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1 Preliminaries

1.1 Model definitions

We study a simple model for information sharing and dissemination within a population of agents.
By executing an algorithm A, at any given time t, each agent a holds an external real variable
xa(t, A) ∈ R (representing, e.g., its physical location) and possesses some internal state ya(t, A),
which we call memory. To simplify the presentation, whenever the algorithm A is clear from the
context, we may omit its description, writing, e.g., Xa(t) instead of Xa(t, A). In addition, we term
the external state xa(t) as location from now onwards. Initially, the location xa(0) of each agent
a is randomly chosen according to some arbitrary unbiased distribution Φa centered around an
“environmental” target value θ∗ ∈ R. We assume an environment that is symmetric with respect
to this external state. For example, if xa signifies the direction of motion then such symmetry
implies rotational invariance so that all 360o of motion are initially equivalent and only relative angle
measurements are meaningful. Informally, the initial location xa(0) is perceived as an inaccurate
sample of the environment. We typically assume that the variance of Φa is know to agent a, also in
the more liberal settings we may assume that the full knowledge of the parameterized distribution
family {(Φa; θ)}θ∈R is available to each agent a. (The family is parameterized by the location of the
target θ ∈ R).

The goal of each agent a is to relocate itself so that at any given time t, its location xa(t)
would be as close as possible to θ∗. Convergence to the desired value θ∗ is achieved by both social
interactions and environmental cues1, where in-between such events agents are free to adjust their
internal state and modify their location by making a move. That is, an agent a adjusts its location
xa(t) by moving, where a move instruction is specified by some distance quantity ∆(X), shifting
the agent from its current location x to location x+ ∆(X). We view xa(t) as an estimator of θ∗. In
particular, we require that at any given time t, the location xa(t) is an unbiased estimator of θ∗.

1.1.1 Communication

We focus on pair-wise interactions which can be either uni- or bi-directional (our results transfer
to interactions with a larger number of agents in a straightforward manner). The information
transferred in such interactions may contain passive signals that are possibly accompanied by active
signals. Passive information is obtained as agent a measures its relative distance from agent b, that
is,

d̃ab(t) = xb(t)− xa(t) + η,

where the additive noise term, η, is chosen from some arbitrary distribution N(η) whose variance is
known to the agents. Active signals are modeled as messages that expose some part of the internal
memory state of agent b to the observing agent a.

1In order for the model to include both social interactions and environmental cues, one or more of the agents can be
taken to represent the “environment”. The initial locations of these agents are chosen according to highly concentrated
distributions, Φa, around θ∗ and remain fixed thereafter. We capture the increased reliability of a receiving direct
environmental cues in comparison to social signals by applying a lower measurement noise to the observation of agents
representing the environment.
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At this point we note, that in contrast to the internal state ya(t), we do not assume that the
absolute location xa(t) is known to agent a. That is, we view the surrounding as “relative”, meaning
in particular, that initially, when xa(0) is sampled from Φa, agent a has no information about the
value of its own location xa(0). In particular, the internal state ya(0) of each agent a contains
merely var(Φa) and is independent of the actual value xa(0).

1.1.2 Rounds

Execution proceeds in discrete rounds. In each round (or time step), starting at time 0, each agent
may first choose to change (or not) its location by moving, and then, if specified in the meeting
pattern P (see next section), it views another specified agent, thus obtaining some information. To
summarize, the round structure is the following:

• Perform internal computation;

• Move by some ∆(x);

• View (or not) another agent b (obtaining passive and possibly active information).

For simplicity, all three operations, that is, internal computations, move, and view are assume to
occur instantaneously, that is, in zero time.

1.1.3 Meeting patterns

A finite execution is associated with a pattern of meetings P, which specifies the interactions at
any round, up to some final round TP . The system is considered as anonymous, that is we do not
assume that the agents are aware of who they view. In addition, agents cannot even assume that
they will interact with other agents or not, in subsequent rounds. In particular, the pattern of
meeting P is not known to the agents in advance. We note however, that when formulating the
lower bound purposes, we will consider the most liberal version of this model (see algorithm Opt
below), assume that agents have unique identities, and know the pattern P in advance.

Independent meeting patterns: Given a pattern of meetings P, agent a and time t, we
recursively define the set of relevant agents of a at time t, denoted by Ra(t,P). Informally, only
agents in Ra(t,P) are relevant for the move decision made by a at time t. At time zero, we define
Ra(0,P) := a, and at time t, Ra(t,P) := Ra(t − 1,P) ∪ R(b, t − 1,P) if a views b at time t − 1
(otherwise Ra(t,P) := Ra(t− 1,P)). A meeting pattern P is called independent if whenever some
agent a views some other agent b at some time t ≤ TP , then Ra(t− 1,P) ∩R(b, t− 1,P) = ∅.

1.1.4 Random variables

Consider an algorithm A. At any given time t the location and internal state of each agent are
random variables which we denote by Xa(t, A) and Ya(t, A), respectively specific assignments to
Xa(t, A) and Ya(t, A) are denoted by xa(t, A) and ya(t, A)). The value of a random variable Xa(t, A)
indicating the location of a is affected by:
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1. The environmental value θ∗,

2. The relative distances of the initial locations of agents b ∈ Ra(t,P) (governed by the distribu-
tions Φb) with respect to θ∗,

3. The noises η in the distance samplings,

4. The moves of agents a and b ∈ Ra(t,P)

5. The instruction rules of algorithm A itself (which, in particular, may be a randomized algorithm
and may thus use coin flips). These rules result in, e.g., the previous moves made by agents
and the information transferred by communicating active signals.

The memory random variable Ya(t, A) is affected by Items (2–5) above, but independent of the value
of θ∗. In the case where the pattern of meeting (see below) is chosen by a random scheduler [74],
the random variables Xa(t, A) and Ya(t, A) are affected also by the coin flips made by the random
scheduler.

2 The optimal algorithm Opt

2.1 Specification of Opt

Our reference for evaluating the performances of algorithms is the optimal algorithm, denoted
by Opt, which is the best algorithm operating under the most liberal assumptions regarding internal
memory resources, internal (individual) computation abilities and communication capacities. That
is, when considering algorithm Opt we assume no restrictions on the communication capacity, the
memory capacity and the internal computation abilities of each agent. Being as liberal as possible,
we further assume that active communication occurs without any noise2. In addition, we assume
that each agent a has a unique identity and is aware of the entire pattern of meeting P in advance.

Each agent a starts by holding in its memory the full knowledge of the parameterized distribution
family (Φa, θ) (which includes, in particular, the variance of Φa). Without loss of generality, we
assume that all individual decisions of a are encoded in its memory. Specifically, whenever moving by
some quantity ∆(x) at some time t, the value of ∆(x) is stored in the memory Ya(t+ 1) of the agent.
Note that, in the case where algorithm Opt is probabilistic, the choice of ∆(x) may depend not
only on Ya(t) but also on the results of a sequence ra(t) of coin flips. In this case, the sequence ra(t)
is written in Ya(t) as well. Throughout the execution, each agent a will store in its memory Ya(t) all
its meetings’ information together with all the previous meeting information stored at the agents it
has met, and their previous meeting information, etc.. That is, during an interaction at time t+ 1,
the viewing agent a stores in its internal variable Ya(t + 1) not only its internal state before the
meeting, namely Ya(t), and the noisy sample d̃ab(t) of its distance from the second agent b, but also

2The reason, that at this stage, we do not assume noise in active communication is that defining noise for the
general type of active communication would require specifying the representation of the internal state, and hence
would depend on the algorithm’s instructions. For the purposes of lower bounds, we do not want to restrict the
algorithm, hence we prefer not to assume noise in active communication. Again, we stress that the reliability of active
communication does not allow to completely avoid the noise in passive measurements by encoding the location to the
internal state, because an agent is unaware of its actual location.
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b’s identifier and its full memory content as stored in Yb(t). (This includes b’s initial parameterized
distribution family (Φb, θ) and all measurements agent b previously took). This leads to an internal
state Ya(t+ 1) composed of a large nested structure which contains all the information that the
agent could possibly obtain at that time from the set of relevant agents Ra(t,P). Note, given the
pattern P, this information Ya(t) subsums the information it would have received at time t, under
any other given algorithm.

The goal of each agent a at time t is to locate itself as close as possible to θ∗, that is to minimize
|xa(t) − θ∗|. (recall that agent a is not aware of value of xa(t).) Algorithm Opt must maintain
unbiased estimators Xa(t) at any time t, and among all such estimators, it minimizes the mean
square error of Xa(t) around θ∗ for any given time t. Note that algorithm Opt is well-defined, since
the moves used for optimizing the variance at time t do not collide with attempts for optimizing the
variance for other times. The reason for that is, that the algorithm at each agent a encodes the
previous moves of agent a in a’s memory Ya, and thus these moves can later be subtracted by any
other agent that takes into account agent a. Since the noise in the distance samples is additive,
this means that without loss of generality, we can assume that, at least when algorithm Opt is
concerned, the moves of agents do not affect later decisions made by the same or other agents.

2.2 Specification of Opt in an independent meeting pattern

First, please note that all proofs in this manuscript do not rely on the identification of an optimal
algorithm. In practice, the performances of any algorithm is evaluated by comparing it to the
Cramér-Rao bound. For completeness, we specify the optimal algorithm Opt for independent
meeting patterns.

Under an independent meeting pattern, algorithm Opt can be described explicitly. At any time,
each agent keeps a pdf in its memory (centered at zero), describing the distribution of the relative
distance between the target value θ∗ and the current location of the agent. At t = 0, since the initial
distribution Φa is unbiased around θ∗, its mirror image, namely Φa(−x), centered at the zero, is the
pdf describing the relative distance of θ∗ from the agent’s location. Note that before any interaction
occurs, an agent’s optimal strategy would be not to move from its initial location, since any move
will either make its location a biased estimator of θ∗, or will increase its variance around θ∗.

Assuming a prior distribution regarding oracle location that is much wider than the uncertainty
of any agent, one can use Bayesian considerations to calculate the update rule for interactions
between independent agents. In this case, when one agent views another, it updates its pdf by
point-wise multiplication of its current pdf with the noise-convoluted and translated (by the distance
measurement) pdf of the viewed agent. The agent then relocates itself to the mean of the new
pdf . More specifically, let fa,t(x) (respectively, fb,t(x)) denote the pdf of agent a (respectively, b)
at time t. Consider a third agent c that has no knowledge regarding its distance from θ∗, which
now receives the distribution fb,t(x) and a noisy measurement d̃cb = dcb + η of its distance dcb from
agent b. Given this new knowledge, the distribution of the relative distance from θ∗ to c is described
by the following pdf : ∫

fb,t(x+ d̃cb − η) N(η) dη.

Now, assume that at t, instead of agent c, it is agent a that receives the distribution fb,t(x) and a
noisy measurement d̃ab = dab + η. Since the meeting pattern is independent, the previous knowledge

6



of a regarding its distance from θ∗ at time t (described by fa,t(x)) is independent from the new
information it now received from b. Hence, the distribution of θ∗ at time t+ 1 is proportionate to

g′a,b(x) =
∫
fa,t(x) ·

∫
fb,t(x+ d̃ab − η) N(η) dη.

The normalized version of g′a,b(x), termed ga,b(x), therefore describes the distribution of θ∗ from its
location at time t, given the knowledge obtained by a after viewing agent b. To make its location an
unbiased estimator of θ∗, the agent then moves to the mean of this distribution. That is, we have

xa(t+ 1) = xa(t) +
∫
ga,b(x) xdx.

Finally, the new pdf of a at time t+ 1, namely, fa,t+1(x), is ga,b(x) shifted by the last move of the
agent, specifically,

fa,t+1(x) = ga,b(x−
∫
ga,b(x) xdx).

Summarizing the aforementioned discussion, we have the following description of algorithm Opt.

Algorithm Opt

• Compute: g′a,b(x) = c · fa,t(x) ·
∫
fb,t(x + d̃ab − η) N(η) dη, Where c is a

normalization factor.

• Update opinion: xa(t+ 1) = xa(t) +
∫
ga,b(x) xdx.

• Update pdf : fa,t+1(x) = ga,b(x−
∫
ga,b(x) xdx).

In the general, under independent conditions, the pdfs maintained by algorithm Opt will be
complex: To begin with, the initial distributions Φa may be already complex in terms of their
description. Further, as a result of an interaction, calculating the new pdf , as well as its new mean,
involve complex operations such as integration and convulsion. Note, with time the pdf ’s become
increasingly more intricate.

3 Fisher information and Relative Fisher information

3.1 Fisher information

3.1.1 Fisher information and the Cremér-Rao bound

We consider a multi-variable probability density function (pdf) family {(Φ; θ)}θ∈R where θ is a
translation parameter [45]. Let z̄ = {z1, z2 . . . zk} be a vector of random variables, distributed
according to (Φ; θ). The Fisher information of {(Φ; θ)}θ∈R with respect to θ is defined as:

JθΦ =
∫ 1

Φ(z̄, θ)

[
dΦ(z̄, θ)
dθ

]2
dz̄ .
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Note, that since θ is a translational parameter, Fisher information is both unique (there is no
freedom in choosing the parametrization) and independent of θ [45].

The Cremér-Rao inequality bounds from below the variance of the best possible estimator
of θ∗ which is based on the random vector sample z̄ taken from (Φ; θ∗), by the reciprocal of the
corresponding Fisher information.

Theorem 3.1. Let X̂ be any unbiased estimator of θ∗ which is based on a multi-variable sample z̄
taken from (Φ; θ∗). Then

var(X̂ − θ∗) ≥ 1
JθΦ
.

3.1.2 Initial Fisher-deviation

To define the initial Fisher-deviation parameter ∆0, we first define the Fisher-deviation of a single
variable distribution Φ centered at θ∗, as

∆(Φ) = var(Φ) · JθΦ .

(Note that ∆(Φ) ≥ 1 for any unbiased distribution Φ, by the Cramér-Rao bound). Similarly, the
Fisher-deviation ∆(N) of the noise distribution N(η) is defined as:

∆(N) = var(N(η)) · JθN−θ.

The initial Fisher-deviation ∆0 is the supremum of the Fisher-deviations over all the (unbiased)
distributions involved, namely, the Φa distributions governing the initial locations and the noise
distribution N(η). Specifically, let

∆′0 = sup{∆(Φa) | a is an agent},

and finally define
∆0 = max{∆′0,∆(N)}.

Observe that if the distributions Φa and N(η) are all Gaussians then ∆0 = 1.

3.2 Relative Fisher Information

Fix any pattern of meeting P and any algorithm A. In addition to the noise N(η) on the passive
communication, we now consider any level of noise on the active communication (although we do
not specify this noise explicitly). We start off by defining the notion of relative Fisher information
associated to an agent a at a time t operating under algorithm A. This definition will be used to
bound from below the variance of the location Xa(t, A) of agent a at time t around the environmental
value θ∗.

Recall, we consider a group of agents that apply algorithm A in order to maintain, for each
time t, an unbiased estimator Xa(t, A) of the environmental state θ∗. Note that once the location of
the environment is chosen to be some θ∗, all agents’ initial locations are chosen with respect to θ∗.
Hence, informally, since agents have no knowledge regarding their actual location and only obtain
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relative distance samples, from their perspective, all scenarios are identical, regardless of the actual
location of the target.

Each agent stores in its memory a multi-valued random variable Ya(t, A) using it to perform its
move ∆(x)a,t+1,A at the beginning of round t + 1 (see Subsection 1.1). This would yield its new
location at time t+ 1, that is, Xa(t+ 1, A) = Xa(t, A) + ∆(x)a,t+1,A. Note, it is required from the
algorithm A that Xa(t+ 1, A) remains an unbiased estimator of θ∗.

The random variable Ya(t, A) is distributed according to some distribution fy that depends on:

• The collection of initial distributions {Φb}b∈Ra(t,P),

• The pattern of meeting P, the agent a and the time t,

• The rule of algorithm A (determining moves and communication),

• The noise distribution N(η).

It is important to note that fy is independent of θ∗, and therefore one cannot construct an estimator
for θ∗ by relying on fy alone. On the other hand, fy contains information regarding the relative
distance between the agent and θ∗.

Consider now an (imaginary) external observer a∗ that at any given time needs to estimate the
actual target value θ∗. The external observer a∗ at the beginning of round t+ 1 receives the pair

za∗(t+ 1, A) := (ya(t+ 1, A), xa(t, A)),

where the sample ya(t + 1, A) is the memory of a at the beginning of round t + 1, and xa(t) is
the actual location of a at time t. Note that the random variables ya(t+ 1, A) and xa(t) may be
dependent. In contrast to ya(t + 1, A), the value of xa(t) depends on θ∗. Hence, za∗(t + 1, A) is
distributed according to a pdf family {(ga∗(t), θ)} parameterized by θ. Under some smoothness
conditions of A and integrable properties of the noise N(η), the noise in the active communication,
and the initial distributions {Φb}b, the Fisher information Jga∗ (t)(θ) is well defined (see [44]).

Based on za∗(t+1, A), the external observer needs to output an unbiased estimation X̂a∗(t+1, A)
of θ∗, that is, we must have:

mean(X̂a∗(t+ 1, A)− θ∗) = 0 ,
where the mean is taken with respect to the distribution of the random multivariable za∗(t, A) and,
in case a∗ is probabilistic, also the coin tosses of a∗, used for deciding its output. For example, one
possible estimator would be xa(t, A)+∆(x)′a,t,A, where ∆(x)′a,t,A is the move of a at the beginning of
round t+ 1 under algorithm A, assuming a had ya(t+ 1, A) in its memory. In this case X̂a∗(t+ 1, A)
is simply Xa(t+ 1, A), and hence unbiased.

Relative Fisher information: We define the relative Fisher information of agent a at the
beginning of round t as

Ja(t, A) := Jga∗ (t)(θ).

By the Cramér-rao bound, the variance var(X̂a∗(t, A) − θ∗) of any unbiased estimator X̂a∗(t, A)
of θ∗ used by the external observer a∗ at time t is bounded from below by the reciprocal of the
relative Fisher information of agent a at that time. That is, we have:
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Lemma 3.2. var(X̂a∗(t, A)− θ∗) ≥ 1/Ja(t, A).

Since Xa(t, A) is one possible such estimator, we obtain the following.

Lemma 3.3. var(Xa(t, A))− θ∗) ≥ 1/Ja(t, A).

Lower bounds on the variance of the location of an agent around θ∗ can therefore be obtained
by bounding from above the corresponding relative Fisher information.

For simplicity of notation, from here onwards, we refer to the relative Fisher information of
agent a at time t simply at as the Fisher information of agent a at time t.

4 Upper bounds on the Fisher information Ja(t, A)

4.1 Proof for upper bounds

Throughout this section, we fix any algorithm A used by the agents, and any independent pattern
of meeting P. In addition to the noise N(η) on the passive communication, we assume any level of
noise on the active communication. We assume smoothness properties of A and integrable properties
of the noises and the initial distributions {Φb}b, so that the corresponding Fisher information at all
agents and times are defined.

The goal of this section is to prove the following theorem.

Theorem 4.1. For any any time t < TP , algorithm A, and independent meeting pattern, the Fisher
information of agent a satisfies:

Ja(t+ 1, A) ≤ Ja(t, A) + 1
1

Jb(t,A) + 1
Jη

.

Proof. Our goal is to bound the Fisher information in the family {(ga∗(t), θ)} parameterized by θ.
(Recall, (ga∗(t), θ) is the density function corresponding to the pair Za∗(t) = (Ya(t), Xa(t)), assuming
the location of the environmental value is θ).

Assume that at time t, agent a views agent b. Let us take a closer look at the random multivariate
random variable Ya(t+ 1) corresponding to the memory of a at the beginning of round t+ 1. Note
that the algorithm A may choose to erase or change some of the information the agent obtained.
In addition, the algorithm at b may choose to transmit only part of the memory yb(t) at b, and
this transmission of of the active information may further incur noise. Hence, overall, the memory
Ya(t+ 1) is a function of:

• The random variable D̃ab(t) := Xb(t) − Xa(t) + N , (corresponding to the noisy distance
measurement observed by agent a when viewing agent b),

• The memory Ya(t),

• The memory Yb(t).
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We now aim at calculating the Fisher information with respect to the parameter θ, available to
the outside observer agent a∗ at time t + 1. This is the Fisher information with respect to θ,
in the pair Za∗(t + 1) = (Ya(t + 1), Xa(t)). Since Ya(t + 1) is a function of D̃ab(t), Ya(t), and
Yb(t), the Fisher information in Za∗(t+ 1) is bounded from above by the Fisher information in the
collection of random multi-variable (Xa(t), D̃ab, Ya(t), Yb(t)), see [44]. This latter Fisher information
is the same as the Fisher information in the random variables Xa(t), X̃b(t), Ya(t), Yb(t), where
X̃b(t) = Xa(t) + D̃ab(t) = Xb(t) + N . Our goal therefore is to bound from above the Fisher
information J in the random multivariable (Xa(t), X̃b(t), Ya(t), Yb(t)).

Since the meeting pattern is independent, given the location of the environment value θ, the
random multivariable (Xa(t), Ya(t)) is independent of the random multivariable in (X̃b(t), Yb(t)).
The Fisher information Ja(t+ 1, A) available to agent a∗ at time t+ 1 with respect to θ is therefore
bounded from above by the Fisher information Ja in the random multivariable (Xa(t), Ya(t)) with
respect to θ plus the Fisher information J̃b in the random multivariable (X̃b(t), Yb(t)) with respect
to θ. That is,

Ja(t+ 1, A) ≤ Ja + J̃b. (1)

The term Ja is precisely Ja(t, A), namely, the Fisher information available to agent a∗ at time t. Let
us now focus on the rightmost term in Equation 1 and calculate J̃b, namely , the Fisher information
in the random variable (X̃b(t), Yb(t)) with respect to θ.

Let fX̃b(t),Yb(t)[(x̃b(t), yb(t)) | θ = µ] denote the distribution of (X̃b(t), Yb(t)), given that the target
value is µ. Similarly, let fXb(t),Yb(t)[(xb(t), yb(t)) | θ = µ] denote the distribution of (Xb(t), Yb(t)),
given a target value of µ. Note that Xb(t) = X̃b(t)−N , where the noise is distributed according to
N(η). Thus,

fX̃b(t),Yb(t)[(x̃b(t), yb(t)) | θ = µ] =
∫
fXb(t),Yb(t)[x̃b(t)− η, yb(t) | θ = µ] N(η) dη. (2)

Let G(x1, yb(t) | µ) := fXb,Yb(t)[x1, yb(t) | θ = µ], where x1 is a real valued random variable. Observe
that the right hand side of Equation 2 is a convolution of G with N , where the convolution occurs
with respect to the first random variable in G, namely, x1.

The Fisher information inequality [44,45] bounds the Fisher information of a convolution, but
it applies to single variable distributions. Essentially, the theorem says that if x, y and θ are
real values, K(x − θ), R(x − θ) and Q(x − θ) are a parameterized family and K = R ⊗ Q, then
J(K) ≤ 1/( 1

J(R) + 1
J(Q)). We would like to have such an inequality for our convolution of G and

N , but we cannot directly apply it to our case, since we have a function G with multiple random
variables, where only one of them x1 being convoluted. We rely on the fact that fact that the random
variable yb(t) does not depend on the location of θ. This fact turns out to be sufficient to also
overcome the potential complication rising from the fact that given that θ = µ, the random variable
x1 may depend on the random multi-variable yb(t). In Subsection 4.2 we prove Lemma 4.2 which
extends the Fisher information inequality to our multi-variable (possibly dependent) convolution
case, enabling to prove the following inequality:

J(fX̃b(t),Yb(t)[(x̃b(t), yb(t)) | θ = µ]) ≤ 1
1

J(fXb(t),Yb(t)[x̃b(t),yb(t)|θ=µ]) + 1
Jη

,

where Jη is the Fisher information in the parameterized family N(η − θ) with respect to θ. In other
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words, we obtain:
J(fX̃b(t),Yb(t)[(x̃b(t), yb(t)) | θ = µ]) ≤ 1

1
Jb(t,A) + 1

Jη

. (3)

Together with Equation 1, we obtain the recursive inequality for the Fisher information as required
by Theorem 4.1. This completes the proof of the theorem.

4.2 Extending the Fisher inequality

The Fisher information inequality [44] applies for three one variable distribution families r(z),
p1(x1), and p2(x2) parameterized by µ such that r is a convolution of p1 and p2, that is, r(z) =∫
p1(z − t) · p2(t)dt. The theorem gives an upper bound of the Fisher information Jµr of the family

r(z − µ) (w.r.t., to µ) based on the Fisher information Jµp1 and Jµp2 of the families p1(x1 − µ), and
p2(x2 − µ), respectively. Specifically, the theorem states that: (α1 + α2)2Jµr ≤ α2

1J
µ
p1 + α2

2J
µ
p2 , for

any two real numbers α1 and α2. This in particular implies that 1/Jµr ≥ 1/Jµp1 + 1/Jµp2 .

The following lemma extends the Fisher information inequality to the case where the distributions
p1 and r are composed of multiple, not necessarily independent, variables, where the convolution
with p2 takes place over of one of the variables of p1.

Lemma 4.2. Let r(z, x̄3 | θ), p1(x1, x̄3 | θ), and p2(x2 | θ) be three pdfs such that z, x1 and x2 are
real variables, x̄3 is a vector of multiple real valued variables such that

r(z − θ, x̄3) =
∫
p1(t− θ, x̄3) · p2(z − t)dt.

Then
1

Jθr(z−θ,x̄3)
≥ 1
Jθp1(x1−θ,x̄3)

+ 1
Jθp2(x2−θ)

,

where Jθf(·) is Fisher information in the parameterized distribution family f with respect to the
parameter θ.

Proof. We start by using the definition of r as a convolution over p2 and the first variable of p1:

r(z − θ, x̄3) =
∫
p1(t− θ, x̄3) · p2(z − t)dt.

We can insert the density function p(x̄3) to rewrite the right hand side as:∫
p1(t− θ|x̄3) · p(x̄3) · p2(z − t)dt

= p(x̄3)
∫
p1(t− θ|x̄3) · p2(z − t)dt.

Implying that:
r(z − θ|x̄3) =

∫
p1(t− θ|x̄3) · p2(z − t)dt.

12



We now define the distributions R(z) = r(z − θ|x̄3) and P1(t) = p1(t− θ|x̄3) so that the previous
equation becomes

R(z) =
∫
P1(t) · p2(z − t)dt.

For which we apply the original Lemma by inequality as proved by Stam [44]: and deduce that
for any two real numbers α1 and α2, we have

(α1 + α2)2JµR(z−µ) ≤ α
2
1 · J

µ
P1(x1−µ) + α2

2 · J
µ
p2(x2−µ).

We now multiply both sides of the equations by p(x̄3) and integrate over x̄3, to yield:

(α1 + α2)2
∫
JµR(z−µ) p(x̄3) dx̄3 ≤ α2

1

∫
JµP1(x1−µ) p(x̄3) dx̄3 + α2

2

∫
Jµp2(x2) p(x̄3) dx̄3. (4)

Plugging in the definitions for Fisher information and R(z), the integral on the left hand side
becomes:

∫
JµR(z−µ) p(x̄3)dx̄3 =

∫
Jµr(z−µ−θ|x̄3)p(x̄3)dx̄3

=
∫ ∫ 1

r(z − µ− θ|x̄3)

(
dr(z − µ− θ, |x̄3)

dµ

)2
dz p(x̄3) dx̄3

=
∫ ∫ 1

r(z − µ− θ|x̄3)p(x̄3)

(
d[r(z − µ− θ|x̄3)p(x̄3)]

dµ

)2
dz dx̄3

=
∫ ∫ 1

r(z − µ− θ, x̄3)

(
dr(z − µ− θ, x̄3)

dµ

)2
dz dx̄3

=
∫ ∫ 1

r(z − µ− θ, x̄3)

(
dr(z − µ− θ, x̄3)

dθ

)2
dz dx̄3

=
∫ ∫ 1

r(z̃ − θ, x̄3)

(
dr(z̃ − θ, x̄3)

dθ

)2
dz̃ dx̄3

= Jθr(z−θ,x̄3),

where we used z̃ = z − µ and the fact that x̄3 is independent of θ.

Similarly, the integral over the first term on the right hand side of Equation 4 similarly gives
Jθp1(x1−θ,x̄3). The last term is∫

Jµp2(x2−µ)p(x̄3)dx̄3 = Jµp2(x2−µ)

∫
p(x̄3)dx̄3 = Jµp2(x2−µ) = Jθp2(x2−θ),

by normalization of the distribution x̄3.

Finally, Equation 4 translates to:

(α1 + α2)2Jθr(z−θ,x̄3) ≤ α
2
1 · Jθp1(x1−θ,x̄3) + α2

2 · Jθp2(x2−θ),
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for any real α1 and α2. Setting α1 = Jθp2(x2−θ) and α2 = Jθp1(x1−θ,x̄3), we obtain

1
Jθr(z−θ,x̄3)

≥ 1
Jθp1(x1−θ,x̄3)

+ 1
Jθp2(x2−θ)

,

as desired.

5 An almost optimal compressed algorithm

In this section, we prove that under any given independent pattern of meetings, the performances of
algorithm Conf, as defined in the main text, are near optimal.

5.1 Mean and variance of estimators in algorithm Conf

Our first goal is to prove that that for any agent a and at any given time t, we have (1) algorithm
Conf preserves an unbiased estimator Xa(t) := Xa(t,Conf) and (2) the confidence ca(t) at a equals
the reciprocal of the current variance of the location of a with respect to θ∗.

Observe first that if the location of u before the interaction is xa(t) then after the interaction,
its location is

xa(t+ 1) = xa(t) + d̃ab(t) · ĉb(t)
ca(t) + ĉb(t)

= xa(t)ca(t) + xb(t)ĉb(t)
ca(t) + ĉb(t)

+ ηĉb(t)
ca(t) + ĉb(t)

. (5)

Recall that the distributions Φa are centered around the environmental value θ∗ and that the
noise N(η) is centered around zero. Moreover, observe that at time t, the confidence at each agent a,
namely ca(t), is deterministically defined (if we fix the pattern of meeting). Equation 5 therefore
implies the following, by induction.

Claim 5.1. At any time t and for any agent a, the location xa(t) serves as an unbiased estimator
of θ∗.

We are now ready to analyze the variance of the estimator xa(t) around θ∗.

Lemma 5.2. Consider algorithm Conf. At any time t ≤ TP and for any agent a, we have
ca(t) = 1/var(xa(t)− θ∗).

Proof. The lemma holds for time t = 0 by definition of ca(0). Assume by induction that for any
agent a at time t it holds that ca(t) = 1/var(xa(t)− θ∗) and consider time t+ 1. We now consider
an interaction between two agents at time t, in which agent a views agent b. The variance of the
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new location of a is:

var(xa(t+ 1)− θ∗) = var
(
xa(t) + d̃abĉb(t)

ca(t) + ĉb(t)
− θ∗

)
= var

((xa(t)− θ∗)ca(t) + ĉb(t)(xb(t) + η − θ∗)
ca(t) + ĉb(t)

)

= c2
a(t) · var(xa(t)− θ∗) + ĉ2

b(t) · var(xb(t) + η − θ∗)
(ca(t) + ĉb(t))2

= c2
a(t) · var(xa(t)− θ∗) + ĉ2

b(t) · (var(xb(t)− θ∗) + var(N(η)))
(ca(t) + ĉb(t))2

= c2
a(t) · 1/ca(t) + ĉ2

b(t) · (1/cb(t) + var(N(η)))
(ca(t) + ĉb(t))2 = c2

a(t) · 1/ca(t) + ĉ2
b(t) · 1/ĉb(t)

(ca(t) + ĉb(t))2

= ca(t) + ĉb(t)
(ca(t) + ĉb(t))2 = 1

(ca(t) + ĉb(t))
= 1
ca(t+ 1) ,

which proves the induction step.

5.2 Competitive analysis of Conf

5.2.1 Competitive analysis - definition

To evaluate the performances of a given algorithm, we compare them to those of the best possible
algorithm, namely, algorithm Opt. Specifically, for a given time t, the variance of an agent a under
an algorithm A is defined as

var(a, t, A) = var(XA
a (t)− θ∗).

The competitiveness of algorithm A at time t is

Ψ(t, A) := max
{ var(a, t, A)

var(a, t,Opt) | a is an agent
}
.

Finally, the competitiveness of algorithm A is defined as

Ψ(A) := max {Ψ(A, t) | t ≤ TP} .

5.2.2 The competitiveness of Conf

To evaluate the performances of algorithm Conf, we compare them to those of algorithm Opt (see
Subsections 2 and 5.2.1), for a given (fixed3) independent pattern of meeting P. Specifically, our
next goal is to prove that under algorithm Conf, for any agent a and any time t, the location of a at
time t is an unbiased estimator of θ∗. Furthermore, we shall show that the variance of a’s location
around θ∗ is at most a multiplicative factor of the initial Fisher-deviation ∆0 over its corresponding

3In contrast to algorithm Opt, we do not assume that agents operating under algorithm Conf, know the pattern
P in advance. Indeed, the instructions of that algorithm are local, taking into account only the current confidences of
interacting agents and corresponding distance measurement.
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variance at that t under algorithm Opt (see Subsection 3.1.2 for the definition of ∆0). That is, we
aim to prove that for any agent a and time t ≤ TP the following equation holds.

var(xa(t,Conf)− θ∗) ≤ ∆0 · var(xa(t,Opt)− θ∗). (6)

In other words, the competitiveness of algorithm Conf at any time t is at most the initial Fisher-
deviation ∆0.

Lemma 3.3 gives a bound on the performances of an agent a operating under algorithm Opt,
with respect to the Fisher information at the agent. Specifically, we have:

var(Xa(t,Opt)− θ∗) ≥ 1/Ja(t,Opt).

Initially, the Fisher information Ja(0,Opt) at an agent a equals the Fisher information in the
parameterized family (Φa, θ) with respect to θ. For a given independent pattern of meeting P,
Theorem 4.1 gives a recursive rule for calculating the Fisher information Ja(t,Opt), that is, we
have:

J(a, t+ 1,Opt) ≤ Ja(t,Opt) + 1
1

Jb(t,Opt) + 1
Jη

.

In the next section, we use this inequality to show that, in fact, under algorithm Conf, the variance
of agent a at time t, is bounded from above as follows:

var(Xa(t,Conf)− θ∗) ≤ ∆0/Ja(t,Opt).

Proving this equation would establish Equation 6.

We are now ready to analyze the competitiveness of algorithm Conf. We first connect the
variance of an agent under Conf to its Fisher information under algorithm Opt. Recall that
Ja(t,Opt) stands for the Fisher information of agent a in time t assuming agents execute the
optimal algorithm Opt. The following lemma states that the confidence at an agent in algorithm
Conf equals, up to a multiplicity factor of ∆0, the fisher information of the corresponding imaginary
agent at the same time, in algorithm Opt.

Lemma 5.3. At every time t ≤ TP , we have ca(t) ≥ Ja(t,Opt)
∆0

.

Proof. The lemma holds initially by the definition of ∆0. Assume by induction that at time t the
lemma holds and consider at interaction at time t when agent a views agent b. By the induction
hypothesis and the fact that ca(t+ 1) = ca(t) + 1

1/cb(t)+1/cN , we obtain:

ca(t+ 1) ≥ Ja(t,Opt)
∆0

+ 1
∆0

Jb(t,Opt) + 1/cN
= Ja(t,Opt)

∆0
+ 1

∆0
Jb(t,Opt) + ∆0

∆0·cN

,

implying that:
∆0 · ca(t+ 1) ≥ Ja(t,Opt) + 1

1
Jb(t,Opt) + 1

∆0·cN
,

By definition of ∆0, we have ∆0 ≥ Jη/cN . Hence:

∆0 · ca(t+ 1) ≥ Ja(t,Opt) + 1
1

Jb(t,Opt) + 1
Jη

≥ Ja(t+ 1,Opt),

where the second inequality holds by Theorem 4.1. This completes the proof of the lemma.
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Lemmas 5.2 and 5.3 together with Lemma 3.3 imply that

var(xa(t,Conf)− θ∗) = 1
ca(t)

≤ ∆0 ·
1

Ja(t,Opt) ≤ ∆0 · var(xa(t,Opt)− θ∗), (7)

establishing Equation 6. Hence, we obtain the following bound.

Theorem 5.4. The competitiveness of algorithm Conf is Ψ(Conf) ≤ ∆0.

5.2.3 On the performances of Conf at large times

We now consider the case that the number of interactions per agent are arbitrary large, and show that
for large times, the variance of Conf becomes arbitrarily close to zero, and that the performances
of Conf become closer and closer to those of Opt.

We consider noise N(η) whose variance is vη := var(N(η)). Let Cmin denote the minimum initial
confidence of an agent in a given population. For fixed values of vη and Cmin, we consider larger
and larger populations (n goes to infinity), and correspondingly, independent patterns of meeting
with large and larger depth Mn.

For a given population, let Cmin(t) denote the minimum initial confidence of an agent at time t
(in particular, Cmin(0) = Cmin).

Claim 5.5. limMn→∞Cmin(t) =∞.

Proof. When agent a views agent b the gain in confidence for agent a is

1
1/cb(t) + vη

≥ min{cb(t), vη}/2.

It follows that Cmin(t) increases in a single round by either a multiplicative factor of 3/2 or by an
additive factor of vη/2. This implies that the confidences go to infinity as time go to infinity.

For a given population, let varmax(t) denote the maximal variance of an agent at time t under
algorithm Conf. Claim 5.5 together with Claim 5.2 immediately imply the following.

Lemma 5.6. limMn→∞ varmax(t) = 0.

Clearly, since algorithm Opt is superior over algorithm Conf, the same limit property of the
variance applies to algorithm Opt as well. We now claim that in fact, if the noise N(η) is Gaussian,
then the variances in Conf and Opt go to zero at roughly the same speed.

Lemma 5.7. If the noise N(η) is Gaussian then limt→∞Ψ(Conf, t) = 1.

Proof. Since the noise is gaussian we have vη = 1/Jη. (Recall, Jη is the Fisher information in the
Noise, that is Jη := J(N−θ,θ)(θ)). Note now that as ca(t) become larger and larger the gain in
confidence becomes very close to Jη. Specifically, we have

ca(t+ 1) = ca(t) + 1
1/cb(t) + 1/Jη

.
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Consider now the case that cb(t) > x · Jη, for some large x. Here, the increase in confidence at a is
some quantity ∆JConf(t), satisfying

1
1 + 1/xJη ≤ ∆JConf(t) ≤ Jη.

The Cremér-Rao bound and Lemma 5.2 imply that Jb(t,Opt) ≥ cb(t), and hence, Jb(t,Opt) > x ·Jη.
This, together with Theorem 4.1, implies that at time t, the increase ∆JOpt(t) in Fisher information
of a under algorithm Opt is some quantity satisfying

1
1 + 1/xJη ≤ ∆JOpt(t) ≤ Jη.

Hence ∆JConf(t) and ∆JOpt(t) are the same quantity up to a multiplicative factor of 1
1+1/x .

Since, by Claim 5.5, x goes to infinity as Mn goes to infinity, we get that:

lim
t→∞

Ψ(Conf, t) = lim
t→∞

sup
a

(var(a, t,Conf)
var(a, t,Opt)

)
≤ lim

t→∞
sup
a

(
Ja(t,Opt)
ca(t)

)
= 1.

This completes the proof of Lemma 5.7.

6 The Fisher Channel Capacity and convergence times

6.1 The Fisher Channel Capacity

Given the rule stated in Theorem 4.1 (and the given interaction pattern P), one could now recursively
upper bound the Fisher information Ja(t, A). It is this information which, according to the Cramér-
Rao bound, sets a lower bound on the variance of Xa(t) around θ∗ (see Lemma 3.3). Theorem 4.1
directly implies the following.

Corollary 6.1.
Ja(t+ 1, A)− Ja(t, A) ≤ Jη .

The corollary above sets a bound of Jη for the increase in Fisher information per round. This
bound holds with respect to any level of noise in active communication, and in particular, when
active communication is noiseless. Note moreover, this bound of Jη on the information increase
holds with respect to any algorithm A. In analogy to Channel Capacity as defined by Shannon [67]
we term this upper bound as the Fisher Channel Capacity.

6.2 Bounds on the convergences time

The restriction on information flow as given by the Fisher Channel Capacity can be translated into
lower bounds for convergence time of algorithm A, i.e. the time in takes the population of agents to
enter a certain tight window ε around θ∗. More formally, recall that the variance of an agent a is
defined as

vara(t, A) = mean((xa(t, A)− θ∗)2),
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where the mean is taken over all possible random initial locations and communication noises, as well
as, possibly, over all random choices made by the agents themselves. The variance of the population
is defined as the average of these variances, that is,

var(t, A) = mean(vara(t, A)),

where the mean is taken over all agents a.

Given small ε > 0, the convergence time T (ε) is defined as the first time it takes until the
variance of the population around θ∗ is less than ε2. (Note that T (ε) is a random variable.)

Convergence thus requires that the estimator applied by the typical agent has variance that is
on the order of magnitude of ε2. In particular, by the Markov inequality, at least half the number
of agents must have variance less than 2ε2. By Lemma 3.3, such agent a must have large Fisher
information, specifically,

Ja(t, A) ≥ 1/2ε2.

To get some intuition on the convergence time, assume without loss of generality that the number
of agents is odd, and let J0 denote the median initial relative Fisher information of agents (this
is the median over the Fisher information JΦa−θ = Ja(0)), and assume J0 � 1/ε2. By definition,
more than a half of the population has initial Fisher information at most J0. By the Pigeon-hole
principle, at least one agent a has initial Fisher information less than J0 and at time t, its Fisher
information is at least 1/2ε2. Corollary 6.1 thus implies a bound for the convergence time T (ε).

Lemma 6.2. Assume that J0 � 1/ε2 for some small ε > 0, then the following bound holds.

T (ε) ≤
1

2ε2 − J0

Jη
≈ 1
ε2Jη

.

Let Jmax
t denote the maximal Fisher information over the agents at time t. In the case where

Jmax
0 � Jη, one can obtain a tighter upper bound for T (ε). Indeed, Theorem 4.1 implies that the

maximum Fisher information grows by at most a factor odorf 2 in each round, that is, any time t,
Jmax
t+1 ≤ 2Jmax

t . This implies that the time it takes until Jmax
t reaches Jη is at most log2(Jη/Jmax

0 ).
From this time, the bound implied by Lemma 6.2 holds. Hence, we obtain the following.

Lemma 6.3. Assume that Jmax
0 � Jη � 1/ε2. Then the following bound holds.

T (ε) ≤ log2 (Jη/Jmax
0 ) +

1
2ε2 − Jη
Jη

≈ log2 (Jη/Jmax
0 ) + 1

ε2Jη
.

Finally, we consider the case of exclusively-pairwise patterns, in which the pattern of meeting
is such that an agent is never (or rarely) viewed by more than a single agent in each round. In
exclusively-pairwise patterns, Theorem 4.1 implies that the average Fisher information, denoted
Jmean
t , does not grow by more than a factor of two in each round. Similarly to Lemma 6.3, we

obtain the following.

Lemma 6.4. Consider an exclusively-pairwise pattern of meeting. Assume that J̃0 � Jη � 1/ε2.
Then the following bound holds.

T (ε) ≤ log2
(
Jη/J

mean
0

)
+

1
2ε2 − Jη
Jη

≈ log2
(
Jη/J

mean
0

)
+ 1
ε2Jη

.
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7 No active communication

We now compare the Conf algorithm to even simpler algorithms that rely only on passive commu-
nication. We show that efficient “passive” algorithms exist in some “uniform” settings or extremely
noisy ones. We then turn our attention to even simpler algorithms, which are based on a fixed
weighted average rule between the location of the observing agent a and the location estimation
of the observed agent b. We restrict our analysis to meeting patterns in which each agent views
another agent in each round.

7.1 Passive algorithms

When noise is not extremely high, “passive” algorithms seem to become less efficient as the conditions
become increasingly non-uniform. To get some intuition, consider the extreme case, in which all
agents but one agent a, are initially drawn from the same distribution Φ whose variance is extremely
large (i.e., these agents are distributed almost uniformly in some large domain centered at θ∗).
Agent a, on the other hand, is drawn from an extremely concentrated distribution around θ∗, making
it “extremely knowledgeable”. Further assume a uniform pattern of meeting, where in each round,
each agent views another agent, chosen uniformly at random among the population. In such a
case, active communication could allow a standard rumor spreading yielding very fast convergence,
roughly within logn rounds, where n is the number of agents. On the other hand, it seems difficult
to come up with a “passive” algorithm that competes well with Conf, as agents should somehow
distinguish the knowledgeable agent a from the rest. For example, clearly, had the passive algorithm
been executed with only the unknowledgeable agents (without agent a), it would not have converged
fast. The fact that the algorithm must be unbiased and of low variance, would evidently cause, that
in such a case, some of the agents would be anyways at the vicinity of θ∗. Now, the agents running
in the first scenario, should somehow distinguish the knowledgeable agent a from these other nearby
agents that appear similar, in the second scenario. However, this is most likely impossible since
agents are anonymous and active communication is not allowed

7.2 Fixed linear combination of locations

We now consider algorithms in which the update rule following an interaction is a simple linear
combination of the location of the viewing agent and the estimated location of the viewed agent.
More precisely, when agent a views agent b at time t is shifts its location such that:

xa(t+ 1) = xa(t) + c · d̃ab = (1− c) · xa(t) + c · (xb(t) + η), (8)

for some constant 0 < c < 1 (note that in algorithm Conf, c is not constant and is set according to
the active message and a’s current confidence). Informally, we find that such algorithms compare
well with Conf under circumstances which are both very uniform and non-noisy. However, for large
values of noise or if initial distributions significantly vary, the performances can be far from optimal.
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7.2.1 Speed vs. accuracy tradeoff in uniform initial conditions

We focus first on initial conditions in which all agents are picked from distributions around the
target θ∗ which all have the same variance var(0)� vη = var(N(η)). In this case, at a given time t,
the variances of all agents are the same, and we term this value by var(t). According to Equation 8,
this variance satisfies the following recursion rule:

var(t+ 1) = (1− 2c+ 2c2) · var(t) + c2 · vη .

The solution to this difference equation is:

var(t) =
(

var(0)− c · vη
2(1− c)

)
(1− 2c+ 2c2)t + c · vη

2(1− c) .

The steady state variance of this equation scales as c/(1− c) and improves as c is smaller. However,
for small values of c, the time to reduce the variance by half scales as

t 1
2

= 1
log 1

1−2c+c2
,

which diverges for small values of c. Linear combination algorithms therefore exhibit a convergence
time vs. accuracy tradeoff.

7.2.2 The simple average algorithm

We start with the simplest, most natural, algorithm in which agents simply average their location
with the estimated location of the agent they interact with, this is the case c = 1

2 . This algorithm
converges within time T ≥ log(var(0)/vη) to the steady state:

var(∞) = vη
2 .

In comparison with algorithm Conf whose variance around θ∗ reaches arbitrary small values (see
Lemma 5.6), the variance of this simple average algorithm never goes below vη/2. On the other
hand, in the limit in which population variances are well above vη, the rules of Conf reduce to this
simple average algorithm. Therefore, for very small variance values of the noise, the performance of
this simple average algorithm compares with that of Conf in terms of both convergence rate and
steady state variance.

7.2.3 Obtaining lower variance at the price of long convergence times

At steady state the Fisher information passing through the channel is 2/3 of the maximal capacity.
The simple average algorithm, obviously, takes no advantage of this information since, at steady
state, the Fisher information of the agents remains fixed. To lift this restriction we can choose:

c =
1

ε2+vη
1
ε2 + 1

ε2+vη
.
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Focusing again on uniform meeting pattern and taking ε such that ε2 � vη, the variance at time
t+ 1 can be approximated as:

var(t+ 1) =
(

1− 2ε2

vη

)
var(t) + ε4vη.

It’s easy to see that the steady state of this equation is var(∞) = ε2 which we can choose to be
arbitrarily small. This, however, comes at the cost of very long convergence times:

T ≈ log1− 2ε2
vη

(var(0)/ε2) ≈ vη
ε2

log(var(0)/ε2) = vη
ε2

( log(var(0)/vη) + log(vη/ε2) ) .

Where the first term, the time to reach variance vη/2 is much longer than with c = 1/2 (see above),
and the second term the time to reach steady state from vη/2 is much longer, for small ε > 0 than
what is achieved by the Conf algorithm running under similar uniform conditions:

TConf ≈
vη − ε2

η2 .

8 Extensions of Conf to dynamic environments

The main analysis in this paper was for dissemination of information within a constant environment.
This assumption allowed us to perform rigorous analysis and aided in the definition of information
flows within the population. The algorithm Conf, which we have demonstrated to be highly
competitive with an optimal algorithm in stationary environments exhibits weaknesses when the
environment is dynamic. These, can mainly be attributed to the buildup of overconfident populations
that occurs when agents with similar opinions repeatedly interact and enhance each-others confidence.
Once environmental conditions shift this opinion may become wrong but the agents may ignore any
new information since their confident in the wrong opinion is extremely high.

In this section we demonstrate how algorithm Conf may be extended to accommodate for
the case of sudden changes in environmental conditions. These extension require some minimal
additional complexity in the capabilities of a single agents.

8.1 Algorithm 1: Communicating an extra ’updated’ bit

In this extension the agents perform the regular algorithm Conf which is supplemented by storing
and communicating an extra ”updated” bit in their memory. We take this active communication
to be noiseless. The ”updated” bit is typically set to 0 (an ’outdated agent’) and may be set to 1
(’updated agent’) when an agent views the environment, or as described below. The environment is
modeled by including an extra mobile agent who is always considered to be updated, and whose
confidence is constantly high. We assume that interactions with the environment are rare in
comparison to the rumor spread time scale, log(N), where N is the total number of agents. When
an agent becomes updated it changes its update bit to 1 and maintains it at this value for a · log(N)
time steps after which the agent resets this bit to 0 and becomes ’refractory and outdated’ for
b · log(N) extra time steps. Finally, (a+ b) log(N) time steps after it had first become ’updated’ the
agent return to its initial, ’outdated’, state.
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The remaining interaction rules are as follows:

• When outdated agent views another outdated agent, it performs the regular rules as dictated
by Conf.

• When an outdated agent observes an updated agent it sets his own confidence to be 0 and
then performs the regular rules as dictated by Conf. If the observing agent is not refractory
he switches to the updated state.

• When a refractory outdated agent observes an updated agent it performs regular Conf but
does not switch to an updated state.

• When an updated agent observes another updated agent it performs regular Conf.

• An updated agent ignores any interactions with outdated agents.

An example for the performance of this algorithm is given in SI-Figure 1A.

8.2 Algorithm 2: Correcting interactions for correlations

Contrary to the algorithm presented in the previous subsection, which complemented the rules of
Conf by additional rules regarding an extra bit, the algorithm presented in this subsection actually
modifies the Conf location and confidence update rules. This algorithm follows the modifications
to the simple inverse-variance weighting, as suggested by Oruc et al. [68], to deal with interactions
between agents that possess correlated information. Here, the agents take into account the expected
correlations between their locations before an interaction to more accurately update their position
and confidence after the interaction.

The interaction rules that are used are an extension to those of Conf. Specifically, let vη denote
the variance of N(η). Upon receiving cb(t) and d̃ab(t), agent a which view an agent b where the
correlations between their positions is ρ it proceeds as follows:

Algorithm Conf with correlations

• Compute: ĉb(t) = cb(t)/(1 + cb(t) · vη).

• Correct confidences: c′a(t) = ca(t)− ρ
√
ca(t)ĉb(t) , ĉ′b(t) = ĉb(t)− ρ

√
ca(t)ĉb(t)

• Update external state: xa(t+ 1) = xa(t) + d̃ab(t)·ĉ′b(t)
c′a(t)+ĉ′

b
(t) .

• Update confidence: ca(t+ 1) = ca(t)+ĉb(t)−2ρ
√
ca(t)ĉb(t)

1−ρ2 .

We simulated this algorithm on a uniform population. This is since, in a non-uniform population,
the correlation between any two agents may be different and this is difficult to keep track of in
an anonymous population of agents with limited memory as interests here. In the simulation, we
calculated the correlation between the agents one step at a time so that the correct correlations
could be applied to the interaction rules at any time step. We find (see SI-Figure 1B) that before
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the environment changes and although the agents continuously interact they do not become over-
confident. In fact, after a long time in which all agents interacted with each other, the Fisher
information at each agent equals to the initial Fisher information in the entire population. This
provides strong evidence that the algorithm suggested by Oruc et al. [68] actually performs well
within a population setting. Furthermore, the fact that the agents’ confidence stays bounded, even
at long times, allows them to quickly track an environmental shift when it happens (see SI-Figure
1C).

Figure 1: Extensions of Conf to dynamic environments. A. In the ’updated bit’ algorithm, the
agents behave exactly as they would in algorithm Conf except for maintaining and communicating
a single extra bit which signifies that they have recently received new environmental evidence either
directly or indirectly. Agents remain ’updated’ for a time of a · log(N) (N is the number of agents)
and then become refractory for another b · log(N) time steps. The figure shown how this modified
Conf algorithm follows an environmental change (at green arrow), while Conf cannot. Here a = 2,
b = 7 and N = 104, communication noise is present. B. Agents use a modified interaction rule that
takes into account the correlation between them prior to the interaction. While under the Conf
algorithm the confidence of agents is unbounded and explodes (note, that the figure is log scale),
this modified algorithm ensures that their confidence remains bounded. In fact the confidence of
each agent at long time scale exactly equals the initial Fisher information for the whole population
at t = 0 (depicted by the black line). This signifies that the agents despite the communication noise
the this algorithm allows the agents to share all initial information while remaining realistically
confident about their current state. C. The fact that under the modified interaction rule the agents
do not become over confident allows them to track an environmental shift (green arrow). This,
again, stands in contrast to the abilities of the original Conf algorithm. In this case, population
size was taken to be small (N = 100), so that large correlations are created.

9 Heterogeneous populations

In a heterogenic population there is no guarantee that all agents measure distance in exactly the
same way. We tested how algorithm Conf performs in a population in which agents have a different
grasps of distance. SI-Figure 2 shows that the algorithm dominates over an algorithm with no
active communication even when different individuals within the population perceive distances with
multiplicative errors that vary between 1

2 and 2. For even larger biases Conf still performs better
at long but not short time scales.
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Figure 2: Algorithm Conf in heterogenic populations. The convergence of Conf on a
population of N = 104 agents that vary in the way they measure distance. To simulate this
population each agent was matched with a factor which multiplies all its distance measurements.
The factors where chosen uniformly at random in a range that varies with line color. For example,
in the population corresponding to b = 4 agents perceive distances to be between 4 times smaller
or 4 times larger than they actually are. Convergence of population with different biases can be
compared to the original Conf algorithm (b = 1) and to a simple average algorithm that does not
communicate confidence and which is unaffected by measurement biases.
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