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1 Leabra and LeabraTI: Implementation Details
The Leabra framework is described in detail in O’Reilly and Munakata (2000);
O’Reilly, Munakata, Frank, Hazy, and Contributors (2013) and O’Reilly (2001), and
summarized here. The standard Leabra equations have been used to simulate over 40
different models in O’Reilly and Munakata (2000) and a number of other research
models. Thus, the model can be viewed as an instantiation of a systematic modeling
framework using standardized mechanisms, instead of constructing new mechanisms
for each model.

This version of Leabra contains an extension called LeabraTI (Temporal Integra-
tion) that allows learning to operate over temporally contiguous input sequences. The
full treatment of LeabraTI is presented in an in-preparation paper (O’Reilly, Wyatte,
Rohrlich, & Herd, in preparation), but the basic equations and a brief motivation for
them are presented here.

1.1 Point Neuron Activation Function
Leabra uses a point neuron activation function that models the electrophysiological
properties of real neurons, while simplifying their geometry to a single point. This
function is nearly as simple computationally as the standard sigmoidal activation func-
tion, but the more biologically-based implementation makes it considerably easier to
model inhibitory competition, as described below. Further, using this function enables
cognitive models to be more easily related to more physiologically detailed simula-
tions, thereby facilitating bridge-building between biology and cognition. We use nor-
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malized units where the unit of time is 1 msec, the unit of electrical potential is 0.1 V
(with an offset of -0.1 for membrane potentials and related terms, such that their normal
range stays within the [0,1] normalized bounds), and the unit of current is 1.0x10−8.

The membrane potential Vm is updated as a function of ionic conductances g with
reversal (driving) potentials E as follows:

∆Vm(t) = τ∑
c

gc(t)gc(Ec−Vm(t)) (1.1)

with 3 channels (c) corresponding to: e excitatory input; l leak current; and i inhibitory
input. Following electrophysiological convention, the overall conductance is decom-
posed into a time-varying component gc(t) computed as a function of the dynamic state
of the network, and a constant gc that controls the relative influence of the different con-
ductances. The equilibrium potential can be written in a simplified form by setting the
excitatory driving potential (Ee) to 1 and the leak and inhibitory driving potentials (El
and Ei) of 0:

V ∞
m =

gege

gege +glgl +gigi
(1.2)

which shows that the neuron is computing a balance between excitation and the op-
posing forces of leak and inhibition. This equilibrium form of the equation can be
understood in terms of a Bayesian decision making framework (O’Reilly & Munakata,
2000).

The excitatory net input/conductance ge(t) or η j is computed as the proportion of
open excitatory channels as a function of sending activations xi times the weight values
wi j:

η j = ge(t) = 〈xiwi j〉=
1
n ∑

i
xiwi j (1.3)

The inhibitory conductance is computed via the kWTA function described in the next
section, and leak is a constant.

In its discrete spiking mode, Leabra implements exactly the AdEx (adaptive expo-
nential) model (Brette & Gerstner, 2005), which has been found to provide an excel-
lent fit to the actual firing properties of cortical pyramidal neurons (Gerstner & Naud,
2009), while remaining simple and efficient to implement. However, we typically use a
rate-code approximation to discrete firing, which produces smoother more determinis-
tic activation dynamics, while capturing the overall firing rate behavior of the discrete
spiking model.

We recently discovered that our previous strategy of computing a rate-code graded
activation value directly from the membrane potential is problematic, because the map-
ping between Vm and mean firing rate is not a one-to-one function in the AdEx model.
Instead, we have found that a very accurate approximation to the discrete spiking rate
can be obtained by comparing the excitatory net input directly with the effective com-
puted amount of net input required to get the neuron firing over threshold (gΘ

e ), where
the threshold is indicated by Θ:

gΘ
e =

gigi(Ei−V Θ
m )+gl(El−V Θ

m )

ge(V Θ
m −Ee)

(1.4)
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y j(t) ∝ ge(t)−gΘ
e (1.5)

where y j(t) is the firing rate output of the unit.
We continue to use the Noisy X-over-X-plus-1 (NXX1) function, which starts out

with a nearly linear function, followed by a saturating nonlinearity:

y j(t) =
1(

1+ 1
γ[ge(t)−gΘ

e ]+

) (1.6)

where γ is a gain parameter, and [x]+ is a threshold function that returns 0 if x < 0 and
x if x > 0. Note that if it returns 0, we assume y j(t) = 0, to avoid dividing by 0. As it is,
this function has a very sharp threshold, which interferes with graded learning learning
mechanisms (e.g., gradient descent). To produce a less discontinuous deterministic
function with a softer threshold, the function is convolved with a Gaussian noise kernel
(µ = 0, σ = .005), which reflects the intrinsic processing noise of biological neurons:

y∗j(x) =
∫

∞

−∞

1√
2πσ

e−z2/(2σ2)y j(z− x)dz (1.7)

where x represents the [ge(t)−gΘ
e ]+ value, and y∗j(x) is the noise-convolved activation

for that value. In the simulation, this function is implemented using a numerical lookup
table.

1.2 k-Winners-Take-All Inhibition
Leabra uses a kWTA (k-Winners-Take-All) function to achieve inhibitory competition
among units within a layer (area). The kWTA function computes a uniform level of in-
hibitory current for all units in the layer, such that the k+1th most excited unit within
a layer is generally below its firing threshold, while the kth is typically above thresh-
old. Activation dynamics similar to those produced by the kWTA function have been
shown to result from simulated inhibitory interneurons that project both feedforward
and feedback inhibition (O’Reilly & Munakata, 2000). Thus, although the kWTA func-
tion is somewhat biologically implausible in its implementation (e.g., requiring global
information about activation states and using sorting mechanisms), it provides a com-
putationally effective approximation to biologically plausible inhibitory dynamics.

kWTA is computed via a uniform level of inhibitory current for all units in the layer
as follows:

gi = gΘ

k+1 +q(gΘ

k −gΘ

k+1) (1.8)

where 0< q< 1 (.25 default used here) is a parameter for setting the inhibition between
the upper bound of gΘ

k and the lower bound of gΘ

k+1. These boundary inhibition values
are computed as a function of the level of inhibition necessary to keep a unit right at
threshold Θ:

gΘ
i =

g∗e ḡe(Ee−Θ)+gl ḡl(El−Θ)

Θ−Ei
(1.9)

where g∗e is the excitatory net input without the bias weight contribution — this allows
the bias weights to override the kWTA constraint.
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In the basic version of the kWTA function, which is relatively rigid about the kWTA
constraint and is therefore used for output layers, gΘ

k and gΘ

k+1 are set to the threshold
inhibition value for the kth and k + 1th most excited units, respectively. Thus, the
inhibition is placed exactly to allow k units to be above threshold, and the remainder
below threshold. For this version, the q parameter is almost always .25, allowing the
kth unit to be sufficiently above the inhibitory threshold.

In the average-based kWTA version, gΘ

k is the average gΘ
i value for the top k most

excited units, and gΘ

k+1 is the average of gΘ
i for the remaining n− k units. This version

allows for more flexibility in the actual number of units active depending on the nature
of the activation distribution in the layer and the value of the q parameter (which is
typically .6), and is therefore used for hidden layers.

1.3 Learning rules
The model uses both Leabra learning using the XCAL formulation (see O’Reilly, Wy-
atte, Herd, Mingus, & Jilk, 2013 Supplemental Information) as well as an extension
called LeabraTI on specific projections.

1.3.1 Leabra XCAL

The Leabra XCAL learning rule is based on a contrast between a sender-receiver acti-
vation product term (shown initially as just xy – relevant time scales of averaging for
this term are elaborated below) and a dynamic plasticity threshold θp (also elaborated
below), which are integrated in the XCAL learning function:

∆xcalwi j = fxcal(xy,θp) (1.10)

fxcal(xy,θp) =

{
(xy−θp) if xy > θpθd
−xy(1−θd)/θd otherwise (1.11)

(θd = .1 is a constant that determines the point where the function reverses back toward
zero within the weight decrease regime – this reversal point occurs at θpθd , so that it
adapts according to the dynamic θp value).

Leabra learning consists of a combination of error-driven and self-organizing fac-
tors (O’Reilly & Munakata, 2000; O’Reilly, Munakata, et al., 2013). In the Leabra
XCAL formulation, these two factors emerge out of a single learning rule based on a
contrast between a sender-receiver activation product term at three time scales:

• s = short time scale, reflecting the most recent state of neural activity (e.g., past
100-200 msec). This is considered the “plus phase” – it represents the outcome
information on the current trial, and in general should be more correct than the
medium time scale.

• m = medium time scale, which integrates over an entire psychological “trial” of
roughly a second or so – this value contains a mixture of the “minus phase” and
the “plus phase”, but in contrasting it with the short value, it plays the role of the
minus phase value, or expectation about what the system thought should have
happened on the current trial.
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• l = long time scale, which integrates over hours to days of processing – this is a
threshold term similar to that used in the Bienenstock, Cooper & Munro (BCM)
algorithm (Bienenstock, Cooper, & Munro, 1982).

The error-driven aspect of XCAL learning is driven essentially by the following
term:

∆xcal−errwi j = fxcal(xsys,xmym) (1.12)

However, consider the case where either of the short term values (xs or ys) is 0, while
both of the medium-term values are > 0 – from an error-driven learning perspective,
this should result in a significant weight decrease, but because the XCAL function goes
back to 0 when the input drive term is 0, the result is no weight change at all. To remedy
this situation, we assume that the short-term value actually retains a small trace of the
medium-term value:

∆xcal−errwi j = fxcal(κxsys +(1−κ)xmym,xmym) (1.13)

(where κ = .9, such that only .1 of the medium-term averages are incorporated into the
effective short-term average).

The self-organizing aspect of XCAL is driven by comparing this same synaptic
drive term to a longer-term average, as in the BCM algorithm:

∆xcal−sowi j = fxcal(κxsys +(1−κ)xmym,γlyl) (1.14)

where γl = 3 is a constant that scales the long-term average threshold term (due to
sparse activation levels, these long-term averages tend to be rather low, so the larger
gain multiplier is necessary to make this term relevant whenever the units actually are
active and adapting their weights).

Combining both of these forms of learning in the full XCAL learning rule amounts
to computing an aggregate θp threshold that reflects a combination of both the self-
organizing long-term average, and the medium-term minus-phase like average:

∆xcalwi j = fxcal(κxsys +(1−κ)xmym,λγyl +(1−λ)xmym) (1.15)

where λ = .01 is a weighting factor determining the mixture of self-organizing and
error-driven learning influences (as was the case with standard Leabra, the balance of
error-driven and self-organizing is heavily weighted toward error driven, because error-
gradients are often quite weak in comparison with local statistical information that the
self-organizing system encodes).

The weight changes are subject to a soft-weight bounding to keep within the 0−1
range:

∆sbwi j = [∆xcal ]+(1−wi j)+ [∆xcal ]−wi j (1.16)

where the []+ and []− operators extract positive values or negative-values (respectively),
otherwise 0.

Finally, as in the original Leabra model, the weights are subject to contrast en-
hancement, which magnifies the stronger weights and shrinks the smaller ones in a
parametric, continuous fashion. This contrast enhancement is achieved by passing the
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linear weight values computed by the learning rule through a sigmoidal nonlinearity of
the following form:

ŵi j =
1

1+
(

wi j
θ(1−wi j)

)−γ
(1.17)

where ŵi j is the contrast-enhanced weight value, and the sigmoidal function is param-
eterized by an offset θ and a gain γ (standard defaults of 1 and 6, respectively, used
here).

1.3.2 LeabraTI

LeabraTI extends standard Leabra learning by interleaving its minus and plus phases
over temporally contiguous input sequences. In standard Leabra, the minus phase de-
pends on clamped inputs from the sensory periphery to drive the expectation while the
plus phase uses clamped outputs from other neural systems to drive the outcome. In
LeabraTI, the minus phase expectation is not driven by the sensory periphery, but in-
stead by lagged context represented by deep (Layer 6) neurons. During the plus phase,
driving potential shifts back to the sensory periphery. Deep neurons’ context is also
updated after each plus phase.

LeabraTI was only used to update the synaptic weights between superficial and
deep neurons. Inter-areal feedforward and feedback projections bifurcate from the
local column, directly synapsing disparate populations of superficial neurons and thus
weight updates in these cases were handled by Leabra XCAL equations. In computing
the weight update, the standard Leabra delta rule (O’Reilly, 1996) uses the difference
in rate between the plus and minus phases of receiving units (y) in proportion to the
rate of sending units (x) in the minus phase:

∆leabrawi j = x−(y+− y−)

In the LeabraTI framework, deep neurons are considered to be the receiving units
as they are the terminus of the descending columnar synapses. However, deep units
are proposed to only be active during the minus phase when they drive the prediction,
and thus cannot be used to compute an error signal. To address this issue, we invert the
LeabraTI delta rule:

∆leabratiwi j = super−(deep+−deep−)

≈ deep−(super+− super−)

Additionally, the temporally extended nature of the algorithm requires that the re-
ceiving units represent the current state (time t) and sending units the previous mo-
ment’s state (time t - 1). While conceptualized as the previous equation, the actual
implementation is as follows:

∆leabratiwi j = super+t−1(super+t − super−t )

This formulation allows the driving potential of deep neurons to be computed just
once using the previous plus phase state of superficial neurons (multiplied by the su-
perficial→ deep learned weights) and held constant as an input to superficial neurons
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during the minus phase. This is a gross simplification of the actual biological process
of deep neurons, but is vastly more computationally efficient than explicit modeling
by computing an additional rate for each deep neuron at each time step. This formu-
lation is also equivalent to the simple recurrent network (SRN) (Elman, 1990; Servan-
Schreiber, Cleeremans, & McClelland, 1991), thus providing a potential biological
substrate for its computational function.

One limitation of LeabraTI’s interleaving of minus and plus phases over time is
that the initial minus phase in an input sequence does not have access to the previous
moment’s context. Even if there was lagged context available, it would represent infor-
mation from a prior, possibly unrelated input sequence. To address this, weight updates
are disabled for the first minus-plus phase pair, and enabled thereafter. In the brain, this
process might be facilitated by a neural mechanism that is sensitive to the repetition of
inputs over time (e.g., acetylcholine) (Thiel, Henson, Morris, Friston, & Dolan, 2001;
Thiel, Henson, & Dolan, 2002).

2 Training Details
A finite state grammar was created in order to probabilistically generate coffee- and
tea-making sequences, following the sequences used in Botvinick and Plaut (2004).
Coffee sequences consisted of adding coffee grounds to hot water, adding sugar (from a
bowl or a packet) and cream–in either order–and then drinking the coffee. Tea-making
involves dipping the teabag in the hot water, adding sugar (from either source), and
drinking the tea. Tables 1 and 2 define the states of the grammar, and which tasks
and subtasks the steps belong to. After specifying the starting world state in the first
row, the next six rows specify the unique coffee- and tea-making sequences described
above, which are randomly selected from during training. Then the subtasks of pouring
the grounds (“pour ground” and “pg ” steps) and stirring the grounds (“stir grounds”
and “sg ” steps) are defined. Table 1 goes on to define the teabag (tb) and pour sugar
packet (ps) sequential actions. Table 2 defines the stir sugar packet (stsp) action that
completes the sugar packet method of adding sugar, and then defines the sugar bowl
method (open sugar lid (ol), scoop sugar (ss), and stir sugar bowl (stsb). The fi-
nal actions defined are pouring cream (pc), stirring cream (sc), and finally drinking
the beverage (dr). The model and full training/testing program are available online:
http://www.kachergis.com/downloads/coffee tea ti.proj.

Using 2 hidden layers with 24 units each, 100 networks were trained over 200 50-
step epochs. The learning rate was 0.5 until epoch 50, dropping to 0.2 until epoch 100,
then dropped to 0.1 until epoch 150, and finally dropped to 0.05 for the final 50 epochs.
Training accuracy for the final 50 epochs was 94% for the model with 2 24-unit hidden
layers, and 95% for the single 48-unit hidden layer model. Normalized error was .016
for the two layer model, compared to .017 for the single layer model.
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Table 1: Definition of states in the coffee- and tea-making finite state grammar.

State Name Visual Manual Action World State
start cup=cup, 1 handle,

clear liquid;
coffee packet=packet,
foil, untorn;
sugar packet=packet,
paper, untorn; spoon=spoon;
cream carton=carton, closed;
sugar bowl=cup, lid,
2 handle;

coffee sugpack cream
coffee sugbowl cream
coffee cream sugpack
coffee cream sugbowl
tea sugpack
tea sugbowl
grounds
pour grounds
pg fixate packet cup nothing fixate coffee packet
pg pick up packet coffee packet nothing pick up
pg pull open packet coffee packet coffee packet pull open coffee packet=

-untorn, +torn
pg fixate cup coffee packet coffee packet fixate cup
pg pour packet cup coffee packet pour cup=-clear liquid,

+brown liquid
stir grounds
sg fixate spoon cup coffee packet fixate spoon
sg put down packet spoon coffee packet put down
sg pick up spoon spoon nothing pick up
sg fixate cup spoon spoon fixate cup
sg stir cup spoon stir
teabag
tb fixate teabag cup nothing fixate teabag
tb pick up teabag teabag nothing pick up
tb fixate cup teabag teabag fixate cup
tb dip packet cup teabag dip cup=-clear liquid,

+brown liquid
sugar packet
pour sugar packet
ps fixate packet cup spoon fixate sugar packet
ps put down spoon sugar packet spoon put down
ps pick up packet sugar packet nothing pick up
ps pull open packet sugar packet sugar packet pull open sugar packet=-untorn, +torn
ps fixate cup sugar packet sugar packet fixate cup
ps pour packet cup sugar packet pour
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Table 2: Definition of states in the coffee- and tea-making finite state grammar, part 2.

State Name Visual Manual Action World State
stir sugar packet
stsp fixate spoon cup sugar packet fixate spoon
stsp put down packet spoon sugar packet put down
stsp pick up spoon spoon nothing pick up
stsp fixate cup spoon spoon fixate cup
stsp stir cup spoon stir
sugar bowl
open sugar lid
ol fixate sugar cup spoon fixate sugar bowl
ol put down spoon sugar bowl spoon put down
ol pull off lid sugar bowl nothing pull off sugar bowl=

-lid+sugar
scoop sugar
ss fixate spoon sugar bowl lid fixate spoon
ss put down lid spoon lid put down
ss pick up spoon spoon nothing pick up
ss fixate sugar spoon spoon fixate sugar bowl
ss scoop sugar sugar bowl spoon scoop spoon=+sugar
stir sugar bowl
stsb fixate cup sugar bowl spoon fixate cup
stsb pour cup spoon pour spoon=-sugar
stsb stir cup spoon stir
cream
pour cream
pc fixate carton cup spoon fixate carton
pc put down spoon cream carton spoon put down
pc pick up carton cream carton nothing pick up
pc peel open cream carton cream carton peel open cream carton=

-closed+open
pc fixate cup cream carton cream carton fixate cup
pc pour cream cup cream carton pour cup=+light
stir cream
sc fixate spoon cup cream carton fixate spoon
sc put down carton spoon cream carton put down
sc pick up spoon spoon nothing pick up
sc fixate cup spoon spoon fixate cup
sc stir cup spoon stir
drink
dr put down spoon cup spoon put down
dr pick up cup cup nothing pick up
dr sip cup cup sip
dr sip2 cup cup sip cup=-brown liquid

-light+empty
dr done cup cup say done
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3 Test Results
Shown in Figure 1, the normal network weights perform very well for almost all test
trials, whereas the Non-TI version performs very poorly for nearly all trials. Lesioning
the second hidden layer (Hid2 Lesion) impacted performance somewhat, and more
for some steps than others. Weakening the context projections had a larger impact on
performance, but still resulted in much better performance than the Non-TI network.
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Figure 1: Normalized error for each test trial is shown for different manipulations of
100 trained networks. The Normal (2 hidden layers with 24 units) network structure
performs the best, but shows some error for the ol fixate sugar and ps fixate packet
trials. The Non-TI version performs the worst for every trial type. Even the Weak
Context performs somewhat better (with great variability–some steps are near-normal,
while others are close to Non-TI error rates). Finally, lesioning the second hidden layer
(Hid2 Lesion) only moderately decreases performance.
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