.9×10-13 

TBR1 GO-BiolProc synaptic transmission, glutamatergic N 5.2×10-13 

TBR1 GO-BiolProc ionotropic glutamate receptor signaling pathway N 3.2×10-12 

TBR1 GO-BiolProc neuron-neuron synaptic transmission N 8.3×10-12 

TBR1 GO-BiolProc learning or memory N 1.6×10-11 

TBR1 GO-BiolProc regulation of synaptic plasticity N 2.4×10-11 

TBR1 GO-CellComp synapse part N 1.3×10-15 

TBR1 GO-CellComp synaptic membrane N 5.1×10-15 

TBR1 GO-CellComp cation channel complex N 5.4×10-15 

TBR1 GO-CellComp potassium channel complex N 6.5×10-15 

TBR1 GO-CellComp voltage-gated potassium channel complex N 6.5×10-15 

TBR1 GO-CellComp ion channel complex N 1.4×10-14 

TBR1 GO-CellComp presynaptic membrane N 4.7×10-13 

TBR1 GO-CellComp Synapse N 3.6×10-12 

TBR1 GO-CellComp postsynaptic membrane N 6.2×10-10 

TBR1 GO-CellComp Dendrite N 7.3×10-10 

TBR1 GO-CellComp asymmetric synapse N 5.6×10-9 

TBR1 GO-CellComp site of polarized growth N 3.0×10-8 

TBR1 GO-CellComp growth cone N 3.5×10-8 

TBR1 GO-CellComp synaptic vesicle membrane N 7.1×10-8 

TBR1 GO-MolFunc voltage-gated potassium channel activity N 2.3×10-17 

TBR1 GO-MolFunc potassium channel activity N 2.6×10-17 

TBR1 GO-MolFunc voltage-gated cation channel activity N 7.5×10-17 

TBR1 GO-MolFunc voltage-gated channel activity N 1.9×10-15 

TBR1 GO-MolFunc voltage-gated ion channel activity N 1.9×10-15 

TBR1 GO-MolFunc acidic amino acid transmembrane transporter activity N 2.3×10-15 

TBR1 GO-MolFunc L-glutamate transmembrane transporter activity N 1.0×10-14 

TBR1 GO-MolFunc potassium ion transmembrane transporter activity N 6.4×10-13 

TBR1 GO-MolFunc gated channel activity N 3.8×10-12 
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TBR1 GO-MolFunc ion channel activity N 1.2×10-10 

TBR1 GO-MolFunc substrate-specific channel activity N 1.5×10-10 

TBR1 GO-MolFunc G-protein coupled amine receptor activity N 1.9×10-19 

TBR1 GO-MolFunc metal ion transmembrane transporter activity N 6.3×10-10 

TBR1 GO-MolFunc cation channel activity N 8.2×10-10 

TBR1 GO-MolFunc GABA receptor activity N 9.1×10-10 

TBR1 GO-MolFunc passive transmembrane transporter activity N 1.4×10-9 

TBR1 GO-MolFunc channel activity N 1.4×10-9 

TBR1 GO-MolFunc GABA-A receptor activity N 2.6×10-9 

TBR1 KEGG Calcium signaling pathway N 4.1×10-6 

TBR1 KEGG Neuroactive ligand-receptor interaction N 7.7×10-5 

TBR1 REACTOME Voltage gated Potassium channels N 2.4×10-15 

TBR1 REACTOME GABA A receptor activation N 4.2×10-14 

TBR1 REACTOME Potassium Channels N 4.4×10-14 

TBR1 REACTOME Neuronal System N 5.6×10-14 

TBR1 REACTOME Amine ligand-binding receptors N 4.4×10-13 

TBR1 REACTOME Glutamate Neurotransmitter Release Cycle N 2.4×10-11 

TBR1 REACTOME Ligand-gated ion channel transport N 3.8×10-11 

TBR1 REACTOME Transmission across Chemical Synapses N 5.7×10-9 

TBR1 REACTOME Sema3A PAK dependent Axon repulsion N 1.6×10-8 
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Table S13. Results of mouse phenotype prediction analysis in 80,000 gene expression profiles. Phenotypic annotations are obtained from the Mouse Genetics Initiative 

database (www.informatics.jax.org). Table lists only genes and phenotypic annotations directly related to neuronal or central nervous system function or morphology (marked 

with an asterix) – full predictions are available at – http://www.ssgac.org4. P-values refer to the correlation between the Gene principal component profile and the 

reconstituted phenotypic annotation principal component profile, uncorrected for multiple testing; all reported terms meet False Discovery Rate < 0.05. The Annotated 

column indicates if the gene has previously been linked to a specific mouse phenotype (Y) or not (N). Results are sorted alphabetically by gene name. 

Gene name Predicted mouse knock-out/-in phenotype              Annotated P-value 

AKT3 abnormal hippocampus pyramidal cell layer N 1.7×10-13 

AKT3 small hippocampus N 1.8×10-8 

AKT3 abnormal neocortex morphology N 5.6×10-6 

AKT3 decreased neuron number N 6.5×10-6 

AKT3 placental labyrinth hypoplasia N 1.1×10-5 

AKT3 abnormal brain ventricle morphology N 1.7×10-5 

AKT3 abnormal sensory capabilities/reflexes/nociception N 1.7×10-4 

AKT3 abnormal hippocampus morphology N 1.9×10-4 

AKT3 abnormal cerebellar foliation N 1.9×10-4 

AKT3 abnormal postnatal subventricular zone morphology N 2.5×10-4 

ARHGAP39 dilated lateral ventricles N 3.2×10-5 

ARHGAP39 abnormal ventral spinal root morphology N 9,0×10-5 

ARHGAP39 abnormal hippocampus layer morphology N 1.6×10-4 

ARHGAP39 dilated third ventricle N 2.9×10-4 

ARHGAP39 abnormal neural crest cell migration N 7.9×10-4 

ARHGAP39 decreased motor neuron number N 9.0×10-4 

ATXN2L dilated lateral ventricles N 4.5×10-8 

ATXN2L increased brain size N 2.9×10-7 

ATXN2L abnormal dendritic cell morphology N 4.8×10-4 

ATXN2L dilated third ventricle N 6.3×10-4 

C12orf65 impaired olfaction N 6.0×10-3 

C12orf65 abnormal nervous system physiology N 7.5×10-3 

C12orf65 abnormal medulla oblongata morphology N 8.2×10-3 

                                                           
4 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a separate appendix to the submitted manuscript. 
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C12orf65 abnormal neural tube closure N 1.4×10-2 

C12orf65 abnormal seizure response to electrical stimulation N 1.6×10-2 

C12orf65 abnormal hippocampus CA1 region morphology N 1.7×10-2 

C12orf65 absent distortion product otoacoustic emissions N 1.8×10-2 

C12orf65 increased drinking behavior N 1.8×10-2 

CELF4 abnormal CNS synaptic transmission N 1.1×10-26 

CELF4 abnormal synaptic vesicle number N 7.6×10-22 

CELF4 abnormal miniature excitatory postsynaptic currents N 4.5×10-17 

CELF4 increased susceptibility to pharmacologically induced seizures N 1.1×10-16 

CELF4 abnormal inhibitory postsynaptic currents N 1.8×10-16 

CELF4 abnormal synaptic vesicle recycling N 2.8×10-16 

CELF4 abnormal synaptic vesicle morphology N 8.8×10-16 

CELF4 convulsive seizures N 2.6×10-15 

CELF4 reduced long term potentiation N 8.2×10-15 

CELF4 abnormal excitatory postsynaptic potential N 2.2×10-14 

CELF4 increased synaptic depression N 1.4×10-13 

CELF4 tonic-clonic seizures Y 6.7×10-13 

CELF4 enhanced paired-pulse facilitation N 7.8×10-13 

CELF4 abnormal excitatory postsynaptic currents N 4.9×10-12 

CELF4 abnormal brain wave pattern N 1.6×10-11 

CELF4 sporadic seizures N 2.1×10-11 

CELF4 decreased paired-pulse facilitation N 3.4×10-11 

CELF4 impaired coordination N 5.7×10-11 

CELF4 abnormal conditioned taste aversion behaviour N 9.7×10-11 

CRYZL1 abnormal synaptic vesicle recycling N 2.1×10-4 

CYHR1 abnormal brain white matter morphology N 4.7×10-8 

CYHR1 dilated third ventricle N 5.1×10-5 

CYHR1 abnormal astrocyte morphology N 1.5×10-4 

CYHR1 thick interventricular septum N 6.7×10-4 
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DEC1 hydroencephaly N 3.2×10-3 

DEC1 abnormal startle reflex N 5.6×10-3 

DEC1 impaired passive avoidance behavior N 1.7×10-2 

DEC1 abnormal drinking behavior N 2.2×10-2 

FOXH1 abnormal anterior visceral endoderm morphology N 1.3×10-19 

FOXH1 abnormal neural fold formation Y 1.4×10-14 

ITSN1 decreased brain size N 2.8×10-7 

ITSN1 abnormal behavior N 3.1×10-5 

ITSN1 microgliosis N 4.1×10-5 

ITSN1 abnormal hippocampal commissure morphology N 7.2×10-5 

ITSN1 ectopic Purkinje cell N 1.3×10-4 

ITSN1 abnormal otic capsule morphology N 1.5×10-4 

KCNMA1 decreased vasoconstriction N 6.7×10-8 

KCNMA1 abnormal miniature excitatory postsynaptic currents N 1.2×10-7 

KCNMA1 abnormal brain wave pattern N 3.0×10-6 

KCNMA1 limb grasping N 5.3×10-6 

KCNMA1 intracerebral hemorrhage N 8.3×10-6 

KCNMA1 abnormal GABA-mediated receptor currents N 9.2×10-6 

KCNMA1 abnormal synaptic plasticity N 1.1×10-5 

KCNMA1 decreased aggression towards males N 1.7×10-5 

KIFC2 abnormal miniature excitatory postsynaptic currents N 6.4×10-7 

KIFC2 abnormal inhibitory postsynaptic currents N 2.7×10-6 

KIFC2 abnormal spatial learning N 3.8×10-6 

KIFC2 abnormal excitatory postsynaptic currents N 5.5×10-6 

KIFC2 abnormal AMPA-mediated synaptic currents N 5.6×10-6 

KIFC2 reduced long term depression N 7.5×10-6 

KIFC2 abnormal hippocampal mossy fiber morphology N 9.4×10-6 

KIFC2 abnormal long term depression N 1.3×10-5 

KIFC2 enhanced long term potentiation N 2.3×10-5 



68 

 

KIFC2 enhanced paired-pulse facilitation N 2.7×10-5 

KIFC2 abnormal synaptic vesicle morphology N 4.5×10-5 

KIFC2 abnormal excitatory postsynaptic potential N 5.2×10-5 

KIFC2 abnormal zygomatic bone morphology N 8.3×10-5 

KIFC2 abnormal anxiety-related response N 9.3×10-5 

KIFC2 abnormal synaptic vesicle recycling N 9.9×10-5 

KIFC2 abnormal brain internal capsule morphology N 1.7×10-4 

KIFC2 clonic seizures N 2.0×10-4 

KIFC2 decreased susceptibility to pharmacologically induced seizures N 2.1×10-4 

KIFC2 abnormal CNS synaptic transmission N 2.1×10-4 

LRRC14 impaired coordination N 2.6×10-5 

LRRC14 dilated third ventricle N 1.2×10-3 

LRRC14 small cerebellum N 1.3×10-3 

LRRC14 impaired contextual conditioning behavior N 1.4×10-3 

LRRC14 impaired hearing N 1.6×10-3 

LRRC14 abnormal axon outgrowth N 1.7×10-3 

LRRC14 abnormal retinal apoptosis N 2.3×10-3 

LRRC14 abnormal lateral ventricle morphology N 3.2×10-3 

LRRC14 dilated lateral ventricles N 3.5×10-3 

LRRC14 abnormal brain white matter morphology N 4.1×10-3 

NRXN1 abnormal inhibitory postsynaptic currents N 1.6×10-26 

NRXN1 abnormal CNS synaptic transmission N 2.6×10-25 

NRXN1 abnormal GABA-mediated receptor currents N 2.6×10-24 

NRXN1 abnormal excitatory postsynaptic currents N 1.2×10-22 

NRXN1 hyperactivity N 6.3×10-18 

NRXN1 abnormal synaptic transmission N 1.4×10-17 

NRXN1 abnormal spatial learning N 7.7×10-17 

NRXN1 abnormal synaptic vesicle number N 3.6×10-16 

NRXN1 abnormal posture N 6.4×10-16 

NRXN1 ataxia N 1.4×10-14 
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NRXN1 abnormal brain wave pattern N 2.4×10-14 

NRXN1 seizures N 6.8×10-14 

NRXN1 convulsive seizures N 1.4×10-13 

NRXN1 abnormal nervous system electrophysiology N 4.9×10-13 

NRXN1 abnormal spatial reference memory N 4.9×10-13 

NRXN1 abnormal excitatory postsynaptic potential N 8.1×10-13 

NRXN1 abnormal hippocampus morphology N 1.2×10-12 

NRXN1 impaired coordination N 1.4×10-12 

NRXN1 increased startle reflex N 1.5×10-12 

NRXN1 abnormal social/conspecific interaction N 3.9×10-12 

NUPR1 increased brain weight N 1.7×10-7 

NUPR1 abnormal hippocampus layer morphology N 6.7×10-6 

NUPR1 abnormal enteric neuron morphology N 1.7×10-5 

PITPNM2 reduced long term depression N 4.9×10-6 

PITPNM2 abnormal behavior N 1.2×10-4 

PITPNM2 abnormal learning/ memory N 2.3×10-4 

PITPNM2 impaired cued conditioning behavior N 4.3×10-4 

PITPNM2 abnormal excitatory postsynaptic potential N 5.2×10-4 

PITPNM2 impaired contextual conditioning behavior N 6.6×10-4 

PITPNM2 abnormal calcium ion homeostasis N 8.6×10-4 

POU3F2 abnormal brain commissure morphology N 8.2×10-15 

POU3F2 enlarged third ventricle N 1.2×10-14 

POU3F2 abnormal hippocampal mossy fiber morphology N 2.2×10-13 

POU3F2 small olfactory bulb N 7.7×10-12 

POU3F2 abnormal radial glial cell morphology N 1.1×10-11 

POU3F2 abnormal cerebral cortex morphology N 3.4×10-11 

POU3F2 abnormal axon guidance N 3.5×10-10 

POU3F2 increased aggression towards mice N 8.5×10-10 

POU3F2 abnormal corticospinal tract morphology N 1.4×10-10 
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POU3F2 decreased brain size N 3.4×10-9 

POU3F2 abnormal hippocampus morphology N 8.3×10-8 

POU3F2 abnormal embryonic/fetal subventricular zone morphology N 1.0×10-8 

POU3F2 decreased corpus callosum size N 1.6×10-8 

POU3F2 abnormal spinal cord interneuron morphology N 1.8×10-8 

POU3F2 abnormal cerebellar foliation N 1.9×10-8 

POU3F2 abnormal cerebrum morphology N 3.7×10-8 

POU3F2 abnormal telencephalon development N 4.2×10-8 

POU3F2 enlarged lateral ventricles N 8.5×10-8 

REEP3 abnormal eating behavior N 6.1×10-5 

REEP3 abnormal myelination N 2.2×10-3 

REEP3 abnormal myelin sheath morphology N 2.9×10-3 

REEP3 abnormal postural reflex N 3.1×10-3 

REEP3 abnormal brain white matter morphology N 3.2×10-3 

SCRT1 impaired conditioned place preference behavior N 3.3×10-12 

SCRT1 abnormal spatial learning N 8.6×10-12 

SCRT1 abnormal spike wave discharge N 5.6×10-11 

SCRT1 impaired behavioral response to addictive substance N 1.2×10-10 

SCRT1 increased exploration in new environment N 1.6×10-10 

SCRT1 absence seizures N 1.2×10-9 

SCRT1 abnormal nervous system electrophysiology N 1.2×10-9 

SCRT1 enhanced coordination N 1.8×10-9 

SCRT1 abnormal inhibitory postsynaptic currents N 1.1×10-8 

SCRT1 decreased vertical activity N 1.6×10-8 

SCRT1 abnormal behavioral response to xenobiotic N 1.7×10-8 

SCRT1 sporadic seizures N 2.1×10-8 

SCRT1 abnormal action potential N 2.2×10-8 

SCRT1 abnormal excitatory postsynaptic currents N 2.9×10-8 

SCRT1 decreased neurotransmitter release N 2.9×10-8 

SCRT1 reduced long term depression N 2.9×10-8 
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SCRT1 ataxia N 8.7×10-8 

SCRT1 abnormal brain wave pattern N 2.3×10-7 

SCRT1 impaired swimming N 3.2×10-7 

SCRT1 impaired coordination N 4.0×10-7 

SNRNP35 abnormal brain morphology N 7.1×10-4 

SNRNP35 abnormal action potential N 1.5×10-4 

SNRNP35 astrocytosis N 2.1×10-3 

SNRNP35 absent T cells N 2.3×10-3 

SNRNP35 neurodegeneration N 2.5×10-3 

SNRNP35 seminiferous tubule degeneration N 2.8×10-3 

SNRNP35 abnormal miniature inhibitory postsynaptic currents N 3.4×10-3 

SPNS1 astrocytosis N 5.2×10-8 

SPNS1 Purkinje cell degeneration N 7.8×10-6 

SPNS1 abnormal cued conditioning behavior N 3.5×10-5 

SPNS1 abnormal Reichert's membrane morphology N 2.2×10-4 

SPNS1 abnormal retinal ganglion layer morphology N 2.8×10-4 

SPNS1 limb grasping N 3.4×10-4 

SPNS1 myeloid hyperplasia N 3.8×10-4 

SPNS1 gliosis N 4.3×10-4 

SPNS1 abnormal anterior visceral endoderm morphology N 9.2×10-4 

SPNS1 microgliosis N 1.1×10-3 

TBR1 abnormal inhibitory postsynaptic currents N 2.7×10-22 

TBR1 reduced long term depression N 3.2×10-22 

TBR1 abnormal spatial learning N 1.9×10-20 

TBR1 abnormal brain wave pattern N 1.1×10-19 

TBR1 absent corpus callosum N 4.7×10-18 

TBR1 sporadic seizures N 4.7×10-16 

TBR1 increased startle reflex N 4.8×10-16 

TBR1 abnormal cerebral cortex morphology N 7.1×10-16 
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TBR1 abnormal neocortex morphology N 4.7×10-15 

TBR1 abnormal long term depression N 7.9×10-15 

TBR1 hyperactivity N 1.8×10-14 

TBR1 abnormal CNS synaptic transmission N 4.3×10-14 

TBR1 increased anxiety-related response N 4.4×10-13 

TBR1 abnormal GABA-mediated receptor currents N 5.1×10-13 

TBR1 increased susceptibility to pharmacologically induced seizures N 5.4×10-13 

TBR1 abnormal synaptic vesicle number N 5.9×10-13 

TBR1 abnormal excitatory postsynaptic currents N 2.2×10-12 

TBR1 abnormal thalamus morphology N 3.2×10-12 

TBR1 abnormal telencephalon development N 1.2×10-11 

TBR1 abnormal excitatory postsynaptic potential N 1.7×10-8 
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Table S14. Results of the tissue, organ and tissue type specific expression analysis in 80,000 gene expression profiles. The expression profiles were annotation into tissues, 

organs, or cell types using the MeSH database (http://www.nlm.nih.gov/mesh/).  Table lists only genes in which show high expression in brain regions or specific nervous 

system cells – full predictions are available at http://www.ssgac.org5. Sample count specifies the number of expression profiles annotated with given annotation. AUC (area 

under the curve) gives the estimate how much of the variation on given gene expression profile is explained by a given tissue, organ or tissue type. P-values refer to enriched 

expression for a given gene in specific tissue, organ or tissue type compared to all other annotation terms. Results are sorted alphabetically by gene name. 

Gene name Tissue, organ or cell type Sample count AUC P-value 

AKT3 Prefrontal Cortex 46 0.98 6×10-30 

AKT3 Frontal Lobe 62 0.95 3×10-35 

AKT3 Visual Cortex 34 0.94 3×10-19 

AKT3 Occipital Lobe 42 0.94 5×10-23 

AKT3 Cerebral Cortex 276 0.94 3×10-14 

AKT3 Entorhinal Cortex 83 0.94 2×10-43 

AKT3 Temporal Lobe 91 0.94 5×10-47 

AKT3 Cerebellum 36 0.93 3×10-19 

AKT3 Hippocampus 55 0.93 7×10-28 

AKT3 Cerebrum 344 0.92 3×10-160 

AKT3 Parietal Lobe 17 0.91 5×10-9 

ARHGAP39 Hippocampus 55 0.88 5×10-22 

ARHGAP39 Visual Cortex 34 0.87 7×10-14 

ARHGAP39 Neural Stem Cells 11 0.87 3×10-5 

ARHGAP39 Occipital Lobe 42 0.86 5×10-16 

ARHGAP39 Parietal Lobe 17 0.86 3×10-7 

ARHGAP39 Hypothalamus 15 0.85 4×10-6 

ARHGAP39 Ganglia 11 0.83 2×10-4 

ARHGAP39 Cerebral Cortex 276 0.82 2×10-75 

ARHGAP39 Entorhinal Cortex 83 0.82 6×10-24 

ARHGAP39 Cerebrum 344 0.82 1×10-91 

ARHGAP39 Temporal Lobe 91 0.81 1×10-24 

ARHGAP39 Brain 1274 0.78 1×10-252 

                                                           
5 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a separate appendix to the submitted manuscript. 
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ARHGAP39 Central Nervous System 1302 0.78 2×10-251 

C12orf65 Hypothalamus 15 0.68 1×10-2 

CRYZL1 Prefrontal Cortex 46 0.95 6×10-26 

CRYZL1 Frontal Lobe 62 0.86 1×10-22 

CRYZL1 Cerebellum 36 0.86 9×10-14 

CRYZL1 Substantia Nigra 22 0.73 2×10-4 

CYHR1 Hypothalamus 15 0.82 1×10-5 

CYHR1 Putamen 16 0.78 1×10-4 

CYHR1 Parotid Gland 19 0.73 4×10-4 

CYHR1 Occipital Lobe 42 0.71 2×10-6 

CYHR1 Visual Cortex 34 0.71 2×10-5 

CYHR1 Cerebellum 36 0.7 3×10-5 

CYHR1 Thalamus 16 0.7 7×10-3 

CYHR1 Astrocytes 12 0.69 2×10-2 

CYHR1 Hippocampus 55 0.67 8×10-6 

DEC1 Substantia Nigra 22 0.78 6×10-6 

DEC1 Thalamus 16 0.75 5×10-4 

DEC1 Mesencephalon 41 0.74 7×10-8 

DEC1 Hypothalamus 15 0.73 2×10-3 

DEC1 Subthalamic Nucleus 12 0.68 3×10-2 

FARP1 Neural Stem Cells 11 0.96 1×10-7 

FARP1 Astrocytes 12 0.84 4×10-5 

FOXH1 Substantia Nigra 22 0.86 4×10-9 

FOXH1 Subthalamic Nucleus 12 0.84 5×10-5 

FOXH1 Thalamus 16 0.82 8×10-6 

FOXH1 Mesencephalon 41 0.8 4×10-11 

FOXH1 Parietal Lobe 17 0.77 9×10-5 

FOXH1 Occipital Lobe 42 0.75 4×10-8 

FOXH1 Visual Cortex 34 0.74 9×10-7 
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FOXH1 Hypothalamus 15 0.74 2×10-3 

ITSN1 Abdominal Fat 69 0.99 2×10-44 

ITSN1 Visual Cortex 34 0.98 4×10-22 

ITSN1 Motor Neurons 12 0.98 1×10-8 

ITSN1 Occipital Lobe 42 0.97 4×10-26 

ITSN1 Prefrontal Cortex 46 0.97 8×10-26 

ITSN1 Frontal Lobe 62 0.96 1×10-35 

ITSN1 Entorhinal Cortex 83 0.96 4×10-47 

ITSN1 Cerebral Cortex 276 0.96 1×10-150 

ITSN1 Temporal Lobe 91 0.95 7×10-51 

ITSN1 Hippocampus 55 0.95 7×10-31 

ITSN1 Spinal Cord 19 0.94 2×10-11 

ITSN1 Cerebrum 344 0.94 5×10-175 

ITSN1 Cicatrix 19 0.94 3×10-11 

ITSN1 Parietal Lobe 17 0.94 4×10-10 

ITSN1 Cerebellum 36 0.92 1×10-18 

JMJD1C Cerebellum 36 0.91 4×10-17 

JMJD1C Prefrontal Cortex 46 0.66 2×10-4 

KCNMA1 Visual Cortex 34 0.95 7×10-20 

KCNMA1 Occipital Lobe 42 0.94 4×10-23 

KCNMA1 Prefrontal Cortex 46 0.93 2×10-24 

KCNMA1 Entorhinal Cortex 83 0.93 7×10-42 

KCNMA1 Aortic Valve 10 0.93 2×10-6 

KCNMA1 Muscle, Smooth 248 0.92 1×10-115 

KCNMA1 Cerebral Cortex 276 0.92 2×10-125 

KCNMA1 Frontal Lobe 62 0.91 10×10-29 

KCNMA1 Hippocampus 55 0.9 6×10-25 

KIFC2 Putamen 16 0.99 9×10-12 

KIFC2 Frontal Lobe 62 0.98 3×10-39 
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KIFC2 Parietal Lobe 17 0.98 9×10-12 

KIFC2 Prefrontal Cortex 46 0.98 4×10-29 

KIFC2 Cerebral Cortex 276 0.97 6×10-162 

KIFC2 Entorhinal Cortex 83 0.97 7×10-50 

KIFC2 Temporal Lobe 91 0.97 3×10-54 

KIFC2 Occipital Lobe 42 0.97 9×10-26 

KIFC2 Visual Cortex 34 0.97 6×10-21 

KIFC2 Hippocampus 55 0.96 6×10-32 

KIFC2 Cerebrum 344 0.93 4×10-168 

KIFC2 Hypothalamus 15 0.92 2×10-8 

KIFC2 Thalamus 16 0.88 1×10-7 

KIFC2 Brain 1274 0.82 1×10-300 

KIFC2 Neural Stem Cells 11 0.81 3×10-4 

KIFC2 Central Nervous System 1302 0.81 1×10-300 

KIFC2 Nervous System 1358 0.81 7×10-300 

KIFC2 Substantia Nigra 22 0.8 7×10-7 

MPHOSPH9 Visual Cortex 34 0.82 5×10-11 

MPHOSPH9 Cerebellum 36 0.78 3×10-9 

MPHOSPH9 Neural Stem Cells 11 0.74 6×10-3 

MPHOSPH9 Occipital Lobe 42 0.74 1×10-7 

NPAS2 Prefrontal Cortex 46 0.93 3×10-24 

NPAS2 Frontal Lobe 62 0.91 1×10-28 

NPAS2 Putamen 16 0.9 3×10-8 

NPAS2 Entorhinal Cortex 83 0.85 5×10-28 

NPAS2 Hippocampus 55 0.85 6×10-19 

NPAS2 Cerebral Cortex 276 0.84 3×10-86 

NRXN1 Prefrontal Cortex 46 1 2×10-31 

NRXN1 Cerebellum 36 0.99 2×10-24 

NRXN1 Cerebral Cortex 276 0.99 5×10-47 
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NRXN1 Temporal Lobe 91 0.99 5×10-58 

NRXN1 Entorhinal Cortex 83 0.99 5×10-53 

NRXN1 Occipital Lobe 42 0.99 1×10-27 

NRXN1 Visual Cortex 34 0.98 1×10-22 

NRXN1 Parietal Lobe 17 0.98 5×10-12 

NRXN1 Ganglia 11 0.98 4×10-8 

NRXN1 Thalamus 16 0.97 6×10-11 

NRXN1 Cerebrum 344 0.97 4×10-195 

NRXN1 Mesencephalon 41 0.97 6×10-25 

NRXN1 Putamen 16 0.96 1×10-11 

NRXN1 Substantia Nigra 22 0.96 6×10-14 

NRXN1 Hypothalamus 15 0.96 6×10-10 

NRXN1 Motor Neurons 12 0.95 5×10-8 

NRXN1 Subthalamic Nucleus 12 0.95 8×10-8 

PITPNM2 Frontal Lobe 62 0.88 1×10-24 

PITPNM2 Hippocampus 55 0.87 9×10-22 

PITPNM2 Prefrontal Cortex 46 0.87 7×10-18 

PITPNM2 Putamen 16 0.81 1×10-5 

PITPNM2 Temporal Lobe 91 0.8 1×10-23 

PITPNM2 Cerebral Cortex 276 0.8 8×10-67 

PITPNM2 Entorhinal Cortex 83 0.8 8×10-21 

PITPNM2 Heart Ventricles 124 0.79 1×10-28 

PITPNM2 Hypothalamus 15 0.78 2×10-4 

PITPNM2 Cerebrum 344 0.75 3×10-56 

POU3F2 Neural Stem Cells 11 0.98 4×10-8 

POU3F2 Spinal Cord 19 0.97 9×10-13 

POU3F2 Substantia Nigra 22 0.97 2×10-14 

POU3F2 Visual Cortex 34 0.97 5×10-21 

POU3F2 Prefrontal Cortex 46 0.97 6×10-28 

POU3F2 Occipital Lobe 42 0.97 1×10-25 
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POU3F2 Retinal Pigment Epithelium 12 0.97 2×10-8 

POU3F2 Motor Neurons 12 0.97 2×10-8 

POU3F2 Mesencephalon 41 0.96 8×10-25 

POU3F2 Parietal Lobe 17 0.96 4×10-11 

POU3F2 Frontal Lobe 62 0.96 4×10-36 

POU3F2 Cerebral Cortex 276 0.96 5×10-151 

POU3F2 Putamen 16 0.95 3×10-10 

POU3F2 Cerebrum 344 0.95 2×10-180 

POU3F2 Temporal Lobe 91 0.95 2×10-49 

POU3F2 Entorhinal Cortex 83 0.95 4×10-45 

POU3F2 Subthalamic Nucleus 12 0.95 9×10-8 

POU3F2 Hippocampus 55 0.94 4×10-30 

REEP3 Retinal Pigment Epithelium 12 0.96 4×10-8 

REEP3 Neural Stem Cells 11 0.84 7×10-5 

RILPL1 Subthalamic Nucleus 12 0.97 2×10-8 

RILPL1 Substantia Nigra 22 0.96 7×10-14 

RILPL1 Mesencephalon 41 0.96 5×10-24 

RILPL1 Thalamus 16 0.95 4×10-10 

RILPL1 Putamen 16 0.94 8×10-10 

RILPL1 Parietal Lobe 17 0.94 4×10-10 

RILPL1 Temporal Lobe 91 0.93 1×10-45 

RILPL1 Spinal Cord 19 0.93 9×10-11 

RILPL1 Entorhinal Cortex 83 0.93 4×10-41 

RILPL1 Neural Stem Cells 11 0.92 1×10-6 

RILPL1 Cerebral Cortex 276 0.92 4×10-129 

SBNO1 Cerebellum 36 0.87 9×10-15 

SBNO1 Granulocyte Precursor Cells 30 0.86 5×10-12 

SBNO1 Prefrontal Cortex 46 0.82 4×10-14 

SBNO1 Visual Cortex 34 0.8 8×10-10 
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SBNO1 Motor Neurons 12 0.76 2×10-3 

SBNO1 Frontal Lobe 62 0.76 9×10-13 

SBNO1 Occipital Lobe 42 0.76 7×10-9 

SLC15A1 Thalamus 16 0.85 2×10-6 

SLC15A1 Putamen 16 0.82 1×10-5 

SLC15A1 Ganglia 11 0.8 5×10-4 

SLC15A1 Subthalamic Nucleus 12 0.74 4×10-3 

SLC15A1 Mesencephalon 41 0.69 2×10-5 

SLC15A1 Substantia Nigra 22 0.69 2×10-3 

SLC15A1 Hypothalamus 15 0.68 2×10-2 

SNRNP35 Visual Cortex 34 0.83 2×10-11 

SNRNP35 Occipital Lobe 42 0.81 2×10-12 

SNRNP35 Subthalamic Nucleus 12 0.76 2×10-3 

SNRNP35 Hypothalamus 15 0.75 7×10-4 

SULT1A2 Hypothalamus 15 0.83 9×10-6 

SULT1A2 Substantia Nigra 22 0.76 3×10-5 

SULT1A2 Ganglia 11 0.75 4×10-3 

TBR1 Prefrontal Cortex 46 0.99 1×10-30 

TBR1 Frontal Lobe 62 0.99 2×10-40 

TBR1 Hippocampus 55 0.92 4×10-27 

TBR1 Parietal Lobe 17 0.89 3×10-8 

TBR1 Cerebral Cortex 276 0.88 2×10-104 

TBR1 Temporal Lobe 91 0.86 1×10-32 

TBR1 Entorhinal Cortex 83 0.85 4×10-28 

TBR1 Subthalamic Nucleus 12 0.81 2×10-4 

TBR1 Cerebrum 344 0.79 3×10-78 

TBR1 Thalamus 16 0.78 1×10-4 

TBR1 Brain 1274 0.75 2×10-206 

TBR1 Central Nervous System 1302 0.75 7×10-200 
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TMEM50B Motor Neurons 12 0.89 4×10-6 

TMEM50B Thalamus 16 0.87 3×10-7 

TMEM50B Cerebellum 36 0.87 2×10-14 

TMEM50B Neural Stem Cells 11 0.84 8×10-5 

TMEM50B Ganglia 11 0.81 4×10-4 

TMEM50B Spinal Cord 19 0.78 2×10-5 

TMEM50B Neurons 37 0.76 7×10-8 

TUFM Neural Stem Cells 11 0.88 1×10-5 

TUFM Astrocytes 12 0.71 1×10-2 

VPS28 Neural Stem Cells 11 0.72 1×10-2 
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Table S15. Implicated candidate genes in cognitive performance associated genomic loci. Table outlines the levels of supportive biological evidence across several 

annotation analysis – 1) functional SNP annotation (Supplementary Table S9); 2) promising eQTLs in blood (Supplementary Table S10) and brain (Supplementary Table 

S11); 3) showing relevant coexpression prediction results for reconstituted pathway terms (Supplementary Table S12), mouse phenotypes (Supplementary Table S13) and 

high site specific expression profiles (Supplementary Table S14). Two last colums give another layer of supportive evidence from literature – A) clustering into modules 

related to neuronal or central nervous system function (neuronal function; synaptic transmission, neurogenesis, neuropeptide hormone, nerve myelination) constructed using 

brain derived gene expression profiles (reported in (28)) and B) isolated from the proteasome of human neocortex postsynaptic density [hPSD] (reported in (34)). SNPs 

rs1487441 and rs1487441 are located in gene deserts, thus the nearest gene is considered for analysis. Only genes with at least one relevant annotation are listed. SNP ID – 

nominally significant cognitive performance associated variant; * – denotes a gene not annotated within the co-expression database; 
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rs1487441 POU3F2      Y Y Y Y  4 

rs7923609 JMJD1C Y     Y Y Y   4 

 REEP3       Y Y   2 

rs2721173 LRRC14 Y  Y Y Y  Y    5 

 RECQL4 Y          1 

 LRRC24  Y    na na na   1 

 MFSD3  Y         1 

 ARHGAP39       Y Y   2 

 GPT  Y         1 

 PPP1R16A  Y         1 

 FOXH1       Y Y   2 

 KIFC2   Y   Y Y Y Y  5 

 CYHR1       Y Y   2 

 VPS28  Y      Y   2 

 CPSF1         Y  1 

 SCRT1      Y Y  Y  3 
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rs8049439 ATXN2L      Y Y    2 

 TUFM  Y Y     Y  Y 4 

 SH2B1 Y          1 

 EIF3CL   Y Y Y na na na   3 

 NFATC2IP     Y   Y Y  3 

 NUPR1     Y  Y    2 

 SPNS1  Y     Y    2 

 LAT  Y Y        2 

 SULT1A1  Y         1 

 SULT1A2  Y      Y   2 

 CCDC101  Y         1 

rs1606974 NRXN1      Y Y Y Y Y 5 

rs2970992 NPAS2     Y   Y   2 

 NMS      na na na Y  1 

rs3127447 KCNMA1      Y Y Y Y  4 

rs7847231 DEC1       Y Y   2 

rs4658552 SDCCAG8 Y Y Y Y       4 

 AKT3       Y Y   2 

rs1892700 CRYZL1      Y Y Y   3 

 ITSN1  Y     Y Y Y Y 5 

 GART Y Y   Y      3 

 DNAJC28 Y  Y        2 

 TMEM50B   Y  Y Y  Y Y  5 

 IFNGR2     Y Y     2 

rs7980687 SBNO1 Y  Y  Y   Y   4 

 SETD8  Y    Y     2 

 RILPL2  Y         1 

 C12orf65   Y Y Y  Y Y   5 

 MPHOSPH9        Y   1 
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 SNRNP35       Y Y   2 

 RILPL1        Y   1 

 PITPNM2      Y Y Y   3 

 TMED2         Y  1 

rs1187220 CELF4      Y Y Y   3 

rs3783006 STK24  Y         1 

 FARP1      Y  Y  Y 3 

 SLC15A1        Y   1 

rs7309 TANK  Y         1 

 PSMD14  Y         1 

 TBR1      Y Y Y Y  4 
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Table S16. Regression of cognitive performance on a polygenic score (PGS) in the GS, MCTFR, QIMR, and STR cohorts (coefficients for constructing the PGS are from the 

meta-analysis of cognitive performance, with the meta-analysis sample excluding the respective validation sample). Analyses for GS are based on 1,081 siblings from 476 

independent families, analyses for MCTFR are based on 1,346 siblings from 673 independent families, analyses for QIMR are based on 1,426 individuals from 628 independent 

families, and analyses for STR are based on 810 DZ twins from 405 independent families. ΔR2 is the incremental R2 of adding the PGS to the regression. The family dummies 

explain 64.3% of the variance for GS, 72.8% for MCTFR, 68.4% for QIMR, and 77.4% for STR. Standard errors are clustered at the family level. The pooled estimates of are 

calculated using inverse-variance weighting. 

Analysis  

GS MCTFR QIMR STR 

Pooled 

Without family dummies Beta 0.05 0.05 0.06 0.07 0.06 

S.E. 0.04 0.03 0.03 0.04 0.02 

p-value 0.19 0.11 0.03 0.10 8.17×10-4 

ΔR2 0.0023 0.0022 0.0041 0.0044 - 

With family dummies Beta -0.05 0.05 0.03 0.08 0.03 

S.E. 0.07 0.06 0.06 0.07 0.03 

p-value 0.41 0.36 0.61 0.26 0.36 

ΔR2 0.0007 0.0007 0.0002 0.0015 - 
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Table S17. Simulation Results for Power of Within-Family Analysis 

β [R2] Model Mean( ) Mean(Standard Error) Power 

0.045 [0.20%] 
Without family dummies 0.044 0.017 78.2% 

With family dummies 0.043 0.027 31.2% 

0.065 [0.42%] 
Without family dummies 0.065 0.017 96.8% 

With family dummies 0.063 0.027 64.2% 

 

  

̂
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Table S18. Results from polygenic-score analysis in the Health and Retirement Study. TWR = Total Word Recall, TMS = Total Mental Score, TC = Total Cognition. Standard 

errors are clustered per individual in the regression and standard errors of the regression coefficients are given in square brackets below the regression coefficients. The 

regressions for ΔTMS and ΔTC have the knots of the age spline at 70 and 80 and do not include person-wave observations with age < 60.  * p < 0.05; ** p < 0.01. ΔR2 denotes 

the increase in R2 of a model with the score, and score interactions if applicable, compared to a model with only the age spline and sex. 

  
(1) 

TWR 

(2) 

TWR 

(3) 

TMS 

(4) 

TMS 

(5) 

TC 

(6) 

TC 

(7) 

ΔTWR 

(8) 

ΔTWR 

(9) 

ΔTMS 

(10) 

ΔTMS 

(11) 

ΔTC 

(12) 

ΔTC 

Score 0.040** 0.047** 0.062** 0.072** 0.057** 0.075** -0.003 -0.005 -0.002 -0.008 -0.001 -0.006 

 [0.007] [0.010] [0.010] [0.012] [0.009] [0.012] [0.002] [0.004] [0.004] [0.006] [0.004] [0.007] 

Age < 60 -0.006** -0.006** -0.006* -0.006* -0.007** -0.007** -0.002 -0.002     

 [0.002] [0.002] [0.003] [0.003] [0.002] [0.002] [0.001] [0.001]     

Age 60-69 -0.037** -0.037** -0.004* -0.004* -0.031** -0.031** -0.006** -0.006** -0.013* -0.013* -0.023** -0.023** 

 [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.001] [0.001] [0.006] [0.006] [0.006] [0.006] 

Age 70-79 -0.051** -0.051** -0.018** -0.018** -0.047** -0.047** -0.005** -0.005** -0.007** -0.007** -0.006** -0.006** 

 [0.002] [0.002] [0.003] [0.003] [0.003] [0.003] [0.001] [0.001] [0.002] [0.002] [0.002] [0.002] 

Age ≥ 80 -0.056** -0.056** -0.053** -0.053** -0.066** -0.067** -0.006** -0.006** -0.019** -0.019** -0.015** -0.015** 

 [0.004] [0.004] [0.007] [0.007] [0.006] [0.006] [0.002] [0.002] [0.003] [0.003] [0.002] [0.002] 

Female 0.345** 0.344** -0.169** -0.169** 0.199** 0.198** 0.002 0.002 -0.018* -0.018* -0.011 -0.011 

 [0.015] [0.015] [0.019] [0.019] [0.019] [0.019] [0.005] [0.005] [0.009] [0.009] [0.008] [0.008] 

Age 60-69 

× score 

 0.000  -0.002  -0.002  0.000     

 [0.002]  [0.002]  [0.002]  [0.001]     

Age 70-79 

× score 

 -0.001  0.002  0.000  0.001  0.002  0.002 

 [0.003]  [0.003]  [0.003]  [0.001]  [0.001]  [0.001] 

Age ≥ 80  

× score 

 -0.008*  -0.004  -0.008  -0.004*  -0.003  -0.005* 

 [0.004]  [0.006]  [0.005]  [0.002]  [0.002]  [0.002] 

Constant 0.107 0.108 0.764** 0.764** 0.533** 0.534** 0.154* 0.155* 1.008** 1.006** 1.620** 1.619** 

 [0.124] [0.124] [0.151] [0.151] [0.143] [0.143] [0.072] [0.071] [0.381] [0.381] [0.395] [0.395] 

N, person-

wave 
49,988 49,988 32,289 32,289 32,289 32,289 40,744 40,744 20,781 20,781 20,781 20,781 

N, persons 8,652 8,652 8,539 8,539 8,539 8,539 8,543 8,543 5,248 5,248 5,248 5,248 

R2 0.164 0.164 0.038 0.038 0.135 0.135 0.002 0.002 0.005 0.005 0.000 0.000 

ΔR2 0.002 0.002 0.004 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.000 0.000 
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Table S19. Results from polygenic-score analysis in the Health and Retirement Study with years of education added as a control variable. TWR = Total Word Recall, TMS = 

Total Mental Score, TC = Total Cognition. Standard errors are clustered per individual in the regression and standard errors of the regression coefficients are given in square 

brackets below the regression coefficients. The regressions for ΔTMS and ΔTC have the knots of the age spline at 70 and 80 and do not include person-wave observations 

with age < 60.  * p < 0.05; ** p < 0.01. ΔR2 denotes the increase in R2 of a model with the score, and score interactions if applicable, compared to a model with only the age 

spline and sex. 

 
(1) 

TWR 

(2) 

TWR 

(3) 

TMS 

(4) 

TMS 

(5) 

TC 

(6) 

TC 

(7) 

ΔTWR 

(8) 

ΔTWR 

(9) 

ΔTMS 

(10) 

ΔTMS 

(11) 

ΔTC 

(12) 

ΔTC 

Score 0.014* 0.022* 0.031** 0.043** 0.024** 0.045** -0.002 -0.005 -0.003 -0.010 -0.002 -0.007 

 [0.007] [0.009] [0.009] [0.012] [0.008] [0.011] [0.002] [0.004] [0.004] [0.006] [0.004] [0.007] 

Age < 60 -0.003 -0.003 -0.000 -0.000 -0.001 -0.001 -0.002 -0.002     

 [0.002] [0.002] [0.003] [0.002] [0.002] [0.002] [0.001] [0.001]     

Age 60-69 -0.032** -0.032** -0.002 -0.002 -0.029** -0.029** -0.006** -0.006** -0.013* -0.013* -0.023** -0.023** 

 [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.001] [0.001] [0.006] [0.006] [0.006] [0.006] 

Age 70-79 -0.050** -0.050** -0.016** -0.016** -0.045** -0.045** -0.005** -0.005** -0.007** -0.007** -0.006** -0.006** 

 [0.002] [0.002] [0.003] [0.003] [0.003] [0.003] [0.001] [0.001] [0.002] [0.002] [0.002] [0.002] 

Age ≥ 80 -0.054** -0.054** -0.051** -0.051** -0.064** -0.064** -0.006** -0.006** -0.019** -0.019** -0.015** -0.015** 

 [0.004] [0.004] [0.007] [0.006] [0.006] [0.005] [0.002] [0.002] [0.003] [0.003] [0.002] [0.002] 

Female 0.392** 0.391** -0.109** -0.109** 0.261** 0.261** 0.002 0.002 -0.015 -0.015 -0.010 -0.010 

 [0.014] [0.014] [0.018] [0.018] [0.017] [0.017] [0.005] [0.005] [0.009] [0.009] [0.008] [0.008] 

Years of 

education 

0.101** 0.101** 0.120** 0.120** 0.127** 0.127** 0.000 0.000 0.004* 0.004* 0.001 0.001 

[0.003] [0.003] [0.004] [0.004] [0.004] [0.004] [0.001] [0.001] [0.002] [0.002] [0.002] [0.002] 

Age 60-69 

× score 

 -0.000  -0.002  -0.002  0.000     

 [0.002]  [0.002]  [0.002]  [0.001]     
Age 70-79 

× score 

 -0.002  0.002  -0.000  0.001  0.002  0.002 

 [0.002]  [0.003]  [0.003]  [0.001]  [0.001]  [0.001] 

Age ≥ 80 

× score 

 -0.007  -0.004  -0.007  -0.004*  -0.003  -0.005* 

 [0.004]  [0.006]  [0.005]  [0.002]  [0.002]  [0.002] 

Constant -1.513** -1.512** -1.270** -1.270** -1.622** -1.621** 0.149* 0.149* 0.950* 0.948* 1.637** 1.636** 

 [0.124] [0.124] [0.158] [0.158] [0.146] [0.146] [0.074] [0.074] [0.386] [0.386] [0.399] [0.399] 

N, person-

wave 
49,827 49,827 32,204 32,204 32,204 32,204 40,622 40,622 20,737 20,737 20,737 20,737 

N, persons 8,615 8,615 8,504 8,504 8,504 8,504 8,506 8,506 5,235 5,235 5,235 5,235 

R2 0.225 0.225 0.128 0.128 0.236 0.236 0.002 0.002 0.005 0.005 0.005 0.005 

ΔR2 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
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Table S20. Power of GWAS on cognitive performance vs. candidate-SNP method in our Cognitive Performance Sample (N = 24,189)  

 Effect size of SNP on cognitive performance (in R2) 

 0.02% 0.04% 0.06% 0.08% 

GWAS (α = 5×10-8) 0.06% 1% 5% 15% 

     

Candidate-SNP (α = .00072) 12% 39% 67% 85% 

Source: Authors’ calculations using (22).  
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Table S21. Ex ante calculations of the expected number of true positive results, given alternative thresholds of including SNPs associated with educational attainment (EA) in 

the second stage on cognitive performance. Calculations are based on the actual sample sizes for EA in stage 1 (N = 106,703) and for cognitive performance in stage 2 (N = 

24,189). The calculations assume that the effect of a SNP that is truly associated with EA only operates through cognitive performance and no other mediating factor. Under 

this assumption, the effect size of an EA-associated SNP would be attenuated by the imperfect correlation between EA and cognitive performance (see SI Appendix section 

15). (1) and (2) are based on actual results of the stage 1 GWAS, after pruning SNPs for LD (the HapMap 2 CEU genotypes were used as reference panel; the physical 

threshold for clumping was 1000 kB, and the R2 threshold for clumping was 0.01). Power in (3) and (7) was calculated using G*Power 3.1 (48, 49). Posterior beliefs in row 

(4) are calculated using Bayes’ formula (21), with prior beliefs equal to 0.01%, power equal to (3), and α equal to the respective p-value threshold of the column. (5) results 

from dividing the family-wide significance level of 0.05 by (1). (6) results from dividing (2) by the assumed phenotypic correlation between EA and cognitive performance 

(0.6). (8) reports the expected number of true positives in the second stage by multiplying (1) × (4) × (7). (9) is calculated using Bayes’ formula (21), with prior beliefs equal 

to (4), power equal to (7), and α equal to (5). Note that the available sample size for stage 2 and the assumed correlation between EA and cognitive performance only affect 

the absolute values in (8), whereas the p-value threshold that maximizes (8) depends only on the results of the first-stage GWAS. 

 

  p-value threshold for including EA-associated SNPs in the second stage analyses on cognitive performance 
  5 × 10-8 1 × 10-7 1 × 10-6 1 × 10-5 1 × 10-4 1 × 10-3 1 × 10-2 5 × 10-2 

Results of stage 1 

 

(1) Number of EA-associated candidate 

SNPs 

3 4 15 69 198 891 3,013 5,720 

(2) Avg R2 of SNPs with EA 

 

2.80 × 10-4 2.73 × 10-4 2.33 × 10-4 1.98 × 10-4 1.65 × 10-4 1.25 × 10-4 9.11 × 10-5 7.05 × 10-5 

(3) Ex-post power (two-sided) in first stage 55% 52% 52% 57% 62% 64% 71% 78% 

(4) Posterior belief that a candidate SNP 

from (1) is truly associated with EA 

99.9% 99.8% 98.1% 85.1% 38.3% 6.0% 0.7% 0.2% 

 

Ex-ante expectations for stage 2 

 

(5) Bonferroni-adjusted  

p-value for second stage 

1.67 × 10-2 1.25 × 10-2 3.33 × 10-3 7.25 × 10-4 2.53 × 10-4 5.61 × 10-5 1.66 × 10-5 8.74 × 10-6 

(6) Expected avg R2 of SNPs  

in second stage given (2) 

7.77 × 10-4 7.59 × 10-4 6.46 × 10-4 5.51 × 10-4 4.57 × 10-4 3.47 × 10-4 2.53 × 10-4 1.96 × 10-4 

(7) Expected power (two-sided)  

in second stage given (5) and (6) 

97.4% 96.3% 84.6% 60.7% 36.9% 12.9% 3.3% 1.2% 

(8) Expected true positives second stage 

 

3 4 12 36 28 7 7 0 

(9) Posterior belief (true|significant), using 

the p-value threshold of (5) 

100% 100% 100% 100% 99.9% 99.5% 99.5% 75.8% 
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