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1 Materials and Methods (extended)

We extend the Materials and Methods section by writing explicitly the Langevin equations of
motion and by explaining in a detailed way the analysis algorithm we use.

1.1 Langevin equations of motion

The model is simulated by integrating numerically the Langevin equation for both the chain
base pairs and the particle. The explicit Langevin equations for the N base pairs are
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where η is the damping and ξi(t) a white thermal noise (and so 〈ξi(t)〉 = 0 and 〈ξi(t)ξk(t′)〉 =
2mηkBTδikδ(t− t′)).

The particle follows
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so analogously ηp stands for the damping and ξp(t) for the thermal noise: 〈ξp(t)〉 = 0 and
〈ξp(t)ξp(t′)〉 = 2mpηpkBTδ(t− t′).

1.2 Table of parameters

The parameters of the system are the following:

• Base-pair parameters: m = 300Da, η = 5 ps−1.

• Intra base-pair potential: DAT = 0.052 eV , DCG = 1.5DAT . αAT = 4 Å−1, αCG =
1.5αAT . Gx = 3Dx, y0x = 2/αx, bx = 0.5/α2

x.

• Inter base-pair potential: K = 0.03 eV Å2, ρ = 3, δ = 0.8 Å−1.

• Particle parameters: Mp = 7000Da, ηp = 100 ps−1.

• Particle’s potential parameters: B = 0.52 eV , γ = 0.8 Å−1, a = 1, σ = 3.
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1.3 Conformational Markov Network

The Conformational Markov Network (CMN) appears as a useful coarse-grained representation
of large stochastic trajectories. This picture is obtained by discretizing the conformational
space explored by the system and considering the dynamical jumps between the discretized
configurations along the simulation. In this sense, the nodes of the complex network are defined
by the discretized states, while the links account for the observed transitions between them. The
arising network is thus a weighted and directed graph.

In our case, the conformational space is defined by the five first principal components, in
order to reduce the number of degrees of freedom, keeping indeed the essential features of
our system. We divide each of the principal component into 20 cells of equal volume, while the
particle’s trajectory is divided into N bins, coinciding with the N possible base pairs the particle
can occupy. Our discretized conformational space is thus made up of N × 205 possible states,
which may be or not occupied within the stochastic trajectory. We assign each node a weight Pi
accounting for the fraction of trajectory that the system has visited within the trajectory. The
normalization condition

∑
i Pi = 1 holds. Secondly, the value Pij is assigned to each directional

link accounting for the dynamical jumps from node j to i. Self-loops can exist, and thus Pii 6= 0.
Finally the normalization condition

∑
i Pij = 1 is forced. According to this, the CMN is totally

defined by the occupancy vector P = {Pi} and the transition matrix S̃ = {Pij}. The matrix S̃
is the transition probability of the Markov chain defined by:

v(t+ ∆t) = S̃v(t), (3)

where v(t) it the probability distribution at time t. If the trajectory is long enough, S̃ is
ergodic and time invariant, vector P coincides with the stationary distribution associated with
the Markov chain P = S̃P. Moreover, the detailed balance condition must hold:

PjiPi = PijPj . (4)

1.4 Stochastic Steepest Descent

Once we have translated de molecular dynamics trajectories onto a CMN, we apply the stochas-
tic steepest descent (SSD) algorithm in order to split it into its basins of attraction in an
efficient way, obtaining in turn useful thermo-statistical information about the system.The SSD
algorithm is inspired in the deterministic steepest descent algorithm used to find minima in a
multidimensional surface. We define the assisting vector W = {wi}, where i labels the nodes.
The steps of the SSD algorithm are the following:

1. We start with W = 0.

2. Select randomly a node l with wl = 0 and write an auxiliary list of nodes adding l as first
entry.

3. Select within the neighbors of l the node m that follows the maximum probability flux,
this is Pml = max{Pjl,∀j 6=l}. Check which of the following conditions is fulfilled:

(a) If Pml > Plm and wm = 0, add m to the list and go back to 3. using m instead of l.

(b) If Pml > Plm and wm 6= 0 write the labels of all the nodes in the list as wj = wm. Go
back to step 3.

(c) If Pml ≤ Plm remove link l→ m from the graph. Return to point 3.
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This process ends when every node in the CMN has been labelled, this is wi 6= 0∀i. Then,
the whole conformational space has been characterized and every node is connected with its
local minima in the FEL. All nodes with the same label belong to the same basin in this FEL
and therefore we can associate them with the same conformational state.

Given the basin partition, a new CMN network can be built, taken the basins themselves
as new nodes. The occupation probabilities will now be defined as Pα =

∑
i∈α Pi, while the

transition probabilities Pβα =
∑

i∈α
∑

j∈β PjiPi/
∑

i∈α Pi. From this definitions rate constants
can be easily calculated as kαβ = Pβα/∆t, while the relative free energy of basin α with respect
to basin β is simply ∆Fα = −kBT log(Pα/Pβ).

1.5 Free Energy dendrogram

The free energy dendrogram is a hierarchical representation of the FEL of the system that
can be directly built from the basin structure. Taking F/kBT as previously defined as control
parameter. We can reconstruct now the CMN by increasing gradually its value from an initial
cut-off value. At each step, this cut-off is increased and new nodes emerge together with their
links. This reconstruction provides a hierarchical picture of the nodes together with the way
they are connected with each other. The graphical representation of this picture is the free
energy dendrogram (also called disconnectivity graph), where each basin is represented in terms
of its free energy and the barriers between basins represent the hierarchical relationship between
each basin.

1.6 Definition of macrostates and non specific states

Considering the hierarchical free energy representation of the basin CMN we apply a new cluster-
ing procedure in order to define the macrostates of our system. This procedure is accomplished
in order to provide a physical meaning to the states according to the purpose of our model. Typ-
ically, in our basin structure, we observe groups of basins which represent very similar physical
states separated by small free energy barriers. It is plausible to think that such basins will be
merged into a single state within short transition times.

The macrostates of the system are built according to this characteristic by clustering basins
separated by barriers lower than 1.5kBT . The system is able to jump thermally between these
basins within short times, so we consider they represent the same physical state. The occupancies
and transition probabilities of this clustered version of the basin CMN are constructed in an
straight forward way.

The basin CMN structure shows another additional feature that allows us to distinguish
between specific and non-specific states. Typically, up to the 90% of the network weight is
distributed by less than the 1% of the basins. We name this large group of low populated basins
as non-specific states. They represent short-lived transitionary states where the particle goes
over the sequence searching for an stable binding site. The accumulated weight of these basins
πNS is considered to be that of the non-specific states and is used as reference value to calculate
the free energy difference between an specific state i defined by its occupancy πi and the non
specific state ∆Fi/kBT = log πi/πNS .

2 Supplementary figures

We include the free energy dendrograms for the six remaining promoters not shown in the main
text.
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Figure 1: Free energy dendrogram for alr0705 promoter. The states associated to the
tss macrostates are rounded and their accumulated weight indicated.
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Figure 2: Free energy dendrogram for argC promoter. The states associated to the tss
macrostate are rounded and their accumulated weight indicated.
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Figure 3: Free energy dendrogram for conR promoter. The states associated to the tss
macrostate are rounded and their accumulated weight indicated.

6



Figure 4: Free energy dendrogram for nifB promoter. The states associated to the tss
macrostate are rounded and their accumulated weight indicated.
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Figure 5: Free energy dendrogram for petF promoter. The states associated to the tss
macrostates are rounded and their accumulated weight indicated.
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Figure 6: Free energy dendrogram for petH promoter. The states associated to the tss
macrostates are rounded and their accumulated weight indicated.
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