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Materials and Methods

SpyCas9 expression and purification

Streptococcus pyogenes Cas9 (SpyCas9) was cloned into a custom pET-based expression vector
encoding an N-terminal Hiss-tag followed by Maltose-Binding Protein (MBP) and a TEV
protease cleavage site (8). Point mutations were introduced into SpyCas9 using site-directed

mutagenesis and verified by DNA sequencing.

For crystallization, wild-type (WT) and K848C mutant SpyCas9 proteins were expressed
and purified essentially as described (8). The protein was purified by a combination of Ni-NTA
affinity, cation exchange (SP sepharose) and gel filtration (Superdex 200) chromatography steps.
The final gel filtration step was carried out in elution buffer containing 20 mM HEPES-KOH pH
7.5, 250 mM KCl and 1 mM TCEP. The protein was concentrated to 4-6 mg ml"' and flash
frozen in liquid N,. Selenomethionine (SeMet)-substituted SpyCas9 was expressed as described
(62) and purified as for native SpyCas9, except that all chromatographic solutions were

supplemented with 5 mM TCEP.

For crosslinking and biochemical assays, WT and mutant SpyCas9 proteins were
expressed as His;o-MBP-TEV fusions and purified as described (8), with the following
modifications: All buffers contained 20 mM Tris-Cl pH 7.5, 5% glycerol, and 1 mM TCEP. The
NaCl concentration was maintained at 500 mM during Ni-NTA chromatography and overnight
dialysis with TEV protease. In order to remove TEV protease, His;o-MBP, and any uncleaved
His;o-MBP-SpyCas9, the TEV-treated protein sample was run over Ni-NTA agarose resin again.
SpyCas9 was dialyzed into Buffer A (20 mM Tris-CI pH 7.5, 125 mM KCI, 5% glycerol, 1 mM
TCEP) for 3 h at 4°C, and then applied onto a 5 ml HiTrap SP HP sepharose column (GE
Healthcare). After washing with three column volumes of Buffer A, SpyCas9 was eluted using a
linear gradient from 0-100% Buffer B (20 mM Tris-Cl pH 7.5, 1 M KCI, 5% glycerol, | mM
TCEP) over 20 column volumes. The protein was further purified by gel filtration
chromatography on a Superdex 200 16/60 column (GE Healthcare) in SpyCas9 Storage Buffer
(20 mM Tris-Cl pH 7.5, 200 mM KCl, 5% glycerol, 1 mM TCEP).



SpyCas9 crystallization and structure determination

SpyCas9 crystals were grown using the hanging drop vapor diffusion method at 20 °C by mixing
equal volumes (1.5 pl + 1.5 ul) of protein solution and crystallization buffer (0.1 M Tris-Cl pH
8.5, 0.2-0.3 M Li,SO4 and 14-15% (w/v) PEG 3350). Crystal nucleation and growth was
gradually improved using iterative microseeding. For diffraction experiments, the crystals were
cryoprotected in situ by stepwise exchange into a solution containing 0.1 M Tris-Cl pH 8.5, 0.1
M Li,SO4, 35% (w/v) PEG 3350, and 10% ethylene glycol in five steps executed at 5 min
intervals. In each step, 0.5 ul of mother liquor was removed from the crystal drop and replaced
with 0.5 pl cryoprotectant. After the final cryoprotectant addition, the crystals were incubated for
an additional 5 min, transferred to a drop containing 100% cryoprotectant for 30 s, and then flash
cooled in liquid N,. Diffraction data were measured at beamlines 8.2.1 and 8.2.2 of the
Advanced Light Source (Lawrence Berkeley National Laboratory), and beamlines PXI and PXIII
of the Swiss Light Source (Paul Scherer Institute) and processed using XDS (49). Data collection
statistics are shown in Table 1. The crystals belonged to space group P2,2,2 and contained two
molecules of SpyCas9 in the asymmetric unit related by pseudotranslational, non-
crystallographic symmetry. High-resolution native data to 2.62 A resolution were measured from
an unusually large crystal cryoprotected in the presence of | mM MgCl,. A complete native data
set was obtained by collecting four datasets (40° rotation per dataset) from different exposed

parts of the crystal.

Phasing was performed as follows. A 4.2 A resolution single-wavelength anomalous
diffraction (SAD) dataset was measured at the selenium peak wavelength using a SeMet-
substituted SpyCas9 crystal. However, due to small crystal size and low resolution, the
anomalous signal in this dataset was too weak to locate the selenium sites. Additional phases
were therefore obtained from SpyCas9 crystals soaked in sodium tungstate. The crystals were
soaked by stepwise exchange of the lithium sulfate containing mother liquor with 0.1 M Tris-Cl
pH 8.5, 0.1 M Na;WOys, 15% (w/v) PEG 3350, and then cryoprotected by stepwise exchange (as
described above) of the soak solution with cryoprotectant solution supplemented with 10 mM
Na,WO,. Using these crystals, a highly redundant SAD 3.9 A dataset was measured at the
tungsten L-III absorption edge (1.2149 A), and 16 tungstate sites were located using SHELXD
(63). Further phase information came from peak-wavelength SAD datasets obtained from a

crystal of SpyCas9 K848C mutant soaked in 1 mM thimerosal for 6 hr prior to cryoprotection



(thimerosal soak), a WT SpyCas9 crystal soaked with 10 mM CoCl, during the cryoprotection
procedure (Co soak), and a WT SpyCas9 crystal grown in the presence of 1 mM Er(IlI)-acetate.
Refinement of the substructures and phase calculations were performed using the MIRAS
procedure in AutoSHARP (50) by combining initial tungstate SAD phases with the additional
SAD data sets (SeMet, Co, Er and thimerosal) and the high-resolution native data. Phases were
improved by density modification and two-fold non-crystallographic symmetry averaging using
the Resolve module of the Phenix suite (51, 64). The resulting electron density maps were of
excellent quality and allowed manual model building in COOT (52, 65). Selenium positions
aided in assigning the sequence register. The atomic model of SpyCas9 was completed by
iterative model building in COOT and refinement using Phenix.refine (53). Refinement and

model statistics are provided in Table 1.

The final atomic model has Ry and Rgee values of 0.253 and 0.286, respectively, and
good stereochemistry, as assessed with MolProbity (66), with 96.6% of the residues in the most
favored regions of the Ramachandran plot and no outliers. The model contains two SpyCas9
molecules that superimpose with an overall rmsd of 1.1 A over 1060 Co atoms, the major
difference being a ~5° hinge-like rotation of the HNH domain. In the atomic model, molecule A
contains residues 4-102, 115-307, 314-447, 503-527, 540-567, 587-672, 677-714, 718-764, 775-
791, 799-859, 862-902, 908-1027, 1036-1102, 1137-1146, 1159-1186, 1192-1242, and 1259-
1363. Molecule B contains residues 4-103, 116-308, 310-447, 502-527, 539-570, 587-673, 676-
713, 718-764, 773-791, 800-859, 862-902, 908-1025, 1036-1102, 1137-1148, 1160-1185, 1188-
1241, and 1256-1363. The remaining residues do not appear ordered in electron density maps
and could not be built. In the manuscript, the discussion of the SpyCas9 structure is based on

molecule B, which is better ordered.

An additional dataset (at 3.1 A resolution) was measured using a SpyCas9 crystal soaked
in 20 mM MnCl, during the cryoprotection procedure. F,-F. difference maps calculated using
the high-resolution model revealed two Mn?" ions bound in the RuvC domain active site (fig. S3)
and 4 additional Mn®" ions bound to each of the two SpyCas9 molecules. The HNH domain
active site remained poorly ordered in this structure, and no Mn”" binding was observed. The

model was refined to an Ry and Rgee 0f 0.252 and 0.278, respectively.



Endonuclease cleavage assays with SpyCas9

A synthetic 42-nt crRNA targeting a protospacer from the bacteriophage A genome was
purchased from Integrated DNA Technologies (IDT) and purified via 10% denaturing PAGE.
tractrRNA was in vitro transcribed from a synthetic DNA template (IDT) using T7 RNA
polymerase and corresponds to nucleotides 15-87 as described previously (8). crRNA:tracrRNA
duplexes (10 uM) were prepared by mixing equimolar amounts of crRNA and tracrRNA in
Hybridization Buffer (20 mM Tris-Cl pH 7.5, 100 mM KCI, 5 mM MgCl,), heating at 95 °C for
30 sec, and slow-cooling on the benchtop. SpyCas9:RNA complexes were reconstituted by
mixing SpyCas9 with a 2X molar excess of the crRNA:tracrRNA duplex in Reconstitution
Buffer (20 mM Tris-Cl pH 7.5, 100 mM KCI, 5 mM MgCl,, 1 mM DTT) and incubating at 37°C

for 10 minutes.

A 55 base-pair (bp) DNA target derived from the bacteriophage A genome was prepared
by mixing equimolar amounts of individual synthetic oligonucleotides (IDT) in Hybridization
Buffer supplemented with 5% glycerol, heating for 1-2 minutes, and slow-cooling on the
benchtop. Duplexes were separated from single-stranded DNA by 6% native PAGE conducted at
4°C, with 5 mM MgCl, added to the gel and the running buffer. The DNA was excised, eluted
into 10 mM Tris-Cl, pH 8 at 4°C overnight, ethanol precipitated, and resuspended in
Hybridization Buffer. Br-dU containing ssDNAs used in analytical crosslinking reactions were
radiolabeled and hybridized with a 5X molar excess of the unlabeled complementary strand.
Cleavage reactions were performed at room temperature in Reaction Buffer (20 mM Tris-Cl pH
7.5, 100 mM KCI, 5 mM MgCl,, 5% glycerol, 1 mM DTT) using 1 nM radiolabeled dsDNA
substrates and 1 nM or 10 nM Cas9:RNA. Aliquots (10 pul) were removed at various time points
and quenched by mixing with an equal volume of formamide gel loading buffer supplemented
with 50 mM EDTA. Cleavage products were resolved by 10% denaturing PAGE and visualized
by phosphorimaging (GE Healthcare). The sequences of DNA and RNA oligonucleotides used in
this study are listed in Supplementary Table S2.

Preparation of crosslinked peptide-DNA heteroconjugates for mass spectrometry

200 pmol of catalytically inactive (D10A/H840A) Cas9 was reconstituted with crRNA:tracrRNA

and incubated with a 10X molar excess of Br-dU containing dsDNA substrate for 30 min at room



temperature in Reaction Buffer. Reactions were transferred into the lid of open PCR tubes and
irradiated with UV-light (308 nm) for 30 min at room temperature. Crosslinked samples were
denatured with 6 M urea for 1 h at 65°C, diluted to 0.5 M urea with 25 mM ammonium
bicarbonate, and digested with 1 ng trypsin overnight at room temperature. Samples were
concentrated to a final volume of 50 pL and desalted with Illustra MicroSpin G-25 Columns (GE
Healthcare). Samples were then treated with 1,000 Units of Nuclease S1 (Sigma Aldrich) for 1 h
at 37 °C in 30 mM ammonium acetate pH 5.7, 10 mM CaCl, and 0.1 mM ZnCl, in a total
volume of 60 pL. In order to remove remaining phosphate groups at the crosslink site, 7 uL of
10X Antarctic Phosphatase buffer and 5 Units of Antarctic Phosphatase (New England BioLabs)

were added to the reactions, and samples were incubated for an additional hour at 37 °C.

Liquid chromatography-tandem mass spectrometry (LS-MS/MS)

Tryptic digests of crosslinked proteins were analyzed using a Dionex UltiMate3000 RSLCnano
liquid chromatograph that was connected in-line with an LTQ Orbitrap XL mass spectrometer
equipped with a nanoelectrospray ionization source (nanoESI; Thermo Fisher Scientific). The
LC was equipped with a C18 analytical column (Acclaim® PepMap RSLC, 150 mm length X
0.075 mm inner diameter, 2 um particles, 100 A pores, Thermo) and a 1 pL sample loop.
Solvent A was 99.9% water/0.1% formic acid and solvent B was 99.9% acetonitrile/0.1% formic
acid (v/v). Samples were placed in polypropylene autosampler vials with septa caps (Wheaton,)
and loaded into the autosampler compartment (maintained at 4 °C) prior to analysis. The elution
program consisted of isocratic flow at 5% B for 4 min, a linear gradient to 35% B over 98 min,
isocratic flow at 95% B for 6 min, and isocratic flow at 5% B for 12 min, at a flow rate of 300 nL
min”. The column exit was connected to the nanoESI emitter in the ion source of the mass
spectrometer using polyimide-coated, fused-silica tubing (20 um inner diameter x 280 um outer

diameter, Thermo).

Full-scan mass spectra were acquired in the positive ion mode over the range m/z = 350
to 1500 using the Orbitrap mass analyzer, in profile format, with a mass resolution setting of
60,000 (at m/z = 400, measured at full width at half-maximum peak height). Under these
conditions, isotopic distributions of singly and multiply charged peptide ions were resolved in
the full-scan mass spectra. Thus, a precursor ion’s mass and charge were determined

independently, i.e. the ion charge was determined from the reciprocal of the spacing between



adjacent isotope peaks in the m/z spectrum. In the data-dependent mode, the six most intense
ions exceeding an intensity threshold of 30,000 counts were selected from each full-scan mass
spectrum for tandem mass spectrometry (MS/MS) analysis using collision-induced dissociation
(CID). MS/MS spectra were acquired using the linear ion trap, in centroid format, with the
following parameters: isolation width 3 m/z units, normalized collision energy 28%, default
charge state 2+, activation Q 0.25, and activation time 30 ms. Real-time charge state screening
was enabled to exclude singly charged ions and unassigned charge states from MS/MS analysis.
To avoid the occurrence of redundant MS/MS measurements, real-time dynamic exclusion was
enabled to preclude re-selection of previously analyzed precursor ions, with the following
parameters: repeat count 2, repeat duration 10 s, exclusion list size 500, exclusion duration 60 s,
and exclusion mass width 20 ppm (relative to mass). Data were analyzed using Xcalibur (version
2.0.7 SP1, Thermo) and Proteome Discoverer (version 1.3, Thermo, SEQUEST algorithm)
software. Validation of identified cross-linked peptides was by manual inspection of the MS/MS
spectra, i.e. to verify the occurrence of b- and y-type fragment ions (67) that identify the peptide

sequences.

DNA binding experiments

SpyCas9:crRNA:tractrRNA complexes (containing wild-type SpyCas9 or PAM loop mutants
PWNy75.4772 AAA, DWDi125.11272AAA , and PWN475.477/DWD1 12511272 AAA/AAA) were
reconstituted for 10 min at 37 °C in Reaction Buffer before being incubated with ~1 nM
radiolabeled DNA target for 60 minutes at 37 °C. Reactions were resolved by 5% native PAGE
and visualized by phosphorimaging (GE Healthcare).

AnaCas9 expression and purification

Full-length Actinomyces naeslundii Cas9 (AnaCas9; residues 1-1101) was subcloned into a
custom pET-based expression vector with an N-terminal Hisjo-tag followed by Maltose-Binding
Protein (MBP) and a TEV protease cleavage site. The protein was overexpressed in Escherichia
coli strain Rosetta (DE3) and was purified to homogeneity by immobilized metal ion affinity
chromatography and heparin affinity chromatography. An additional gel filtration
chromatography step (HiLoad 16/60 Superdex200, GE Healthcare) was added to further purify

AnaCas9 and remove trace nucleic acid contaminants prior to crystallization. Purified AnaCas9



protein in gel filtration buffer (50 mM HEPES 7.5, 300 mM KCI, 2 mM TCEP, 5% glycerol)
was snap frozen in liquid nitrogen and stored at -80°C. Selenomethionine—labeled AnaCas9
protein was expressed in Rosetta (DE3) cells grown in M9 minimal medium supplemented with
50 mg ml' L-SeMet (Sigma) and specific amino acids to inhibit endogenous methionine
synthesis. The SeMet-substituted protein was then purified using the same procedure as for the

native AnaCas9 protein.

AnaCas9 crystallization and structure determination

Crystals of native and SeMet-substituted AnaCas9 were grown by the hanging drop vapor
diffusion method at 20 °C. Aliquots (2.5 pl) of 4.5 mg ml"' native AnaCas9 protein in 50 mM
HEPES 7.5, 300 mM KCI, 2mM TCEP, 5% glycerol were mixed with 2.5 pl of reservoir
solution containing 10% (w/v) PEG 8000, 0.25 M calcium acetate, 50 mM magnesium acetate
and 5 mM spermidine. Crystals appeared after 1-2 days, and they grew to a maximum size of
0.15 x 0.20 x 0.35 mm over the course of 6 days. SeMet-substituted AnaCas9 crystals were
grown and optimized under the same conditions. For cryogenic data collection, crystals were
transferred into crystallization solutions containing 30% (v/v) glycerol as the cryoprotectant and
then flash-cooled at 100 K. Native and SeMet single-wavelength anomalous diffraction (SAD)
datasets were collected at beamline 8.3.1 of the Advanced Light Source, Lawrence Berkeley
National Laboratory. Data from manganese-soaked AnaCas9 crystals were collected at the 8.2.2
beamline of the Advanced Light Source, Lawrence Berkeley National Laboratory. All diffraction
data were integrated using Mosflm and scaled in SCALA (54, 55).

The AnaCas9 structure was solved using the single anomalous dispersion phasing
method. Using SeMet data between 79.0 and 3.2 A resolution, both SHELXD/HKL2MAP (63)
and HySS in Phenix (68) detected a total of 13 out of 18 possible selenium sites in the
asymmetric unit. Initial phases were calculated using SOLVE followed by solvent flattening with
RESOLVE to produce an electron-density map into which most of the protein residues could be
unambiguously built (51). The initial model automatically generated from Phenix AutoBuild
module was subjected to subsequent iterative rounds of manual building with COOT (52) and
refinement against the 2.2 A native data in Refmac (56) and Phenix (53). The final model
contains one zinc ion, two magnesium ions, AnaCas9 residues 8-49, 65-98, 134-170, and 225-

1101, and has Ry and Rgee values of 0.19 and 0.23, respectively. The N terminus (residues 1—



7), loop regions (residues 50-64), and a portion of the alpha-helical lobe (residues 99-133, 171-
224) are completely disordered. Model validation showed 94% of the residues in the most
favored and 5.8% in the allowed regions of the Ramachandran plot. The structure of Mn*"-bound
AnaCas9 was obtained by molecular replacement using the program Phaser (69), which revealed
two unambiguously refined Mn®" ions present in the RuvC active site. All statistics of the data

processing and structure refinement of AnaCas9 are summarized in Table 2.

Complex reconstitution for negative-stain EM

All samples for EM (10 pl volumes) were prepared in Reaction Buffer at a final Cas9
concentration of 1 pM. Cas9:RNA complexes contained 2 uM crRNA:tracrRNA duplex and
were incubated at 37 °C for 10 minutes before storing on ice until grid preparation.
Cas9:RNA:DNA complexes were prepared by first generating Cas9:RNA as before and then
adding the DNA duplex at 5 uM (unlabeled) or 2 uM (biotin labeled) and incubating an
additional 10 minutes at 37 °C. When present, streptavidin (New England Biolabs) was added
after formation of Cas9:RNA or Cas9:RNA:DNA complexes at a 2X unit excess over the
biotinylated species, according to the manufacturer’s unit definition (~65 ng/uL in the final
reaction volume), followed by an additional 10 minute incubation at 37 °C before storing on ice.
Catalytically inactive Cas9 (D10A/H840A) was used to generate the following samples:
unlabeled Cas9:RNA:DNA, Cas9:RNA:DNA containing biotin modifications on one or both
ends of the duplex, and Cas9:RNA:DNA containing an N-terminal MBP. Wild-type Cas9 was
used to generate apo-Cas9 and all Cas9:RNA complexes.

Negative-stain electron microscopy

We diluted Cas9 complexes for negative-stain EM to a concentration of ~25-60 nM in 20 mM
Tris-HCI1 pH 7.5, 200 mM KCIl, 1 mM DTT, and 5% glycerol immediately before applying the
sample to glow-discharged 400 mesh continuous carbon grids. After adsorption for 1 min, we
stained the samples consecutively with six droplets of 2% (w/v) uranyl acetate solution, gently
blotted off the residual stain, and air-dried the sample in a fume hood. Data were acquired using
a Tecnai F20 Twin transmission electron microscope operated at 120keV at a nominal

magnification of either 80,000X (1.45 A at the specimen level) or 100,000X (1.08 A at the
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specimen level) using low-dose exposures (~20 € A™?) with a randomly set defocus ranging from
—0.5 to —1.3 um. A total of 300400 images of each Cas9 sample were automatically recorded on
a Gatan 4k x 4k CCD camera using the MSI-Raster application within the automated

macromolecular microscopy software LEGINON (57).

Single-particle pre-processing

All image pre-processing and two-dimensional classification was performed in Appion as
described previously (44). The contrast transfer function (CTF) of each micrograph was
estimated, and particles were selected concurrently with data collection using ACE2 (70) and a
template-based particle picker (71), respectively. Micrograph phases were corrected using ACE2
(70), and the negatively-stained Cas9 particles were extracted using a 288 x 288-pixel box size.
The particle stacks were binned by a factor of 2 for processing, and particles were normalized to
remove pixels whose values were above or below 4.5-¢ of the mean pixel value using XMIPP

(72).

Random conical tilt reconstruction

Initial models for reconstructions of both apo-Cas9 and Cas9:RNA:DNA samples were
determined using random conical tilt (RCT) methodology (34). Briefly, tilt-pairs of micrographs
were recorded manually at 0° and 55°, and ab initio models were generated using the RCT
module (73) in Appion (74). Particles were correlated between tilt-pairs using TiltPicker (75),
binned by 2, and extracted from raw micrographs. Reference-free class averages were produced
from untilted particle images by iterative 2D alignment and classification using MSA-MRA in
IMAGIC (76). These class averages served as references for SPIDER (77) reference-based
alignment and classification, and RCT volumes were calculated for each class average using
back-projection in SPIDER based on these angles and shifts. The RCT model from the most
representative class (largest number of particles) was low-pass filtered to 60-A resolution and
used to assign Euler angles to the entire data set of reference-free class averages. The resulting
low-resolution model was again low-pass filtered to 60-A resolution and used as the initial model

for refinement of the three-dimensional structure by iterative projection matching using the
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untilted particle images as previously described (78), with libraries from EMAN2 and SPARX
software packages (58, 59).

Domain mapping and localization of RNA- and DNA-ends

Particle stacks were binned by a factor of 2 and subjected to five rounds of iterative multivariate
statistical analysis (MSA) and multi-reference alignment (MRA) using the IMAGIC (76)
software package, to generate two-dimensional class averages of each complex. The resulting set
of class averages for each species was normalized using ‘proc2d’ in EMAN (79). The EMAN
classification program ‘classesbymra’ was used to match the labeled class average to the best-
matching unlabeled class average based on cross-correlation coefficients. The difference maps
were calculating by subtracting the unlabeled class average from the labeled class averages using
‘proc2d’ in EMAN. This same strategy was used to match the unlabeled class average to the
best-matching reprojection of the corresponding structure. The Euler angles used for creating the
reprojection were applied to the 3D electron density using ‘proc3d,” and the surface

representation visualized in Chimera (80) is shown along with its corresponding reprojection.

3D reconstruction and analysis

Three-dimensional reconstructions were all performed using an iterative projection-matching
refinement with libraries from the EMAN2 and SPARX software packages (58, 59). Refinement
of the RCT starting models began using an angular increment of 25°, progressing down to 4° for
all reconstructions. The resulting model was again low-pass filtered to 60-A resolution and
subjected to iterative projection-matching refinement to obtain the final structure. In an
alternative approach for apo-Cas9 and Cas9:RNA:DNA, we used a low-pass filtered model of
the other structure after initial refinement with untilted particles as an initial model for the above-
mentioned projection matching refinement. This led to EM densities with similar structural
features as the RCT models (Fig. STH, S3I), and the structures converged to the final models
presented in Fig. 1B,C. The resolution was estimated by splitting the particle stack into two
equally sized data sets and calculating the Fourier shell correlation (FSC) between each of the
back-projected volumes. The final reconstructions of Cas9, Cas9:RNA, and Cas9:RNA:DNA

showed structural features to ~19-A, ~21-A, and ~19-A resolution, respectively, based on the 0.5
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Fourier shell correlation criterion. Reprojections of the final three-dimensional reconstruction
showed excellent agreement with the reference-free class averages (Fig. S1G, S3H, S5D) and
displayed a large distribution of Euler angles, despite some preferential orientations of the

particles on the carbon film (Fig. S1E, S3F, S5E).

The final reconstruction was segmented using Segger (81) in Chimera (80) based on
inspection of the similarities between lobes in the apo-Cas9 and Cas9:RNA:DNA
reconstructions. A modeled A-form duplex was manually docked into the map with Chimera,
using information from the labeling experiments and map segmentation, and by accommodating
the substrate within the channel in the EM reconstruction. While the absolute handedness of our
apo-Cas9 reconstruction could be confirmed using the X-ray crystal structure, the relative
handedness of our Cas9:RNA:DNA reconstruction is uncertain. Free hand tests performed on
this sample failed, likely due to the small and/or dynamic nature of the enzyme. The model we
present (Fig. 1C) is based on the alpha-helical domain from the crystal structure having a more
optimal CCC with the larger lobe of this reconstruction (0.83) than this lobe using the
reconstruction of opposite handedness (0.74) (Fig. S4).

Enzymatic footprinting experiments

DNA targets (55 bp) were prepared by 5'-radiolabeling either the target or displaced non-target
strand and then hybridizing it to a 5X molar excess of unlabeled complementary strand. After
incubating catalytically inactive (D10A/H840A) SpyCas9:crRNA:tractrRNA complexes (100
nM) with ~1 nM DNA substrate for 30 minutes at 37 °C in Reaction Buffer, 100 units of
exonuclease IIT (NEB) or 1.2 pg nuclease P1 (Sigma) was added and reactions were incubated an
additional 10 minutes at 37 °C before quenching with formamide gel loading buffer
supplemented with 50 mM EDTA. Reaction products were resolved by 15% denaturing (7M
urea) PAGE and visualized by phosphorimaging (GE Healthcare). Control reactions contained a
non-targeting crRNA that is not complementary to the 55-bp DNA substrate. To define the
sequence register of enzymatic reaction products, a DNA ladder was generated by 5'-
radiolabeling the synthetic target or non-target strand without prior gel purification and
compared to DNA cleavage products using active SpyCas9:RNA or Fokl and Bgll restriction
enzymes (NEB). Note that we observed SpyCas9:RNA cleaving the non-target strand between

nucleotides 4 and 5 from the PAM end, in contrast to the cleavage site observed previously (8).
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Figure S1. Multiple sequence alignment of Cas9 proteins associated with Type 11-A CRISPR loci. Primary
sequences of Cas9 proteins from Streptococcus pyogenes (GI 15675041), Streptococcus thermophilus LMD-9 (GI
11662823), Listeria innocua Clip 11262 (GI 16801805), Streptococcus agalactiae A909 (GI 76788458),
Streptococcus mutans UA159 (GI 24379809), and Enterococcus faecium 1,231,408 (GI 257893735) were aligned
using MAFFT (82). The alignment was generated in ESPript (83) using default settings. Strictly conserved residues
are shown with white letters on red background. Residues with >70% similarity are shown in red and boxed in blue.
The domain organization of SpyCas9 (as in Fig. 1A) and secondary structure are shown above the sequences.
Disordered segments of the polypeptide chain are indicated with dashed lines. RuvC domain catalytic residues are
denoted with red arrowheads. HNH domain active site residues are denoted with blue arrowheads. Tryptophan
residues that crosslinked to nucleotides flanking the PAM are denoted with green arrowheads, and tryptophan-
containing motifs mutated in Fig. 3D are boxed in black.
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nuclease lobe
cleft _ helical lobe

Figure S2. The helical lobe of SpyCas9 features a putative nucleic acid binding cleft. (A) Surface representation
of SpyCas9, colored according to the scheme in Fig. 1A. The surface clefts located on the nuclease and alpha-helical
lobes of the protein are indicated with orange and black dashed lines, respectively. (B) Close-up view of the helical
lobe of SpyCas9. Arg-rich region is depicted in purple. Conserved basic (Arg, Lys) residues lining the cleft are
shown in stick format. Sulfate ions bound to the cleft are shown in ball-and-stick format. Anomalous difference
electron density map (black mesh, contoured at 5.0 ) indicates positions of tungstate ions bound to SpyCas9 in
crystals soaked with 10 mM Na,WO,.
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T thermophilus RuvC
substrate complex (PDB 4LDO0)

superposition:
rmsd 3.3 A
121 Ca atoms

SpyCas9 T. thermophilus RuvC

Figure S3. Structural superposition of SpyCas9 with RuvC resolvase defines the directionality of non-target
DNA strand in DNA-bound SpyCas9 holoenzyme. (A) Structural superposition of SpyCas9 with Thermus
thermophilus RuvC resolvase bound to a Holliday junction substrate (PDB entry 4LDO0) (28). The structures were
superimposed using DALI (84) and are shown in the same orientation. The SpyCas9 RuvC domain is depicted in
blue, and the RuvC resolvase is colored purple. Inset shows the superposition of the two structures. The proteins
superimpose with an rmsd of 3.3 A over 121 Ca atoms. (B) Close-up view of the SpyCas9 nuclease lobe cleft
harbouring the RuvC active site. Six nucleotides of single stranded DNA are modeled in the cleft (stick format,
colored orange) based on the superposition in (A). The position of the scissile phosphate is indicated with a yellow
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arrowhead. (C) Close-up views of the catalytic sites in SpyCas9 (left) and T. thermophilus RuvC (right). Active site
residues are shown in stick format. Pink spheres represent two Mn”" ions bound to the SpyCas9 RuvC domain in
crystals soaked with 20 mM MnCl,. The DNA substrate is show in stick format, and the position of the scissile
phosphate is indicated with a black arrowhead.
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Br-dU, BrdU, Br-dU,

Cas9: — WT d — WT d — WT d
uw: — + + -+ + - + +
Trypsinn — — + — — + - - +

peptide/DNA
heteroconjugate —»

DNA —» | ~ - A a 0=

Cleavage
product

Figure S4. Br-dU containing dsDNA substrates are cleaved by WT SpyCas9 and crosslink to catalytically
inactive dCas9. DNA cleavage assays were performed and analysed by denaturing PAGE to verify that modified
dsDNA substrates do not impair cleavage by WT SpyCas9. Sequences for each substrate (Br-dU;, Br-dU,, and Br-
dUs;) can be found in Supplementary Table S2. Reactions with catalytically inactive (D10A/H840A) dCas9 that can
bind but not cleave DNA showed an additional band of higher molecular weight following UV irradiation and
trypsin digestion, providing evidence for the generation of a peptide-DNA heteroconjugate. Crosslinking reactions
with Br-dU;, Br-dU,, and Br-dU; were analyzed by LC-MS/MS, but only reactions with Br-dU; and Br-dU; dsDNA
substrates resulted in the identification of crosslinked peptides.
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Figure S5. Trp476°” crosslinks to Br-dU; dsDNA target. Tandem mass spectrum (MS/MS) and fragment ion list
resulting from collision-induced dissociation (CID) of the 3+ ion occurring at mass-to-charge ratio m/z = 1377.9835.
This corresponds to the [M + 3H]*" ion of the peptide, FAWMTRKSEETITP(W-dU)NFEEVVDKGASAQSFIER,
which corresponds to residues 462-494 of SpyCas9, in which Trp476°" is crosslinked to deoxyuridine (dU) and
Met468°7 is oxidized (i.e. methionine sulfoxide). (Crosslinking to deoxyuridine and oxidation result in exact,
monoisotopic mass additions of 226.05896 Da and 15.994915 Da, respectively.) Fragment ions b15 through b32 and
y19 through y32 exhibit the deoxyuridine mass addition. Detected b-ions are shown in red and y-ions are shown in
blue.
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Figure S6. Trp1126°" crosslinks to Br-dU; dsDNA target. MS/MS spectrum and fragment ion list resulting from
CID of the 5+ ion occurring at m/z = 830.6273. This orresponds to the [M + 5H]*" ion of the peptide,
KTEVQTGGFSKESILPKRNSDKLIARKKD(W-pdU)DPK, which corresponds to residues 1097-1129 of SpyCas9,
in which Trp1126°% is crosslinked to deoxyuridine monophosphate (pdU) and Lys1121% is carbamylated. (Cross-
linking to deoxyuridine monophosphate and carbamylation result in exact, monoisotopic mass additions of
306.02529 Da and 43.005814 Da, respectively.) Fragment ions b30 through b32 and y4 through y32 exhibit the
deoxyuridine monophosphate mass addition. Detected b-ions are shown in red and y-ions are shown in blue.
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Figure S7. Multiple sequence alignment of Type I1-A and 11-C Cas9 orthologs. The primary sequences of Type
II-C Cas9 orthologs from Actinomyces naeslundii (Ana), Neisseria meningitidis (Nme) and Campylobacter jejuni
(Cje), together with type II-A Cas9 orthologs from Treponema denticola (Tde), Streptococcus thermophilus (Sth),
Streptococcus mutans (Smu), Streptococcus agalactiae (Sag) and Streptococcus pyogenes (Spy) were aligned using
CLUSTALW (85). The alignment was generated in ESPript (83) using default settings. Absolutely conserved
residues are shown as white text on a red background, while similar residues are shown as red text with a white
background. Red triangles indicate conserved residues in the RuvC active site, whereas conserved residues located
in the HNH active site are denoted with a blue triangle. Green triangles indicates the tryptophan residues involved in
PAM binding based on SpyCas9 crosslinking assay. The secondary structure of AnaCas9 derived from the crystal
structure is marked on the top of the sequence alignment, whereas the secondary structure of SpyCas9 is shown at
the bottom. Accession numbers for each Cas9 ortholog are as follows: Ana (Actinomyces naeslundii str. Howell 279,
EJIN84392.1), Nme (Neisseria meningitidis, WP_019742773.1), Cje (Campylobacter jejuni, WP_002876341.1), Tde
(Treponema denticola, WP _002676671.1), Sth (Streptococcus thermophilus LMD-9, YP 820832.1), Smu
(Streptococcus mutans, WP 019803776.1), Sag (Streptococcus agalactiae, WP 001040088.1), and Spy
(Streptococcus pyogenes, YP_282132.1).
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Figure S8. Size exclusion chromatogram of SpyCas9 PWNg75.477/DWD1125.11272 AAA/AAA mutant. All
SpyCas9 mutants in this study showed the same properties during purification as observed for the wild-type

SpyCas9. The retention time during gel filtration chromatography on a Superdex 200 16/60 column (GE Healthcare)
is comparable to WT SpyCas9 (8).
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PAM-Loop Mutations Cleavage Assay
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Figure S9. Quantification of DNA cleavage experiments with PAM-binding mutants. For cleavage

experiments, 1 nM radiolabeled 55-bp dsDNA substrate was incubated with equimolar Cas9:RNA variants
(wildtype, PWNy75.4772> AAA and/or DWDy 2511072 AAA/AAA) at room temperature. The reactions were quenched
at various time points and resolved by 10% denaturing PAGE. DNA was visualized by phosphorimaging, quantified
with ImageQuant (GE Healthcare), and analyzed with Kaleidagraph (Synergy Software). The results presented here
show a decreased cleavage activity for the PWNy75.4;72 AAA mutant, whereas SpyCas9 mutated in both regions

leads to a severe defect in dsDNA cleavage.
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Figure S10. SpyCas9 PWNy75.477/DWD1125.1127 2 AAA/AAA mutant is impaired in dsDNA substrate cleavage.
In addition to equimolar cleavage conditions (Fig. 3D), reconstituted SpyCas9 variants were also tested at a 10-fold
molar excess over dsDNA substrate concentration. Reactions contained 1 nM radiolabeled DNA substrate and 10
nM Cas9:RNA complex, and were conducted at room temperature. Aliquots were removed at 0.25, 0.5, 1, 10, and
30 minutes, quenched by mixing with formamide gel loading buffer containing 50 mM EDTA, and resolved by 10%
denaturing PAGE. Reaction products were visualized by phosphorimaging.
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Figure S11. SpyCas9 PWNyzs5.477/DWD1125.11272 AAA/AAA mutant is impaired in dsDNA binding. Target 55-
bp dsDNA was incubated with increasing concentrations of the indicated Cas9:RNA mutants for 60 min before
being resolved by 5% native PAGE. SpyCas9 mutated individually at PWNy7547,72>AAA or DWDyss.
11272 AAA/AAA binds dsDNA with an affinity similar to catalytically inactive dCas9 (D10A/H840A), whereas
SpyCas9 mutated in both regions is defective in dSDNA binding. Note that unbound DNA cleavage products exhibit
a distinct mobility from intact substrate DNA.
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alpha-helical lobe

Overall superposition HNH-RuvC-Topo 252/ 4§8Anayg 5025-7135y
(rmsd 9.1 A over 654Ca) (rmsd 3.31A over 175 Ca) showing as cartoon
(rmsd 3.63A over 149 Ca)

HNH RuvC domain Arg-rich Topo CTD
(rmsd 3.5A, 88 Ca) (rmsd 4.0A, 130 Ca)  (rmsd1.9A, 24 Ca) (rmsd 3.5A,40Ca)  (rmsd 4.2A, 48 Ca)

Figure S12. Pairwise structural comparisons of SpyCas9 and AnaCas9. (A) Overall structural alignment of
AnaCas9 (purple) and SpyCas9 (cyan) showing a good alignment of the nuclease lobe but distinct structural features
in the alpha-helical lobe. The superpositions were generated wusing the JCE  algorithm
(http://source.rcsb.org/jfatcatserver/). (B) Superposition of the catalytic core. For clarity, the alpha-helical lobe is not
shown. (C) Superposition of the alpha-helical lobe, revealing structural similarity between 252"™-468"™ and 50257-
713", with a large displacement of 69.4 A towards the RuvC domain and an approximately 35° rotation about the
junction between two domains in AnaCas9. The putative domain centers are labeled with yellow circles. (D-H)
Individual domains of AnaCas9 superimposed onto the corresponding domains in SpyCas9 with root mean square
deviation (rmsd) values for the equivalent alpha-carbons indicated.
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B-hairpin domain Arg-rich and disorded subdomain in [
alpha-helical lobe (Residues 95=-2514=) HMNH domain — =

Figure S13. (A) AnaCas9 displayed by B-factor putty. Thin blue loops represent low B-values, while broad red
tubes represent high B-values. The Arg-rich region and the neighboring alpha-helical part (box) have the highest B-
factors in the structure, suggesting high flexibility in these regions. The hinge connecting the RuvC domain and the
Arg-rich region is drawn as a dotted line. (B) Close-up view of the zinc-binding site in the HNH domain of
AnaCas9. The zinc site is coordinated by residues C566™™, C569 ™ C602*™ and C605"™, and may serve to

stabilize the AnaCas9 HNH domain architecture (BBo-Me fold).
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A AnaCas9 SpyCas9

alpha-helical lobe
insertions)

Figure S14. Surface features of SpyCas9 and AnaCas9 based on sequence conservation and electrostatic
potential. (A) Surface conservation of AnaCas9 (left) and SpyCas9 (right), with the same orientation as in Fig 4.
The surface is colored according to amino acid conservation among the Type-II Cas9 proteins shown in Fig. S7 by
the Consurf Server (61), where purple/red represents highly conserved residues, while yellow/light green denotes the
most variant residues in Type-II Cas9 orthologs. Notably, AnaCas9 harbors a B -hairpin domain insertion, whereas
SpyCas9 has a large insertion in the alpha-helical lobe. (B) The same molecular surface representations of AnaCas9
(left) and SpyCas9 (right) are color-coded by electrostatic potential, as calculated by APBS (60) electrostatics in
PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrodinger, LLC).
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Figure S15. Molecular architecture of apo-SpyCas9. (A) Representative untilted (left) and tilted (right)
micrographs of negatively stained apo-SpyCas9. Scale bar indicates 50 nm. (B) Reference-free 2D class averages of
apo-SpyCas9. The width of the boxes is ~316 A. (C) Random conical tilt (RCT) class volume showing the ab initio
structure of apo-SpyCas9. (D) Initial model generated by assigning Euler angles of the reference-free class averages
with respect to the RCT volume. This initial model was used for refinement of the raw particle images of apo-
SpyCas9. (E) Euler angle distribution for the final reconstruction. (F) Fourier shell correlation (FSC) curve for the
final reconstruction, showing the resolution to be ~19 A using the 0.5 FSC criterion. (G) Reference-free 2D class
averages of apo-SpyCas9 (first and third columns) matched to reprojections of the final reconstruction (second and
fourth columns). The width of the boxes is ~316 A. (H) Final reconstruction of apo-SpyCas9 using the map in (D)
as the initial model for refinement. The final map is segmented and colored as in Fig. SA.
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Figure S16. Structural similarities between the apo-SpyCas9 EM structure and X-ray crystal structure. (A)
The X-ray crystal structure of SpyCas9 was split into the alpha-helical lobe (residues 66-713) and the RuvC
nuclease-containing lobe (residues 1-65 and 744-1363). Both lobes were computationally docked into the apo-
SpyCas9 EM density as separate rigid bodies using SITUS (86), due to flexibility in the RuvC nuclease-containing
lobe (blue) in the absence of bound nucleic acids (see Fig. S1B, blurry, smaller lobe in class averages). The HNH
domain was excluded from docking for the same reason. (B) Activity assay with WT and N-MBP SpyCas9. DNA
cleavage experiments were performed and resolved by 10% denaturing polyacrylamide gel electrophoresis (left).
The data were plotted (right) and fit with single-exponentials (solid lines); error bars represent the standard deviation
from three independent experiments and are not always visible. (C, D) 3D difference maps (> 7-0) (red density)
between the N-terminal MBP-labeled and unlabeled reconstructions of apo-SpyCas9 (C) and SpyCas9:RNA:DNA
(D) were mapped onto the corresponding unlabeled reconstructions. (E) The X-ray crystal structure of SpyCas9 was
again split into the alpha-helical lobe and nuclease-containing lobe and both lobes were computationally docked into
the SpyCas9:RNA:DNA EM density as separate rigid bodies using SITUS (86) (top). This docking result is
consistent with a 100° rigid body rotation of the nuclease lobe toward the alpha-helical lobe and places the two
nucleic acid binding clefts across from one another (electrostatic surface potential, below). Further experiments
and/or higher-resolution structures will be required to verify this working model.
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Figure S17. Molecular architecture of SpyCas9:RNA:DNA. (A) Electrophoretic mobility gel shift assay (left)
with radiolabeled target DNA and increasing concentrations of catalytically inactive (D10A/H840A) SpyCas9:RNA
complex. Fitting of the quantified data with a standard binding isotherm (solid line, right) yields an equilibrium
dissociation constant (Kg) of 4.0 + 0.4 nM. (B) Representative untilted (left) and tilted (right) micrographs of
negatively stained SpyCas9:RNA:DNA. Scale bar indicates 50 nm. (C) Reference-free 2D class averages of
SpyCas9:RNA:DNA. The width of the boxes is ~316 A. (D) Random conical tilt (RCT) class volume showing the
ab initio structure of SpyCas9:RNA:DNA. (E) Initial model generated by assigning Euler angles of the reference-
free class averages with respect to the RCT volume. This initial model was used for refinement of the raw particle
images of SpyCas9:RNA:DNA. (F) Euler angle distribution for the final reconstruction. (G) Fourier shell
correlation (FSC) curve for the final reconstruction, showing the resolution to be ~19 A using the 0.5 FSC criterion.
(H) Reference-free 2D class averages of SpyCas9:RNA:DNA (first and third columns) matched to reprojections of
the final reconstruction (second and fourth columns). The width of the boxes is ~316 A. (I) Final reconstruction of

SpyCas9:RNA:DNA using the map in (E) as the initial model for refinement. The final map is segmented and
colored as in Fig. 5B.
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Figure S18. Alternative model for the conformational change in SpyCas9:RNA:DNA complex considering the
opposite handedness. (A, B) Single particle EM reconstructions of negatively stained apo-SpyCas9 (A) (as in the
main text) and SpyCas9:RNA:DNA (B) with opposite handedness as the structure presented in Fig. 5B. Cartoon
representations are shown on the left. In this alternative model, the movement of the smaller lobe with respect to the
larger one is subtler. The blue lobe rotates in towards the larger lobe and reorganizes to form the central channel
spanning the length of the enzyme (black dashed line). Note that the grey lobes of the two structures are aligned
differently than the alignment in the main text, to maintain the blue lobe in a similar relative position for the two
structures. (C) From left to right: the a-helical lobe of SpyCas9:RNA:DNA from Fig. 5B (purple), apo-Cas9 (grey),
and Cas9:RNA:DNA with opposite handedness from (B) (gold), aligned to one another based on optimal cross
correlation coefficient (CCC). The favored model presented in Fig. 5B of the main text is based on the more
obvious, direct correspondence between the features of the apo-SpyCas9 a-helical lobe (grey) and the
SpyCas9:RNA:DNA a-helical lobe (purple). Additionally, the a-helical domain from the crystal structure exhibits a
higher CCC with the a-helical lobe from the model presented in Fig. 5B of the main text (purple) than the a-helical
lobe of opposite handedness (gold) (0.83 versus 0.74).
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Figure S19. Molecular architecture of SpyCas9:RNA. (A) Representative untilted micrograph of negatively
stained SpyCas9:RNA. Scale bar indicates 100 nm. (B) Reference-free 2D class averages of SpyCas9:RNA. The
width of the boxes is ~316 A. (C) Fourier shell correlation (FSC) curve for the final reconstruction, showing the
resolution to be ~21 A using the 0.5 FSC criterion. (D) Reference-free 2D class averages of SpyCas9:RNA (first and
third columns) matched to reprojections of the final reconstruction (second and fourth columns). The width of the
boxes is ~316 A. (E) Euler angle distribution for the final reconstruction.
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Figure S20. Limited proteolysis of SpyCas9 with and without nucleic acid substrates suggests that nucleic
acid-bound complexes adopt similar structural states. Apo-SpyCas9, SpyCas9 bound to full-length crRNA and
tractrRNA (SpyCas9:RNA), or RNA-programmed SpyCas9 in complex with target DNA (SpyCas9:RNA:DNA)
were prepared at a concentration of 2.5 pM and incubated with 2 ng/pl trypsin at 37 °C for the indicated time before
quenching with 2X SDS gel-loading buffer. Samples were resolved by SDS-PAGE on a 4-20% gradient
polyacrylamide gel (Bio-Rad). Apo-SpyCas9 is rapidly proteolyzed, whereas both SpyCas9:RNA and
SpyCas9:RNA:DNA complexes are resistant to digestion by trypsin, suggesting that SpyCas9 undergoes similar
structural rearrangements in both cases that mitigate proteolysis. Complexes were prepared with catalytically

inactive D10A/H840A-SpyCas9 under the same conditions used to prepare samples for electron microscopy
imaging.
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Figure S21. Activity assays with biotin-RNA and biotin-DNA substrates used in streptavidin labeling
experiments. (A) Schematic depicting the attachment of biotin (orange and green circles) to each nucleic acid
substrate. Note that the crRNA and each strand of the DNA target are covalently linked to biotin at their 3' ends,
whereas tracrRNA is hybridized to a short biotinylated DNA oligonucleotide at its 3' end. (B) DNA cleavage assays
were conducted with biotin-labeled nucleic acids to verify that the modification does not perturb DNA recognition
and cleavage. Data from representative time courses were plotted and fit with single-exponentials (solid line) to
yield first-order rate constants for the DNA cleavage reaction. Note that the steep part of the curve (<15 seconds)
could not be well defined due to the rapid reaction rate, limiting the accuracy of these measurements. (C) Three
independent DNA cleavage time courses were conducted for each SpyCas9 construct, and the averaged rate
constants are shown in the bar graph. The fitting error for individual single-exponential fits was greater than the
standard deviation in rate constants between independent replicates, and so error bars represent the fitting error
averaged from three independent experiments.
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Table S1. Highest cross-correlation coefficients (CCC) obtained by docking the apo-
SpyCas9 alpha-helical domain crystal structure as a rigid body into the apo-SpyCas9 and
spyCas9:RNA:DNA EM-derived alpha-helical lobes using SITUS.

apo-SpyCas9 EM density SpyCas9:RNA:DNA EM density

a-helical lobe a-helical lobe a-helical lobe a-helical lobe
opposite hand opposite hand
a-helical
lobe crystal 0.74 0.70 0.83 0.74
structure
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Table S2. List of nucleic acid reagents used in this study

stranded T7 promoters for in
vitro transcription

# | Description Sequence (5'-3")
1 | tracrRNA (nts 15-87) GGACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCA
CCGAGUCGGUGCUUUUU
2 | Targeting crRNA GUGAUAAGUGGAAUGCCAUGGUUUUAGAGCUAUGCUGUUUUG
3 | 55-bp DNA substrate, GAGTGGAAGGATGCCAGTGATAAGTGGAATGCCATGTGGGCTGTCAAAATTGAGC
non-target strand?®
4 | 55-bp DNA substrate, GCTCAATTTTGACAGCCCACATGGCATTCCACTTATCACTGGCATCCTTCCACTC
target strand®
5 | Br-dU, containing 55 nt DNA | GAGTGGAAGGATGCCAGTGATAAGTGGAATGCCATG(BI -
substrate, non-target strand® dU,)GGGCTGTCAAAATTGAGC
6 | Br-dU, containing 55 nt DNA | GCTCAATTTTGACAGCCC(Br-
substrate, target stran d? d_Uz)_CATGGCATTCCACTTATCACTGGCATCCTTCCACTC
7 | reverse complement for # 6° | GAGTGGAAGGATGCCAGTGATAAGTGGAATGCCATGAGGGCTGTCAAAATTGAGC
8 | Br-dUs containing 55 nt DNA | GAGTGGAAGGATGCCAGTGATAAGTGGAATGCCATGTGG(BI -
substrate, non-target strand® dU,)CTGTCAAAATTGAGC
9 | reverse complement for #8% | GCTCAATTTTGACAGACCACATGGCATTCCACTTATCACTGGCATCCTTCCACTC
b GGACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUC
10| tracrRNA_ext GGUGCUUUUUUUGCUCGUGCGC
11 | Biotinylated DNA oligo to Biotin-TTGCGCACGAGCAAA
hybridize to tracrRNA_ext°
12 | Non-targeting crRNA (control, | GACGCAUAAAGAUGAGACGCGUUUUAGAGCUAUGCUGUUUUG
Fig. 7b)
13 | 3-Biotinylated DNA, non- | GAGTGGAAGGATGCCAGTGATAAGTGGAATGCCATGTGGGCTGTCAAAATTGAGC-Biotin
target strand®
14 | 3-Biotinylated DNA, target | GCTCAATTTTGACAGCCCACATGGCATTCCACTTATCACTGGCATCCTTCCACTC-Biotin
strand®
AAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGC
15 i;gg‘(ﬁﬁ;gﬂggg{l AC TATGCTGTCCTATAGTGAGTCGTATTA
GCGCACGAGCAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTT
16 frz[r)lls\lcﬁié?r:gptlggrslil A ext® ATTTTAACTTGCTATGCTGTCCTATAGTGAGTCGTATTA
17 | Oligo for preparing double- | TAATACGACTCACTATA

* The protospacer is depicted in red. The PAM is underlined.

® Nucleotides hybridizing between the tractRNA ext and biotin-DNA oligo are in blue.

¢ The reverse complement of the T7 promoter is indicated in bold.
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