Synthesis, Characterization and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Towards Renal Clearable Particulate CT Contrast Agents

Murthi S. Kandanapitiye,^a Min Gao,^b Joseph Molter,^c Chris A. Flask,^{*c,d,e} Songping D. Huang^{*a}

^aDepartment of Chemistry and Biochemistry, and ^bLiquid Crystal Institute, Kent State University, Kent, OH 44240

^cCase Center for Imaging Research at Department of Radiology, ^dDepartment of Biomedical Engineering, and ^eDepartment of Pediatrics, Case Western Reserve University, Cleveland, OH 44106

Summary of structure determination for BiOI by X-ray powder diffraction

·	
BiOI	$F_{000} = 288$
$M_r = 351.88$	$D_{\rm x} = 8.002 {\rm Mg m}^{-3}$
Tetragonal, P4/nmm	Melting point: ? K
Hall symbol: -P 4a 2a	$K\alpha_1$, $K\alpha_2$ radiation, $\lambda = 1.540600$, 1.544400 Å
<i>a</i> = 3.99399(4) Å	<i>T</i> = 295 K
<i>b</i> = 3.99399(4) Å	Specimen shape: disk
<i>c</i> = 9.15486(8) Å	$12 \times 12 \times 0.2 \text{ mm}$
$V = 146.038 (3) \text{ Å}^3$	Particle morphology: plate-like, red-orange
<i>Z</i> = 2	

Table S1 Crystal data

Data collection

D8 Advance powder diffractometer	<i>T</i> = 295 K
Radiation source: sealed tube	$2\theta_{min} = 7.00^{\circ}$

Monochromator: Ni beta-filter	$2\theta_{\text{max}} = 109.07^{\circ}$
Specimen mounted in reflection mode	Increment in $2\theta = 0.02^{\circ}$
Background-less sample holder	Scan method: step

Refinement

Least-squares matrix: full	54 parameters
$R_{\rm p} = 0.027$	2 constraints
$R_{\rm wp} = 0.036$	<i>S</i> = 1.39
$R_{\rm exp} = 0.026$	$(\Delta/\sigma)_{\rm max} = 0.04$
$R_{\rm F2} = 0.016$	
Profile function: CW Profile function number 3 with 19 terms, Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. #1(GU) = 119.081 #2(GV) = -5.084 #3(GW) = 11.207 #4(GP) = 25.131 #5(LX) = 1.863 #6(LY) = 26.859 #7(S/L) = 0.0103 #8(H/L) = 0.0103 #9(trns) = 2.18 #10(shft)= -8.9199 #11(stec)= -9.60 #12(ptec)= 14.58 #13(sfec)= 0.00 #14(L11) = -0.469 #15(L22) = -1.237 #16(L33) = 0.031 #17(L12) = 0.358 #18(L13) = 0.126 #19(L23) = 0.292 Peak tails are ignored where the intensity is below 0.005 times the peak Aniso. broadening axis 0 0 1.	Preferred orientation correction: March-Dollase, Ratio= 0.64143, h= 0, k= 0, l= 1; Preferred orientation correction range: Min= 0.4097, Max= 5.3361

	x	У	Ζ	$U_{ m iso}$
Bi1	0.25	0.25	0.13358 (3)	0.01169 (7)
01	0.25	0.75	0.0	0.01169 (7)
I1	0.25	0.25	0.66586 (5)	0.01169 (7)

Table S2 Fractional atomic coordinates and isotropic displacement parameters (A^2)

Table S3 Geometric parameters (Å, °)

Bi1—O1 ⁱ	2.3417(2)	O1—Bi1	2.3417(2)
Bi1—O1	2.3417(2)	O1—Bi1 ^{viii}	2.3417(2)
Bi1—O1 ⁱⁱ	2.3417(2)	O1—Bi1 ^{ix}	2.3417(2)
Bi1—O1 ⁱⁱⁱ	2.3417(2)	O1—Bi1 ^x	2.3417(2)
Bi1—I1 ^{iv}	3.3686(3)	I1—Bi1 ^{iv}	3.3686(3)
Bi1—I1 ^v	3.3686(3)	I1—Bi1 ^v	3.3686(3)
Bi1—I1 ^{vi}	3.3686(3)	I1—Bi1 ^{vi}	3.3686(3)
Bi1—I1 ^{vii}	3.3686(3)	I1—Bi1 ^{vii}	3.3686(3)
Ol ⁱ —Bil—Ol	117.036(13)	O1 ⁱⁱⁱ —Bi1—I1 ^{vi}	77.237(5)
O1 ⁱ —Bi1—O1 ⁱⁱ	74.174(6)	O1 ⁱⁱⁱ —Bi1—I1 ^{vii}	77.237(5)
O1 ⁱ —Bi1—O1 ⁱⁱⁱ	74.174(6)	I1 ^{iv} —Bi1—I1 ^v	72.716 (7)
O1 ⁱ —Bi1—I1 ^{iv}	77.237 (5)	I1 ^{iv} —Bi1—I1 ^{vi}	72.716 (7)
O1 ⁱ —Bi1—I1 ^v	142.2063 (14)	I1 ^{iv} —Bi1—I1 ^{vii}	113.940 (15)
O1 ⁱ —Bi1—I1 ^{vi}	77.237 (5)	I1 ^v —Bi1—I1 ^{vi}	113.940 (15)
O1 ⁱ —Bi1—I1 ^{vii}	142.2063 (14)	I1 ^v —Bi1—I1 ^{vii}	72.716 (7)
O1—Bi1—O1 ⁱⁱ	74.174(6)	I1 ^{vi} —Bi1—I1 ^{vii}	72.716 (7)
O1—Bi1—O1 ⁱⁱⁱ	74.174(6)	Bi1—O1—Bi1 ^{viii}	117.036 (13)
O1—Bi1—I1 ^{iv}	142.2063 (14)	Bi1—O1—Bi1 ^{ix}	105.826 (6)
O1—Bi1—I1 ^v	77.237 (5)	Bi1—O1—Bi1 ^x	105.826 (6)
O1—Bi1—I1 ^{vi}	142.2063 (14)	Bi1 ^{viii} —O1—Bi1 ^{ix}	105.826 (6)
O1—Bi1—I1 ^{vii}	77.237 (5)	Bi1 ^{viii} —O1—Bi1 ^x	105.826 (6)
O1 ⁱⁱ —Bi1—O1 ⁱⁱⁱ	117.036 (13)	Bi1 ^{ix} —O1—Bi1 ^x	117.036 (13)
O1 ⁱⁱ —Bi1—I1 ^{iv}	77.237 (5)	Bi1 ^{iv} —I1—Bi1 ^v	72.716 (7)

O1 ⁱⁱ —Bi1—I1 ^v	77.237 (5)	Bi1 ^{iv} —I1—Bi1 ^{vi}	72.716 (7)
O1 ⁱⁱ —Bi1—I1 ^{vi}	142.2063 (14)	Bi1 ^{iv} —I1—Bi1 ^{vii}	113.940 (15)
O1 ⁱⁱ —Bi1—I1 ^{vii}	142.2063 (14)	Bi1 ^v —I1—Bi1 ^{vi}	113.940 (15)
O1 ⁱⁱⁱ —Bi1—I1 ^{iv}	142.2063 (14)	Bi1 ^v —I1—Bi1 ^{vii}	72.716 (7)
O1 ⁱⁱⁱ —Bi1—I1 ^v	142.2063 (14)	Bi1 ^{vi} —I1—Bi1 ^{vii}	72.716 (7)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) 1/2-*y*, *x*, *z*; (iii) 3/2-*y*, *x*, *z*; (iv) -*x*, -*y*, 1-*z*; (v) -*x*, 1-*y*, 1-*z*; (vi) 1-*x*, -*y*, 1-*z*; (vii) 1-*x*, 1-*y*, 1-*z*; (viii) *x*, *y*+1, *z*; (ix) -*x*, 1-*y*, -*z*; (x) 1-*x*, 1-*y*, -*z*.

Data collection: *XRD commander*; cell refinement: *GSAS*; program(s) used to refine structure: *GSAS*; software used to prepare material for publication: *Platon*, *publCIF*.

Figure S1 Rietveld refinement plot of BiOI with the difference between observed and calculated patterns shown at the bottom and the reflection positions shown as the vertical lines

Other spectroscopic characterization data

Figure S2 EDX spectrum of a typical PVP-coated BiOI nanoparticle

Figure S3 X-ray powder diffraction patterns of the BiOI NPs

Figure S4 Particle size distribution of PVP-coated BiOI NPs in water dispersion

Figure S5 The FT-IR spectrum of PVP-coated BiOI NPs

Figure S6 The TGA curve of PVP-coated BiOI NP

Figure S7 Calibration curve of absorbance vs. I concentration

Figure S8 Fluorescence emission spectrum of dye-conjugated BiOI NPs