
SUPPLEMENTAL APPENDIX

1. SIMULTANEOUS CAUSALITY

UNBIASEDNESS OF THE ORDINARY LEAST
SQUARES ESTIMATOR

To understand the implications of simultaneous causality
for regression estimates, it is illustrative to revisit the proof
of unbiasedness of the ordinary least squares (OLS) esti-
mator. A biased estimator is an estimator whose expected
value is not equal to the true value of the population parame-
ter. For an estimator to be unbiased requires a strong assump-
tion of exogeneity, namely mean independence: E U

��X� �
= 0.

For clarity, we proceed in matrix form. We write the regres-
sion equation Y = Xb + U, where our dependent variable, Y,
and our error term U are n + 1 vectors and X is an n x p
matrix where n is the number of observations and p is the
number of parameters.
We can write the OLS estimator of b in the regression

equation Y = Xb + U as

b̂ = X0Xð Þ−1X0Y:

Plugging the regression equation for Y and rearranging (note
(X¢X)−1X¢X = I),

b̂ = b + X0Xð Þ−1X0U:

Taking the expected value of both sides,

E½ b̂� = E½b� + E½ X0Xð Þ−1X0U�:

Applying the law of iterated expectations,

E½b̂� = b + E E½ X0Xð Þ−1X0U
��X�

h i
:

Thus, if one or more covariates in X are endogenous (in this
case, E UX½ � ¹ 0), the second term will not drop out of the
equation and E½b̂� ¹ b.

APPLICATION TO LYME DISEASE AND
FOREST FRAGMENTATION

Above we illustrated that correlation between regressors and
the error term results in biased OLS estimates. If a regressor
and the dependent variable are simultaneously determined,
endogeneity problems will result in unreliable estimates of the
slope coefficients caused by violation of the exogeneity assump-
tion. For instance, if the population living in the wildland urban
interface (WUIpop) is positively related to Lyme disease inci-
dence (LDI) (e.g., through fragmentation or through increased
interaction with infected nymphs), then we would expect an
increase in WUIpop to lead to an increase in LDI. However,
what if LDI influences the number of persons living in the
WUI? If causality moves in both directions, then the esti-
mated effect of WUIpop on LDI is biased (and inconsistent)
because of correlation between WUIpop and the error term.
To show this result, let the data-generating process for

WUIpop in county i in a given year be defined as

WUIpopi = b0 + b1LDIi + ei ðA:1Þ

and the data-generating process for LDI be defined as

LDIi = g0 + g1WUIpopi + mi ðA:2Þ

Suppose we are interested in estimating the causal effect
of WUIpop on LDI (i.e., estimating the parameter g1 equa-
tion A.2). Substituting the right-hand side of equation (A.2)
for LDI in equation A.1 yields

WUIpopi = b0 + b1 g0 + g1WUIpopi + mið Þ + ei:

Combining terms,

WUIpopi = b0 + b1g0 + b1g1WUIpopi + b1m1 + ei

WUIpopi = d0 + d1 +
b1

1 − b1g1
mi +

1

1 − b1g1
ei

where d0 =
b0

1 − b1g1
and d1 =

b1g0
1 − b1g1

.

Multiplying both sides by mi and taking the expected value
yields

E½WUIpopi � mi � = d0E½mi� + d1E½mi� +
b1

1 − b1g1
E½mi � mi �

+
1

1 − b1g1
E½ei � mi �:

If the common assumptions of the linear regression model
hold, in particular that mI has a mean of zero, ei is uncorre-
lated with mi, and mi has non-zero variance s2

m,

E½WUIpopi � mi � =
b1

1 − b1g 1
E½ mi � mi � =

b1
1 − b1g 1

s2
m ¹ 0

As a result of the non-zero correlation between WUIpop
and the error term mi, estimating equation (A.2) would lead
to a biased estimate of g1. Similarly, we can show that there
is non-zero correlation between LDI and ei by substituting
the right-hand side of equation (A.1) for WUIpop in equa-
tion (A.2). This would result in a biased estimate of b1.
Thus, separate OLS estimation of either equation (A.1) or
equation (A.2) produces biased estimates when WUIpop
and LDI are simultaneously determined.

2. FIXED EFFECTS VERSUS RANDOM
EFFECTS MODELS

STATISTICAL MODELS

A cross-sectional model uses data from one time period to
quantify the effect of independent variables such as forest
fragmentation on a dependent variable such as Lyme disease
incidence. The advantage of a cross-sectional regression is
that it allows for a larger range of adaptations at high or low
levels of Lyme disease. However, the cross-sectional model
is only valid if the estimated effect of forest fragmentation
on LDI is unbiased or consistent.1

There are a number of factors that potentially influence
LDI and the WUI population, including the number and
locations of roads and recreational areas. Ignoring or impre-
cisely measuring these factors may result in biased estimation



of the effect of WUIpop (and all other regressors) on LDI.
The magnitude and sign of the omitted variable bias is diffi-
cult to decipher in a multiple regression model.1

With data for multiple time periods, it is possible to con-
trol for unobserved factors that may bias the cross-sectional
regression. In a fixed-effects model, a separate intercept term
is estimated for each county, thereby controlling for any
time-invariant factors that influence the dependent variable.
Or, the fixed effect removes the time-invariant factors from
the error term, limiting the potential for correlation with
regressors in the model.
A fixed-effects version of LDI model in equation (A.2) is

given by

LDIit = g0 + g1WUIpopit + ci + mit ðA:3Þ

The difference with equation (A.2) is that LDI, WUIpop,
and m are now indexed by county i and year t and the
term ci is included to capture additional differences among
counties. In particular, the ci term measures the combined
influence of all time-invariant factors on LDI. The inclusion
of the ci term is equivalent to de-meaning the data (i.e.,
n1(tXit is subtracting from each variable Xit), which implies
that the model parameters are identified from the deviations
of variables around their mean.
Assumptions regarding the relationship between the county

effect, ci, and the observable variables such as WUIpop
define the difference between fixed and random effects
models. The key assumption of the random effects model is
that the unobserved effects (the ci) are uncorrelated with

the explanatory variable WUIpop. The random effects model
can be written as

LDIit = g0 + g1WUIpopit + vit ðA:4Þ

where vit = ci + eit. Whereas consistent estimation of the
fixed effects model in equation (A.3) requires the errors (m)
to be uncorrelated with WUIpop, the random effects model
imposes the additional assumption that the c terms are
uncorrelated with WUIpop (and with m).
In many applications, the assumption that unobserved

time-invariant effects are uncorrelated with the explanatory
variables is unreasonable. As discussed above, roads or state
regulations may be unobserved, but it is likely that access
and development laws are correlated with the proportion
of a county’s population residing in the WUI. The benefit
of the fixed effects model is that it does not place restric-
tions on the relationship between the time-invariant unob-
served effects and the observable covariates. In contrast,
if ci is correlated with the covariates and included as part
of the error term (i.e., as a random effect), coefficient esti-
mates will be biased and inconsistent. Even when the ran-
dom effects assumptions hold, the fixed effects estimator
will be consistent and unbiased, though less efficient than
the random effects estimator.
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