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Text S1: Effective Stochastic Dynamics 

 

Much attention has been devoted to the question of the stability of synaptic 

structures in terms of dynamical models [1,2]. Here we aim to sketch a justification for our 

simple stochastic model by general dynamical considerations assuming the existence of an 

underlying mechanism that ensures stability. We assume that spatial degrees of freedom 

and interactions among different molecular species can be integrated over time, to describe 

the nonlinear dynamics of synaptic size as a general one-dimensional dynamical system:  

 

 

 

where x is the synaptic size and the function f, generally dependent on x, describes 

effectively all these interactions. This is a deterministic equation, and we shall introduce a 

stochastic component to the equation to account effectively for many degrees of freedom 

that have been integrated out.  

Near a "fixed point" of these dynamics, namely around a stable average synaptic size 

x0, the deterministic derivative f(x) must cross the x-axis with a negative slope:  

 

This can be viewed as the most fundamental form of instantaneous "negative feedback" 

which ensures stability against perturbations. Now we define a discrete-time mapping from 

this dynamical system, which uses the linear approximation in the vicinity of the fixed point: 

 

Treating this dynamical equation as an average of the true dynamics, and introducing a 

random element in its parameters, one obtains for a given time interval a Kesten process. 

The average negativity of the derivative ensures that the random variables are in the regime 

of stability of the Kesten process (this is an approximate argument for small variance). The 

introduction of stochasticity to the equation is not a controlled approximation, but instead a 

heuristic argument reflecting the fact that this process is coupled to a large number of other 

processes whose details we cannot account for. The existence of an underlying fixed point 
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ensures that on average the multiplicative term is smaller than one, whereas the additive 

term is positive.  

We note that in the classic treatment of Statistical Physics, a system with random 

fluctuations and a restoring force is described by the Langevin equation 

 

 

Where x  is a deterministic restoring force and    a random variable [3]. This description 

relies on a separation of timescales between the random fluctuations and the force acting 

on the particle and is justifiable as a description of a particle undergoing Brownian motion. 

The time-series resulting from this dynamic equation is also known as the Ornstein-

Uhlenbeck process, usually defined with a Gaussian distribution for , and the resulting 

steady-state probability distribution is correspondingly Gaussian. This property can be 

generalized, but then the steady-state distribution reflects the distribution of  . Previous 

work has used this model to describe synaptic size dynamics [4]; a logarithmic 

transformation was used to obtain the measured skewed synaptic distribution, and two 

such processes were added to account for two timescales in the measured correlation 

function. While this procedure adequately describes the data it is hard to justify the 

arbitrary logarithmic transformation on biophysical grounds.  

In a more general setting if there is no basis for a timescale separation, it is hard to justify 

the construction of an equation which is partly determinstic and partly stochastic. In this 

case, both terms should be considered as fluctuating, a "multiplicative noise" arises in the 

equation and we arrive naturally at the Kesten process.  

Some intuition as to the emergence of a multiplicative element in the dynamics from actual 

feedback mechanisms can be found from simulations on network with mutliple mechanisms 

of synaptic plasticity [5].  It was found that the effective dynamics of individual synapses 

were stochastic-like in nature and displayed a "rich gets richer" dynamics although the STDP 

rule implemented was additive. Moreover, a direct computation of the effective change in 

individual synapses as a function of current value showed a behavior typical of the Kesten 

process (J. Triesch, private communication). This can be explained by a combination of self-

reinforcing and competitive mechanisms that together caused the network self-organization 

at a statistically stable state. This result provides an explicit example of the abstract steady-

state and fluctuations around it described in this Appendix.  
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Legend to Dataset S1 

This xls file contains the raw fluorescence values measured from individual synapses. Each 

page is marked by the corresponding figure number and rows and columns are titled with 

the relevant variable (e.g. "time", "synapse #", etc.). 


