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Supplemental Materials and Methods 

 

Sample processing. Islets from 89 cadaver donors of European ancestry were provided by 

the Nordic Islet Transplantation Programme (http://www.nordicislets.org). All procedures were 

approved by the ethics committee at Lund University. Purity of islets was assessed by dithizone 

staining, while measurement of DNA content and estimate of the contribution of exocrine and 

endocrine tissue were assessed as previously described (6). The islets were cultured in CMRL 

1066 (ICN Biomedicals) supplemented with 10 mM HEPES, 2 mM L-glutamine, 50 µg/ml 

gentamicin, 0.25 µg/ml Fungizone (GIBCO), 20 µg/ml ciprofloxacin (Bayer Healthcare), and 10 

mM nicotinamide at 37 °C (5% CO2) for 1–9 days prior to RNA preparation. Total RNA was 

isolated with the AllPrep DNA/RNA Mini Kit following the manufacturer’s instructions (Qiagen). 

RNA quality and concentration were measured using an Agilent 2100 bioanalyzer (Bio-Rad) and 

a Nanodrop ND-1000 (NanoDrop Technologies). 

Microarray. Whole transcript microarray analysis was performed using GeneChip Human Gene 

1.0 ST and processed with the standard Affymetrix protocol. The array data was then 

summarized and normalized with Robust Multi-array Analysis (RMA) method using the oligo 

package from BioConductor (52). Batch correction was done with COMBAT function from SVA 

package from BioConductor (53). Annotation was done using annotate package from 

BioConductor and hugene10sttranscriptcluster.db annotation data. Probesets were only kept if 

they matched uniquely to a gene in the latest hg19 human genome assembly. If more than one 

probeset matched a gene, one probeset at random was chosen in order to have only 1 probeset 

per gene. Finally, only probesets (or genes) mapped to the autosomes were kept.  

RNA sequencing and analysis of gene and exon expression. Sample preparation was 

made using Illumina’s TruSeq RNA Sample Preparation Kit according to their recommendations 

using 1 ug of high quality total RNA.  The target insert size was 300 bp and it was sequenced 

using a paired end 101 bp protocol on the HiSeq2000 platform (Illumina). Quality assessment 

was made pre- and post-sample preparation on the 2100 Bioanalyzer (Agilent). Illumina Casava 

v.1.8.2 software was used for base calling. Paired-end 101 bp length output reads were aligned 

to the human reference genome (hg19) with TopHat v.2.0.2 (54) using Bowtie v.0.12.8 (55). 

The TopHat parameters explicitly used are tophat -p 30 -G genes.gtf --library-type fr-

unstranded -r 100 -F 0.05 --microexon-search. The annotated RefSeq GTF transcript and fasta 

genome files were from UCSC and were downloaded from 

http://cufflinks.cbcb.umd.edu/igenomes.html.  Gene expression was measured as the 

normalized sum of expression of all exons. Exons were defined as non-overlapping unique 

exonic units, as described previously (56). The dexseq_count python script (http://www-

huber.embl.de/pub/DEXSeq/analysis/scripts/) was used by counting uniquely mapped reads in 

each exon. Gene and exon expression normalizations were then performed using the TMM 

http://www.nordicislets.org/


method (57), and further normalization was applied by adjusting the expression to gene or 

exon length, respectively. In addition, only the genes and exons that had reads mapped to 

them in at least 5% of the samples were kept. The Cufflinks tool v.1.3.0 (29) was used to 

detect novel gene loci. Novel intergenic gene loci were kept if they didn´t overlap any 

GENCODE v.12 gene (30), UCSC and Ensembl gene structures, had exon-exon junction reads 

mapped to them, had at least two exons with no Ns, and were expressed (non-null read 

coverage) in at least 5% of the samples. Coding potential of these novel intergenic loci was 

assessed with the CPAT tool (31).  

Differential expression of genes and exons between normoglycemic and 

hyperglycemic islets. Samples were stratified based upon glucose tolerance estimated from 

HbA1c, i.e. donors with normal glucose tolerance (HbA1c < 6%, n=51), impaired glucose 

tolerance (IGT, 6% ≤ HbA1c < 6.5%, n=15), and T2D (HbA1c ≥ 6.5%, n=12) (63). A linear 

model adjusting for age and sex as implemented in the R Matrix eQTL package (58) was used to 

determine the expression of genes associated with glucose tolerance status. Genes were kept if 

both microarray and RNA-seq gene expression were nominally associated with HbA1c levels, with 

both nominal and permutation p-values < 0.05 (after performing 10,000 permutations). Known 

exons overlapping only one gene were classified as associated with HbA1c levels if the exon 

expression in RNA-seq was also confirmed at their exon-exon junction’s expression level, with 

both nominal and permutation p-values < 0.01 (after performing 10,000 permutations), and p-

value/permutation p-value ratio ≤ mean ratio + 1 s.d.. Since most of the lincRNAs were not 

probed on the expression array, the list of lincRNAs associated with HbA1c levels was taken only 

from the RNA-seq data at a threshold of FDR<5%, and expressed in at least 5% of our samples. 

The same threshold was applied for the novel gene loci detected. Of note, the lincRNAs we have 

reported are all known RefSeq genes with known gene structures and annotations. 

Genotyping. Genotyping was performed on the Illumina HumanOmniExpress 12v1 C chips and 

genotype calling was done with the Illumina Genome studio software. All the samples passed 

standard genotype QC (quality control) metrics: sample call rate >98%, only European ancestry 

assessed by principal component analysis comparisons with HapMap populations, gender 

matched, no relatedness, and no genome-wide heterozygosity outliers. SNPs were removed if 

SNP call rate < 98% and Hardy-Weinberg equilibrium test p-values < 5.7x10-7. Individual QC 

genotypes were imputed to 1000 Genomes data, using IMPUTE2 (61) and the March 2012 

release of the 1000 Genomes Phase I panel 

(http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html). The 

program SHAPEIT (62) was used for the pre-phasing. Probabilistic genotypes were used for the 

subsequent analyses and after imputation, SNPs were filtered using a minor allele frequency 

(MAF) > 5% and an IMPUTE2 info value of >0.8.  

http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html


cis-eQTL and cis-sQTL analysis. cis-eQTL and cis-sQTL analyses were carried out on samples 

from 89 individuals. Associations were computed between gene expression levels (eQTL), or exon 

expression levels (sQTL), and all SNPs within 250kb up- or downstream of each of these genes. 

We used a linear model adjusting for age and sex as implemented in the R Matrix eQTL package 

(58). Adjusting also for HbA1c did not significantly affect QTL results, so all the results are shown 

only with age and sex as covariates. The eQTLs and sQTLs were kept if the false discovery rate 

(FDR) was less than 1%, the QTL variants had rs IDs (for the sentinel variants), and if no smaller 

p-value was obtained after doing 10,000 permutations. A literature search (64-79) was 

performed to reveal whether the eQTLs observed in islets also were observed in other human 

tissues. Human pancreatic islets H3K4m3, FAIRE (moderate stringency FAIRE-seq site threshold 

from intersection of 3 islet samples) and DNase I hypersensitivity sites were annotated as such 

from recent studies (32-34).  Evolutionarily conserved sites were defined has such if they were 

called conserved by both SiPhy (80) and GERP (81) programs, as annotated by Haploreg 

annotation tool (82). All enrichment analyses were carried out comparing the eQTL and sQTL 

SNPs plus SNPs in high LD (r2>0.8) with them vs. all the SNPs tested, to avoid biasing 

enrichment to more densely genotype or imputed genomic regions.  

Exome sequencing and Allelic expression imbalance (AEI). Exome sequencing was 

performed using Illumina exome sequencing protocols. To prepare the DNA for exome capture 1 

ug of intact DNA was used as input for the TruSeq DNA sample preparation Kit v2 (Illumina), 

which was processed according to standard protocols. Briefly, DNA shearing was performed on 

the Covaris S2 with a target fragment size of 300 bp before end-repair, A-tailing and adaptor 

ligation. After DNA sample preparation, 500 ng of each sample was pooled together in libraries of 

a total of 5 samples before clustering with the TruSeq PE Cluster Kit v3 (Illumina). The libraries 

for 82 out of the 89 samples were then sequenced on the HiSeq2000 (Illumina) platform (paired 

end 101 bp protocol). Illumina Casava1.8.2 software was used for base calling. Paired-end reads 

were aligned to the human genome (hg19) with BWA v.0.6.2 (59) in paired-end mode with –q 10 

as a set parameter. Duplicated aligned reads were removed by Picard v.1.58 

(http://picard.sourceforge.net), reads were then realigned and quality base scores were 

recalibrated using GATK v.1.6.2 (60). SNP calling was also done with GATK with parameters -T 

UnifiedGenotyper -baq RECALCULATE only under the TruSeq Exome targeted regions, and 

excluding regions of known segmental duplications, structural variants and repeats. We further 

restricted SNP calling to biallelic SNPs, with read depth > 14X, MAPQ0 < 1, homozygosity runs < 

3 bp, mapping quality > 30, and QD (QualByDepth) > 2. The RNA-seq reads from the same 82 

samples were also aligned with BWA but in single-end mode with –q 15 as a set parameter and 

without removing potential duplicated reads. For each RNA-seq sample we called the genotypes 

that were detected as heterozygous SNPs in the exome sequencing. We then filtered out genomic 

positions where RNA-seq reads had less than 10X coverage and that both the reference and 

alternative alleles in the exome sequencing had less than 10X coverage. We then did a Fisher 

http://picard.sourceforge.net/


exact test for the proportion of reference/alternative alleles in the exome sequencing vs. RNA-seq 

for each sample and kept only SNPs if the allelic imbalance was detected in at least 2 samples 

with a false discovery rate (FDR) p-value ≤ 0.01. False discovery rate (FDR) was calculated with 

the Benjamini & Hochberg method under the p.adjust function in R. Briefly, all the p-values 

retrieved from all the testable SNPs in each sample (after the filtering criteria written above) were 

sorted and FDR was applied to them for significance. We further filtered out SNPs overlapping 

known splice sites, that were not within RefSeq autosomal genes and were not present in dbSNP 

v.137 (with unique mapped position), as annotated by HaploReg (82). Genes with previous allelic 

imbalance or imprinting status were searched in literature (83, 84) 

(http://www.geneimprint.com/, http://www.otago.ac.nz/IGC). 

RNA editing. RNA-seq reads from the 82 samples aligned with BWA were used for SNP calling 

with the same parameters and filters used for exome sequencing reads described above. For 

each exome sequenced sample we called the genotypes that were detected as SNPs in the RNA-

seq data. RNA editing sites were called on autosomes in positions which were homozygous in the 

exome sequencing but heterozygous in the RNA-seq data in at least 2 samples. We further 

filtered out RNA editing variants with low quality and coverage < 15X; that were within +/- 10 bp 

of exon-exon junctions discovered in all 89 samples; overlapped known splice sites, more than 

one gene,  present in dbSNP v.137, had HaplotypeScore > 13.0, ReadPosRankSum < -8.0, 

MQRankSum < -12.5, were within 100bp of each other; and were not in uniquely mapable 

100mers regions. The RNA editing events were checked for novelty at DARNED database (85), a 

repository of RNA editing events in brain, blood and lymphoblastoid cell lines. 

Sanger sequencing analysis. Validation of allelic imbalance and RNA editing was carried out 

by RT-PCR with subsequent Sanger sequencing. For reverse transcription SuperScript II RT was 

used with a mixture of random hexamer primers and dT18 (Life Technologies); PCR was run using 

AmpliTaq Gold Master Mix (Life Technologies), and Sanger sequencing was performed by GATC 

Biotech.  RNA editing was examined in the genes listed in Table S18; nucleotide position, primers 

used, and numbers of samples are indicated. Allelic imbalance was tested for the three variants 

listed in Table S19 in the number of heterozygous samples indicated. PCR was run using the 

programme: 6’ 96° - [96° 15’’ - 55° 30’’ - 72° 45’’]50 - 4°∞. Sanger sequencing reads were 

analyzed with the Mutation Surveyor V3:97 software (SoftGenetics). 

RNA Interference (siRNA) and insulin secretion assay.  lonal INS-1  32 13   cells were 

cultured as previously described (86) and transfected using a mixture of DharmaFECT® 1 

(Dharmacon; Life Technologies) and the respective siRNAs. Different sets of siRNA sequences 

were purchased with siRNA identification numbers: s178860 and s178858 (TSPAN33), s132856 

and s132854 (NT5E), s161202 and s161203 (PAK7) and s146175 (TMED6) (Ambion). For control 

purposes, a previously described control sequence Silencer® Negative Control #2 from Ambion 

was used. Cells were cultured in medium for 72 hours at 37°C in a humidified atmosphere 

http://www.geneimprint.com/
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containing 95% air and 5% CO2 in the presence of 40 nM siRNA in 24-well cell culture 

microplates. Knockdown was assessed by RT-qPCR of the target genes as described above using 

the following Taqman® gene expression assays (Life Technologies): TSPAN33 

(Rn01500778_m1), NT5E (Rn00665212_m1), PAK7 (Rn01746951_m1) and TMED6 

(Rn01432785_m1). After transfection insulin secretion measurements were performed. Confluent 

plates containing transfected INS1-832/13 cells were washed twice with 1 mL pre-warmed 

Secretion Assay Buffer (SAB), pH 7.2 (114 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.16 mM 

MgSO4, 20 mM HEPES, 2.5 mM CaCl2, 25.5 mM NaHCO3 and 0.2% Bovine Serum Albumin) 

containing 2.8 mM glucose. The cells were then pre-incubated for two hours in new 2 mL SAB 

with 2.8 mM glucose. Afterwards, separate wells were incubated for 1 hour in 1 mL SAB 

containing either 2.8 mM or 16.7 mM glucose. Secreted insulin was measured from supernatant 

using Coat-a-Count Insulin radioimmunoassay kit (Siemens) and the values were normalized 

using total protein content individually for each well (BCA protein assay kit, Thermo Scientific). 

Flow cytometry of islets cells. Human islets were dissociated to single cell suspension using 

Accutase (Life Technology). Dissociated islet cells were fixed and permeabilised priori of flow 

cytometric analysis of intracellular insulin and glucagon using anti-insulin and anti- glucagon 

antibodies (R&D Systems) conjugated with R-phycoerythrin and allophycocyanin respectively by 

the Lightning-Link technology (Innova Bioscience, Cambridge, United Kingdom). Flow cytometry 

data were acquired on a CyAN ADP (Beckman Coulter) and analyzed using FlowJo software 

(TreeStar, Ashland, OR, USA). 

Accession numbers. Clinical information on the 89 islet donors, gene and exon annotation files, 

raw and processed files for their islet array and RNA-seq mRNA expression are deposited at GEO 

under the accession number GSE50398. 
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Supplemental Figure legends 

Figure S1. Overview of study design and main results. Different omics platforms were used to 

assess a comprehensive spectrum of gene regulation in human pancreatic islets. RNA sequencing 

(RNA-seq) was used to detect known and novel genes expressed in at least 5% of the 89 

samples, and known exons and novel genes associated with glucose tolerance status. Known 

genes were reported to associate with glucose tolerance status if both Expression microarrays 

and RNA-seq detect them at nominal and permutation p-value<0.05. SNPs genotyped in our islet 

samples and further imputed to the 1000 Genomes reference panel were used in combination 

with RNA-seq to detect expression quantitative trait loci (eQTL) for known and novel genes, and 

splicing QTL (sQTL) for known exons at a 1% false discovery rate (FDR) and 10,000 

permutations. 35 genes had both eQTLs and associated linearly with glucose tolerance status. 

Allelic imbalance was detected by using Fisher exact test to compute significant deviations from 

the expected 50/50 allelic distribution when comparing Exome sequencing (Exome-seq) and RNA-

seq for the same individuals (at 1% FDR and detected in at least 2 samples). RNA editing was 

also detected by comparing exome and RNA sequencing data after a stringent pipeline (Materials 

and Methods and Supplemental Information). 

Figure S2. Distribution of RNA-seq expression of known genes on 89 human pancreatic islet 

samples. Density of reads mapped to RefSeq genes with red vertical bars separating the 4 

quartiles of expression.  

Figure S3. Correlation between RNA-seq and microarray data on 89 human pancreatic islet 

samples. Spearman correlation between the normalized expression of genes detected in both 

platforms (Materials and Methods and Supplemental Information). 

Figure S4. Fraction of RefSeq genes, transcripts, exons and junctions detected by RNA-seq as a 

function of cumulative reads mapped to these features. Black vertical line marks the average 

number of reads per sample (38.2 million paired-end reads) mapped to the human genome. 

Fig. S5. Co-expression analysis of RASGRP1 (n=89). (A) RASGRP1 vs. GCG. (B) RASGRP1 vs. 

INS. (C) RASGRP1 vs. SST. (D) RASGRP1 vs. Glucose tolerance status. 

Fig. S6. Co-expression analysis of RFX3 (n=89). (A) RFX3 vs. GCG. (B) RFX3 vs. INS. (C) RFX3 

vs. SST. (D) RFX3 vs. Glucose tolerance status. 

Fig. S7. Co-expression analysis of NNT (n=89). (A) NNT vs. GCG. (B) NNT vs. INS. (C) NNT vs. 

SST. (D) NNT vs. Glucose tolerance status. 

Fig. S8. Co-expression analysis with glucagon gene (n=89). (A) SLC30A8 vs. GCG. (B) PCSK1 vs. 

GCG. (C) G6PC2 vs. GCG.  



Figure S9. Novel gene locus (chr12:43,504,654-43,507,028) (A) with evidence of sequence 

conservation and transcription, (B) associated with HbA1c levels in human pancreatic islets 

(Normal n=51; IGT n=15; T2D n=12), (C) and under a region nominally significant associated 

with fasting glucose in a previous study (23). Arrow provides the location of this new transcribed 

locus. 

Figure S10. RNA-seq eQTL fraction detected to be nominally significant in the microarray data, 

stratified by gene expression quartiles (1 being the lowest and 4 the highest quartile). 

Figure S11. Power to detect eQTLs as a function of sample size. This plot is calculated with the 

java applet at http://homepage.stat.uiowa.edu/~rlenth/Power/ 

Figure S12. High linkage disequilibrium (LD) region around ERAP2 eQTL sentinel SNP 

(rs2910686) shows nominal significance with fasting glucose in MAGIC database (23). 

Figure S13. Example of an sQTL not detected at gene level. (A) The sQTL is not detected at the 

gene expression level (p-value >0.05), (B) and only usage of exon 12 of BRD2 gene is associated 

with SNP rs114933220 (p-value = 9.5e-06). This gene has been linked to obesity and protection 

from type 2 diabetes. 

Figure S14. Known type 2 diabetes (T2D) GWAS locus rs1535500 as eQTL for KCNK17. (A) The 

SNP rs1535500 is located in KCNK16, but (B) shows an eQTL effect on neighboring KCNK17 gene 

(p-value = 1.2e-06) (C) and not on KCNK16 (p-value > 0.05).  

Figure S15. Example of allelic imbalance in the MMP7 gene validated by Sanger sequencing. (A) 

IGV browser with RNA-seq reads from samples in which the allelic imbalance locus rs10502001 

was validated by Sanger sequencing. (B) The genotype for rs10502001 is associated with 

depolarization-evoked insulin exocytosis. 

Figure S16. Overview of the pipeline for detecting RNA editing events in 82 human pancreatic 

islet samples. From the initial 89 samples we only had enough DNA and RNA for doing both RNA 

and Exome sequencing in 82 samples. Each of these 82 samples was then processed through this 

pipeline. To minimize the false positive rate we report only the RNA editing events detected in at 

least two individuals (Materials and Methods and Supplemental Information).  

Figure S17. Distribution of RNA editing events (Materials and Methods and Supplemental 

Information). 

Figure S18. RNA editing events in human pancreatic islets validated by Sanger sequencing. 

From 9 randomly chosen editing events, we could validate 3 out of 6 of the A-to-G events by 

Sanger sequencing, but none of the 3 non A-to-G events.  

Fig. S19. RFX3 co-expression with glucokinase (GCK) (n=89). 

http://homepage.stat.uiowa.edu/~rlenth/Power/


Fig. S20. Islet purity for our 89 human pancreatic islet samples (assessed by dithizone staining) 

in relation to disease status. Kruskal-Wallis rank sum test was used to assess the association of 

gene expression with glucose tolerance status of the islet donors (Normal n=51; IGT n=15; T2D 

n=12).  

Fig. S21. Expression of cell-type specific genes in relation to disease status. (A) GCG is an alpha-

cell specific gene. (B) MAFA is a beta-cell specific gene. (C) SST is a delta-cell specific gene. (D) 

AMY2A is an exocrine specific gene. Kruskal-Wallis rank sum test was used to assess the 

association of gene expression with glucose tolerance status of the islet donors (Normal n=51; 

IGT n=15; T2D n=12). 

Fig. S22. FACS beta/alpha cells ratio in relation to disease status of 49 islet donor samples 

(partially overlapped by our 89 islet donor samples used in our study). (A) Kruskal-Wallis rank 

sum test was used to assess the association of FACS beta/alpha cells ratio with glucose tolerance 

status (p-value = 0.1373) (Normal n=26; IGT n=14; T2D n=9). (B) The blue horizontal line 

separates the few T2D donors with high HbA1c (n=3, HbA1c ≥7.3%) that have an 

insulin/glucagon ratio less than any other Normal or IGT sample. 

 

 

 



RNA-seq gene expression & exon usage 
MAF ≥ 5% samples (18 567 known & 445 novel genes) 

Genotypic imputation  
r2 ≥ 0.8 & MAF ≥ 5% (6.2 M variants) 

89 human pancreatic islet donors 

• 616 cis-eQTLs (known genes)  
• 371 cis-sQTLs (known exons) 
• 24 cis-eQTLs (novel gene loci) 

(FDR<1% & 10k permutations) 

Expression 
microarray 

• 1619 known genes vs. HbA1c (array & RNA-seq) 

• 271 known genes with exons vs. HbA1c  (exon & 

junction data confirmation)  

• 1 novel gene locus vs. HbA1c (FDR<1% & 10k perm) 

Exome-Seq 

• 1102 allelic imbalance genes (FDR<1% & ≥ 2 samples) 

• 61 genes with RNA editing (≥ 2 samples)  

35 known genes have eQTLs 
and associate with HbA1c  
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Validation of RNA editing by Sanger sequencing 

PPIA 

DDX58 A      G 

A      G 

A      G MAP6 

chr7 44 842 099 

chr9 32 456 316 

chr11 75 316 759 

Fig. S18 



Fig. S19 



Fig. S20 



Fig. S21 



Fig. S22 


