Supporting Information for:

A Fibril-Like Assembly of Oligomers of a Peptide Derived from β-Amyloid.

Authors: Johnny D. Pham, Ryan K. Spencer, Kevin H. Chen, and James S. Nowick*

Affiliations:

Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025.

E-mail: jsnowick@uci.edu

This PDF file includes:

Materials and Methods

Synthe	esis of macrocyclic β -sheet peptides 3–6 .	S 3
X-ray	data collection, data processing, and refinement of macrocyclic β -sheet	
peptide	e 3 .	S 3
Suppleme Fig. S1.	ental Figures and Tables ¹ H NMR spectra of macrocyclic β-sheet peptides 3–7 at various concentrations at 298 K D ₂ O at 500 MHz	S6

Fig. S2. Downfield shifting of the ¹H NMR α-proton resonances of the 4 tetramer relative to the acyclic control.
Fig. S3. Key NOEs associated with folding and dimerization of macrocyclic β-sheet peptide 3.

Fig. S4. Key NOEs associated with folding and dimerization of macrocyclic β-sheet peptide **4**. S8

Fig. S5. Key NOEs associated with folding and dimerization of macrocyclic β-sheet peptide **5**. S9

Table S1. Magnetic anisotropies of the δ-protons of the δ-linked ornithine turn units of
peptides 3–6 in D2O at 298 KS7

Peptide 3	
HPLC trace and mass spectrum	S10
$1D^{1}H$ NMR spectrum in D ₂ O (500 MHz)	S14
2D TOCSY spectrum in D ₂ O (500 MHz)	S15
2D NOESY spectrum in D ₂ O (500 MHz)	S16
2D DOSY spectrum in D ₂ O (600 MHz)	S17
Peptide 4	
HPLC trace and mass spectrum	S18
2D ¹ H NMR spectrum in D_2O (500 MHz)	S22
2D TOCSY spectrum in D ₂ O (500 MHz)	S23
2D NOESY spectrum in D ₂ O (500 MHz)	S26
2D DOSY spectrum in D ₂ O (600 MHz)	S30
Peptide 5	
HPLC trace and mass spectrum	S31
$1D^{-1}H$ NMR spectrum in D ₂ O (500 MHz)	S35
2D TOCSY spectrum in D ₂ O (500 MHz)	S36
2D NOESY spectrum in D ₂ O (500 MHz)	S39
2D DOSY spectrum in D ₂ O (600 MHz)	S43
Peptide 6	
HPLC trace and mass spectrum	S44
$1D^{1}H$ NMR spectrum in D ₂ O (500 MHz)	S47
2D ROESY spectrum in D ₂ O (500 MHz)	S48
2D DOSY spectrum in D ₂ O (600 MHz)	S49

Materials and Methods:

Peptides **3–6** were prepared and studied as the trifluoroacetate (TFA) salts. ¹H NMR 1D, TOCSY, NOESY, ROESY, and DOSY experiments for peptides **3–6** were carried out as previously described. ¹

Synthesis of macrocyclic β -sheet peptides **3–6**.

Macrocyclic β-sheet peptides **3–6** were synthesized using procedures previously reported for the synthesis of **1** and of other macrocyclic β-sheet peptides.^{2,3,4} Boc-Orn(Fmoc)-OH was used to introduce the δ-linked ornithine turn units. Fmoc-Hao-OH was used to introduce the unnatural amino acid Hao.^{3,5} Standard Fmoc-protected amino acids were used to introduce the other residues: Fmoc-Ala-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Phe-OH, Fmoc-Phe(*p*-iodo)-OH, Fmoc-Ser(OtBu)-OH, Fmoc-Thr(OtBu)-OH, Fmoc-Tyr(OtBu)-OH, and Fmoc-Val-OH.

⁴ Cheng, P.-N.; Liu, C.; Zhao, M.; Eisenberg, D.; Nowick, J. S. *Nat. Chem.* **2012**, *4*, 927–933.

¹ Pham, J. D.; Demeler, B.; Nowick, J. S. J. Am. Chem. Soc. **2014**, 136, 5432–5442.

 ² Pham, J. D.; Chim, N.; Goulding, C. W.; Nowick, J. S. J. Am. Chem. Soc. 2013, 135, 12460–12467.

³ Cheng, P.-N.; Nowick, J. S. J. Org. Chem. **2011**, *76*, 3166–3173.

⁵ Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.; Sun, Y. J. J. Am. Chem. Soc. 2000, 122, 7654–7661.

X-ray diffraction data collection, processing, and structure refinement.

Crystals of macrocyclic β-sheet peptide **3** were flash-frozen in liquid nitrogen prior to data collection. Diffraction data for macrocyclic β-sheet peptide **3** were collected on beamline 7-1 at the Stanford Synchrotron Radiation Lightsource (Stanford, CA) at 1.00 Å wavelength to a resolution 1.75 Å at 100 K. [Data were collected at 1.00 Å wavelength to take advantage of the maximum flux of the beamline and obtain a reasonable anomalous signal from the iodine groups (f'' = 3.3).] Data were collected over 180 degrees with a 0.5 degree oscillation. The data were integrated and scaled with XDS,⁶ and merged with Aimless.⁷ The space group was initially determined to be *C*222₁; after an analysis of the data with Xtriage in the PHENIX software suite,⁸ it became apparent (multivariate *Z* score *L*-test > 3.5) that the data better fit a lower space group with pseudomerohedral twinning.⁹ Data were reprocessed in the *C*2 space group and refined with the appropriate twin law (-*h*, -*k*, *l*).

⁶ Kabsch, W. Acta Crystallogr. Sect. D: Biol. Crystallogr. **2010**, 66, 125–132.

 ⁷ (a) Evans, P. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2006, 62, 72–82. (b) Evans, P. R.;
 Murshudov, G. N. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2013, 69, 1204–1214.

⁸ Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. *Acta Crystallogr. Sect. D: Biol. Crystallogr.* 2010, *66*, 213–221.

⁹ Larsen, N. A.; Heine, A.; de Prada, P.; Redwan, E.-R.; Yeates, T. O.; Landry, D. W.; Wilson,
I. A. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2002, 58, 2055–2059.

Initial positions for the iodine groups were determined using hybrid substructure search (HySS) in the PHENIX software suite.^{8,10} Coordinates for the iodine groups determined by HySS were used with Autosol to generate the initial electron density map. Two macrocyclic β -sheet peptides **3** and two 2-methyl-2,4-pentanediol molecules were found in the asymmetric unit. Iterative rounds of refinement and model building were done with phenix.refine and Coot,¹¹ respectively. Each structure during the iterative model building was refined with riding hydrogens, TLS parameters, anisotropic *B*-factors for 4-iodophenylalanine residues, and with the twin law (-*h*, -*k*, *l*). Statistics for the final refinement of macrocyclic β -sheet peptides **3** were *R*_{work} = 17.94% and *R*_{free} = 21.97%. The crystal structure was deposited to the Protein Data Bank (PDB) with PDB code 4Q8D.

PyMOL was used to generate images from the crystallographic data. A β -strand of three glycine residues (G3) was used to replace Hao in generating a cartoon of the A β_{15-23} hybrid strand, QKLV-Hao-ED. Specifically, the pdb coordinates for the unnatural amino acid Hao were used to generate triglycine segments.

 ¹⁰ Grosse-Kunstleve, R. W.; Adams, P. D. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2003, 59, 1966–1973.

¹¹ Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2010, 66, 486–501.

Figure S1. ¹H NMR spectra of macrocyclic β -sheet peptides at 2.0 mM at 298 K in D₂O at 500 MHz: **3** (tetramer predominates), **4** (tetramer predominates), **5** (tetramer predominates), and **6** (monomer predominates). The ¹H NMR spectrum of linear peptide **7** (1.2 mM at 298 K in D₂O at 500 MHz) is provided for comparison, to show the spectrum of an unstructured QKLVFFAED peptide.¹

Figure S2. Downfield shifting of the ¹H NMR α -proton resonances of the tetramer of macrocyclic β -sheet peptide **4** relative to linear peptide **7**¹. The ¹H NMR spectrum of **4** was recorded at 2.0 mM in D₂O at 500 MHz and 298 K. Assignments of Lys₁₆ vs. Lys₁₆', Glu₂₃ vs. Glu₂₃', and Gln₁₅ vs. Gln₁₅' are arbitrary.

Table S1. Magnetic Anisotropies of the δ-Protons of the δ-Linked Ornithine Turn U	nits of
Peptides 3–6 at 2.0 mM in D ₂ O at 298 K and 500 MHz	

		-	
	δOrn_1^c	$^{\delta}Orn_{2}^{c}$	
peptide	$\Delta\delta$ (ppm)	$\Delta\delta$ (ppm)	folding
3 ^a	0.63	0.69	folded tetramer
4^{a}	0.60	0.69	folded tetramer
5 ^a	0.62	0.70	folded tetramer
6 ^b	0.46	0.34	partially folded monomer

^aOligomer at 2.0 mM. ^b Monomer at 2.0 mM. ^cAssignment of ^bOrn₁ vs. ^bOrn₂ is arbitrary.

Figure S3. Selected expansions of the NOESY spectrum of macrocyclic β -sheet peptide **3** at 2.0 mM in D₂O at 500 MHz and 298 K. Key intermolecular interstrand NOEs associated with dimerization are highlighted in red; key intramolecular interstrand NOEs associated with folding are highlighted in blue.

Figure S4. Selected expansions of the NOESY spectrum of macrocyclic β -sheet peptide **4** at 2.0 mM in D₂O at 500 MHz and 298 K. Key intermolecular interstrand NOEs associated with dimerization are highlighted in red; key intramolecular interstrand NOEs associated with folding are highlighted in blue.

Figure S5. Selected expansions of the NOESY spectrum of macrocyclic β -sheet peptide 5 at 2.0 mM in D₂O at 500 MHz and at 298 K and 312 K. Key intermolecular interstrand NOEs associated with dimerization are highlighted in red; key intramolecular interstrand NOEs associated with folding are highlighted in blue.

macrocyclic β -sheet peptide **3** (as the TFA salt)

molecular weight calculated for $C_{103}H_{155}IN_{26}O_{31} \cdot 4CF_3CO_2H$ (TFA salt of **3**): 2836.49 molecular weight calculated for $C_{103}H_{155}IN_{26}O_{31}$ (free base of **3**): 2380.39 exact mass calculated for $C_{103}H_{155}IN_{26}O_{31}$ (free base of **3**): 2379.04

Analytical RP-HPLC of macrocyclic β-sheet 3

1D ¹H NMR spectrum of macrocyclic β -sheet **3** 2 mM in D₂O, 500 MHz, 298 K tetramer predominates

2D TOCSY spectrum of macrocyclic β -sheet **3** 2 mM in D₂O, 500 MHz, 298 K 150-ms spin-locking mixing time tetramer predominates

2D NOESY spectrum of macrocyclic β -sheet **3** 2 mM in D₂O, 500 MHz, 298 K 200-ms spin-locking mixing time tetramer predominates

For peptide **3** tetramer, log DC (m²/s) = -9.99(4), DC = $10^{-9.994}$ m²/s = 10.1 x 10^{-11} m²/s = 10.1 x 10^{-7} cm²/s

^a Longsworth, L. G. J. Phys. Chem. 1960, 64, 1914–1917.

molecular weight calculated for $C_{103}H_{156}N_{26}O_{31} \cdot 4CF_3CO_2H$ (TFA salt of 4): 2710.59 molecular weight calculated for $C_{103}H_{156}N_{26}O_{31}$ (free base of 4): 2254.50 exact mass calculated for $C_{103}H_{156}N_{26}O_{31}$ (free base of 4): 2253.14

Analytical RP-HPLC of macrocyclic β-peptide 4

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	0
1	8.318	VV	0.2395	6692	.11328	356.	28714	95.1129
2	8.806	VV	0.1819	343	.85294	23.	96618	4.8871

1D ¹H NMR spectrum of macrocyclic β-sheet 4 2 mM in D_2O , 500 MHz, 298 K

mqq Integral

2D TOCSY spectrum of macrocyclic β -sheet **4** 2 mM in D₂O, 500 MHz, 298 K, 150-ms spin-locking mixing time tetramer predominates

2D TOCSY spectrum of macrocyclic $\beta\text{-sheet}\; \boldsymbol{4}$ 2 mM in D₂O, 500 MHz, 298 K, 150-ms spin-locking mixing time tetramer predominates Assignments of Lys_{16} vs. Lys_{16} , Glu_{23} vs. Glu_{23} , Gln_{15} vs. Gln_{15} , and Orn_1 vs Orn_2 are arbitrary

2D NOESY spectrum of macrocyclic β -sheet 4 2 mM in D_2O , 500 MHz, 298 K 200-ms spin-locking mixing time H_3N `СН₂ СН₂ СН₂) O Ĥ tetramer predominates H₂Č H₂Ċ Ř₁₆ E₂₂ Ū₁₈ Ē₂₂ Ķ₁₆ Ē₂₀ Ö Ö Ō ō ö ö Ô V_18' Ċ Assignments of Lys₁₆ vs. Lys_{16'}, Glu₂₃ vs. Glu_{23'}, Glu₁₅ vs. Gln₁₅, and Orn₁ vs Orn₂ are arbitrary H₂Ċ NH₃ N **D**₂₃ . Q_{15'} ö ́О́ Ме ۷... V., c A₂₁¹⁸α Orn₂α Orn,α $V_{18} \alpha \\ L_{17} \alpha$ Ε₂₂α D₂₃α Q.... HaoMe Q150 Orn_8R $D_{23}\alpha$ E..a $Orn_1^2 \delta R$ $D_{23}\beta_1$ Orn₂δS Orn₁δS HaoH, HaoH₄ НаоН. ۲₁₈₇ ۲₁₈₇ ۵ ° 94 $\mathsf{F}_{21\beta}^{\mathsf{A}_{21}\beta}$ ۲, ۲, ۲ هر ۲⁹, 8 ۳, ۳ _____β,δ Κ_{i6}β,δ Orn,β, E - 2 $\begin{array}{c} A_{18}^{2} \\ B_{18}^{2} \\ B_{18}^{2}$ 200 0 Т К 16⁸ 10²⁰β ø K D₂₃β 0 Om₂ðR Om₁ðR D₂₂β, A Om₂ðS Om₁ðS 63 -- 4 Orn_2^{α} Orn_4^{α} Γ₁₂α d Ε₂₂α 0 $\mathsf{A}_{2_{1}\alpha}^{\mathsf{V}_{18'}\alpha}$ $\mathsf{D}^{22}_{23, \mathfrak{A}}$ F₁₉α $\mathsf{P}^{23}_{20}\alpha$ $\mathsf{F}^{20}_{17}\alpha$, 6 н С С П С С < $\langle \rangle$ F_20 Ε²⁰ε Ε²⁰ζ HaoH 0 8 HaoH E σ HaoH, TTT 111 8 2 ppm 6 4

2D NOESY spectrum of macrocyclic β -sheet **4** 2 mM in D₂O, 500 MHz, 298 K, 200-ms spin-locking mixing time tetramer predominates

Assignments of Lys₁₆ vs. Lys₁₆, Glu_{23} vs. Glu_{23} , Gln_{15} vs. Gln_{15} , and Orn_1 vs Orn_2 are arbitrary

Z

2D NOESY spectrum of macrocyclic β -sheet **4** 2 mM in D₂O, 500 MHz, 298 K, 200-ms spin-locking mixing time tetramer predominates

2D NOESY spectrum of macrocyclic β -sheet **4** 2 mM in D₂O, 500 MHz, 298 K, 200-ms spin-locking mixing time tetramer predominates

 $DC_{HOD} = 19.0 \text{ x } 10^{-10} \text{ m}^2/\text{s}^{a}$ log $DC_{HOD} = -8.721$

For peptide **4** tetramer, log DC (m²/s) = -9.98(8), DC = $10^{-9.988}$ m²/s = 10.3 x 10^{-11} m²/s = 10.3 x 10^{-7} cm²/s

^a Longsworth, L. G. J. Phys. Chem. 1960, 64, 1914–1917.

macrocyclic β -sheet peptide **5** (as the TFA salt)

molecular weight calculated for $C_{102}H_{154}N_{26}O_{33}$ • $4CF_3CO_2H$ (TFA salt of **5**): 2728.56 molecular weight calculated for $C_{102}H_{154}N_{26}O_{33}$ (free base of **5**): 2272.47 exact mass calculated for $C_{102}H_{154}N_{26}O_{33}$ (free base of **5**): 2271.12

Analytical RP-HPLC of macrocyclic β -peptide 5

Signal 1: VWD1 A, Wavelength=254 nm

Peak 1	RetTime	Туре	Width	Ar	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	00
		-						
1	7.938	VV	0.1715	1.174	36e4	906.	91034	100.0000
Total	s :			1.174	36e4	906.	91034	

1D ¹H NMR spectrum of macrocyclic β -sheet 5 2 mM in D_2O , 500 MHz, 298 K

2D TOCSY spectrum of macrocyclic β -sheet **5** 2 mM in D₂O, 500 MHz, 298 K 150-ms spin-locking mixing time

tetramer predominates

2D TOCSY spectrum of macrocyclic $\beta\text{-sheet}\ \textbf{5}$ 2 mM in D_2O , 500 MHz, 298 K 150-ms spin-locking mixing time

tetramer predominates

2D NOESY spectrum of macrocyclic $\beta\text{-sheet}$ 5 2 mM in D_2O, 500 MHz, 298 K

200-ms spin-locking mixing time

tetramer predominates

2D NOESY spectrum of macrocyclic β -sheet **5** 2 mM in D₂O, 500 MHz, 298 K 200-ms spin-locking mixing time

tetramer predominates

2D NOESY spectrum of macrocyclic β -sheet **5** 2 mM in D₂O, 500 MHz, 298 K 200-ms spin-locking mixing time

tetramer predominates

 $\begin{array}{l} DC_{HOD} = 19.0 \ x \ 10^{-10} \ m^2 / s^{\ a} \\ log \ DC_{HOD} = \textbf{-}8.721 \end{array}$

For peptide 5 tetramer, log DC (m²/s) = -9.97(0), DC = $10^{-9.970}$ m²/s = 10.7×10^{-11} m²/s = 10.7×10^{-7} cm²/s

^a Longsworth, L. G. J. Phys. Chem. 1960, 64, 1914–1917.

macrocyclic β -sheet peptide **6** (as the TFA salt)

molecular weight calculated for $C_{103}H_{156}N_{26}O_{33} \cdot 4CF_3CO_2H$ (TFA salt of **6**): 2742.59 molecular weight calculated for $C_{103}H_{156}N_{26}O_{33}$ (free base of **6**): 2286.50 exact mass calculated for $C_{103}H_{156}N_{26}O_{33}$ (free base of **6**): 2285.13 Analytical RP-HPLC of macrocyclic β -sheet **6**

Signal 1:VWD1 A, Wavelength=214 nm

Peak	RT	Туре		Width	Area	Height	Area %
#	[min]			[min]	mAU*s	[mAU]	
		-	- -				
1	6.850	6 VV		0.108	23348.	021 100.000	100.000

1D ¹H NMR spectrum of macrocyclic β -sheet **6** 2 mM in D₂O, 500 MHz, 298 K monomer predominates

2D ROESY spectrum of macrocyclic β -sheet **6** 2 mM in D₂O, 500 MHz, 298 K 150-ms spin-lock mixing time monomer predominates

 $\frac{DC_{HOD}}{\log DC_{HOD}} = 19.0 \text{ x } 10^{-10} \text{ m}^{2}/\text{s}^{a}$ log DC_{HOD} = -8.721

For peptide **6** tetramer, log DC (m²/s) = -9.76(0), DC = $10^{-9.760}$ m²/s = 17.4 x 10^{-11} m²/s = 17.4 x 10^{-7} cm²/s

^a Longsworth, L. G. J. Phys. Chem. 1960, 64, 1914–1917.