## Supporting Information for

## Structure-Redox-Relaxivity Relationships for Redox Responsive Manganese-Based Magnetic Resonance Imaging Probes

Eric M. Gale,<sup>‡</sup> Shreya Mukherjee,<sup>‡</sup> Cynthia Liu, Galen Loving, Peter Caravan\*

<sup>‡</sup>Authors contributed equally to this manuscript

Athinoula, A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129

## Table of Contents

| Content                                                                                               | <u>Page</u> |
|-------------------------------------------------------------------------------------------------------|-------------|
| Scheme S1: Ligand synthesis                                                                           | S3          |
| Figure S1: LC trace of [Mn <sup>II</sup> (HBET-OMe)] <sup>2-</sup>                                    | S4          |
| Figure S2: LC trace of [Mn <sup>II</sup> (HBET-NO <sub>2</sub> )] <sup>2-</sup>                       | S4          |
| Figure S3: LC trace of [Mn <sup>II</sup> (CyHBET)] <sup>2-</sup>                                      | S5          |
| Figure S4: LC trace of [Mn <sup>II</sup> (CyHBET-OMe)] <sup>2-</sup>                                  | S5          |
| Figure S5: LC trace of [Mn <sup>II</sup> (CyHBET-NO <sub>2</sub> )] <sup>2-</sup>                     | S6          |
| Figure S6: LC trace of [Mn <sup>III</sup> (HBET-NO <sub>2</sub> )] <sup>1-</sup>                      | S6          |
| Figure S7: LC trace of [Mn <sup>III</sup> (CyHBET)] <sup>1-</sup>                                     | S7          |
| Figure S8: LC trace of [Mn <sup>III</sup> (CyBET-NO <sub>2</sub> )] <sup>1-</sup> - pure diastereomer | S7          |
| Figure S9: LC trace of [Mn <sup>III</sup> (CyBET-NO <sub>2</sub> )] <sup>1-</sup> - pure diastereomer | S8          |
| Figure S10: LC trace of [Zn <sup>II</sup> (HBET)] <sup>2-</sup>                                       | S8          |
| Figure S11: LC trace of [Zn <sup>II</sup> (HBET-OMe)] <sup>2-</sup>                                   | S9          |
| Figure S12: LC trace of [Zn <sup>II</sup> (HBET-NO <sub>2</sub> )] <sup>2-</sup>                      | S9          |
| Figure S13: LC trace of [Zn <sup>II</sup> (CyHBET)] <sup>2-</sup>                                     | S10         |
| Figure S14: LC trace of [Zn <sup>II</sup> (CyHBET-OMe)] <sup>2-</sup>                                 | S10         |
| Figure S15: LC trace of [Zn <sup>II</sup> (CyHBET-NO <sub>2</sub> )] <sup>2-</sup>                    | S11         |
| Figure S16: LC trace of reaction of HBET-OMe with MnF <sub>3</sub>                                    | S11         |
| Figure S17: pH titration profiles of L and 1:1 Mn(II):L for HBET-R'                                   | S12         |

| Figure S18: pH titration profiles of L and 1:1 Mn(II):L for CyHBET-R'                                                                                                         | S13 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure S19: pH-distribution diagram for 1:1 Mn:HBET-OMe                                                                                                                       | S14 |
| Figure S20: pH-distribution diagram for 1:1 Mn:CyHBET-OMe                                                                                                                     | S14 |
| Figure S21: pH-distribution diagram for 1:1 Mn:CyHBET-NO <sub>2</sub>                                                                                                         | S15 |
| Figure S22: UV-vis as function of pH for HBET                                                                                                                                 | S16 |
| Figure S23: UV-vis as function of pH for HBET-OMe                                                                                                                             | S16 |
| Figure S24: UV-vis as function of pH for HBET-NO <sub>2</sub>                                                                                                                 | S17 |
| Figure S25: UV-vis as function of pH for CyHBET                                                                                                                               | S17 |
| Figure S26: UV-vis as function of pH for CyHBET-OMe                                                                                                                           | S18 |
| Figure S27: UV-vis as function of pH for CyHBET-OMe                                                                                                                           | S18 |
| Figure S28: UV-vis as function of pH for [Mn <sup>II</sup> (HBET)] <sup>2-</sup>                                                                                              | S19 |
| Figure S29: UV-vis as function of pH for [Mn <sup>II</sup> (HBET-OMe)] <sup>2-</sup>                                                                                          | S19 |
| Figure S30: UV-vis as function of pH for [Mn <sup>II</sup> (CyHBET)] <sup>2-</sup>                                                                                            | S20 |
| Figure S31: UV-vis as function of pH for [Mn <sup>II</sup> (CyHBET-OMe)] <sup>2</sup>                                                                                         | S20 |
| Figure S32: UV-vis as function of pH for [Mn <sup>II</sup> (CyHBET-NO <sub>2</sub> )] <sup>2-</sup>                                                                           | S21 |
| <b>Figure S33</b> : <i>r</i> <sub>2</sub> <sup>0</sup> vs T for [Mn <sup>II</sup> (CyHBET- <b>R</b> ′)] <sup>2-</sup> complexes                                               | S22 |
| Figure S34: <sup>17</sup> O $\Delta \omega_p$ vs T of [Mn <sup>II</sup> (HBET- <b>R</b> ')] <sup>2-</sup> at pH 9                                                             | S22 |
| <b>Figure S35</b> : <sup>17</sup> O $\Delta \omega_p$ vs T of [Mn <sup>II</sup> (CyHBET-NO <sub>2</sub> )] <sup>2-</sup> at pH 6                                              | S23 |
| Figure S36: <sup>17</sup> O $\Delta \omega_p$ vs T of [Mn <sup>II</sup> (CyHBET- <b>R</b> ')] <sup>2-</sup> at pH 9                                                           | S23 |
| <b>Figure S37</b> : Full CV for [Mn <sup>II</sup> (HBET)] <sup>2-</sup> and [Mn <sup>II</sup> (HBET-OMe)] <sup>2-</sup>                                                       | S24 |
| Figure S38: CV data: [Mn <sup>II</sup> /Zn <sup>II</sup> (CyHBET)] <sup>2-</sup>                                                                                              | S24 |
| Figure S39: CV data: [Mn <sup>II</sup> /Zn <sup>II</sup> (CyHBET-OMe)] <sup>2-</sup>                                                                                          | S25 |
| Figure S40: CV data: [Mn <sup>II</sup> /Zn <sup>II</sup> (HBET-NO <sub>2</sub> )] <sup>2-</sup> /[Mn <sup>II</sup> /Zn <sup>II</sup> (CyHBET-NO <sub>2</sub> )] <sup>2-</sup> | S25 |
| Figure S41: Kinetics of [Mn <sup>III</sup> (Cy/HBET)] <sup>1-</sup> reduction by L-cys                                                                                        | S27 |
| Figure S42: Kinetics of [Mn <sup>III</sup> (Cy/HBET-NO <sub>2</sub> )] <sup>1-</sup> reduction by L-cys                                                                       | S27 |
| Table S1: $pK_a$ of HL and HML determined through UV-vis spectroscopy                                                                                                         | S28 |



R = cyclohexylene; R' =- H (13), -OMe (18), -NO2 (27)

**Scheme S1**. Synthesis of ligands, Mn(II) complexes, and Mn(III) complexes considered in this study.



with this peak.



this peak.



this peak.



with this peak.



with this peak.



Time (min) **Figure S6**. LC of [Mn(HBET-NO<sub>2</sub>)]<sup>-</sup> detected at 280 nm;  $m/z^+$  = 438.0 eluted with this peak.



**Figure S7**. LC of  $[Mn(CyHBET)]^-$  detected at 254 nm showing both diastereomeric forms of this complex;  $m/z^+ = 447.4$  eluted with these peaks.



**Figure S8**. LC of one unique diastereomer of  $[Mn(CyHBET-NO_2)]^-$  detected at 254 nm;  $m/z^+ = 493.1$  eluted with this peak.



**Figure S9**. LC of the other unique diastereomer of  $[Mn(CyHBET-NO_2)]^{-1}$  detected at 254 nm;  $m/z^{+}$  = 493.1 eluted with this peak.



peak.



with this peak.



with this peak.



**Figure S13**. LC of  $[Zn(CyHBET)]^{2^-}$  detected at 280 nm showing both diastereomeric forms of this complex;  $m/z^+ = 457.1$  eluted with these peaks.



**Figure S14**. LC of  $[Zn(CyHBET-OMe)]^{2^-}$  detected at 280 nm showing both diastereomeric forms of this complex;  $m/z^+ = 487.1$  eluted with these peaks.



Time (min) **Figure S15**. LC of  $[Zn(CyHBET-NO_2)]^{2^-}$  detected at 254 nm showing both diastereomeric forms of this complex;  $m/z^+ = 502.1$  eluted with these peaks.



Figure S16. LC of crude reaction mixture of 1:1 HBET-OMe:MnF $_3$  at 220 nm detection.



**Figure S17**. pH profiles of L and 1:1 Mn(II):L + 1 mol equiv. TFA. (A) HBET, (B) HBET-OMe, and (C) HBET-NO<sub>2</sub> (25  $^{\circ}$ C, *I* = 0.1 M NaCl).



**Figure S18**. pH profiles of L and 1:1 Mn(II):L + 1 mol equiv. TFA. (A) CyHBET, (B) CyHBET-OMe, and (C) CyHBET-NO<sub>2</sub> (25 °C, I = 0.1 M NaCl).



**Figure S19**. Distribution diagram for 1:1 Mn(II):HBET-OMe mixture. ML, HML and free Mn are depicted by red, blue and black traces, respectively ([Mn] = [L] =1 mM, 25 °C, I = 0.1 M NaCl);  $r_1$  (37 °C, 1.4 T) is overlaid in black dots.



**Figure S20**. Distribution diagram for 1:1 Mn(II):CyHBET-OMe mixture. ML, HML and free Mn are depicted by red, blue and black traces, respectively ([Mn] = [L] =1 mM, 25 °C, I = 0.1 M NaCl);  $r_1$  ( 37 °C, 1.4 T) is overlaid in black dots.



**Figure S21**. Distribution diagram for 1:1 Mn(II):CyHBET-NO<sub>2</sub> mixture. ML, HML and free Mn are depicted by red, blue and black traces, respectively ([Mn] = [L] =1 mM, 25 °C, I = 0.1 M NaCl);  $r_1$  ( 37 °C, 1.4 T) is overlaid in black dots.



**Figure S22**. Left: UV-vis spectrum of HBET shown as a function of pH. Arrow indicates increase in absorbance at 295 nm with increasing pH. Right: Absorbance at 295 nm as a function of pH. Solid line represents the fit to the data.



**Figure S23**. Left: UV-vis spectrum of HBET-OMe shown as a function of pH. Arrow indicates increase in absorbance at 312 nm with increasing pH. Right: Absorbance at 312 nm as a function of pH. Solid line represents the fit to the data.



**Figure S24**. Left: UV-vis spectrum of HBET-NO<sub>2</sub> shown as a function of pH. Arrow indicates increase in absorbance at 410 nm with increasing pH. Right: Absorbance at 410 nm as a function of pH. Solid line represents the fit to the data.



**Figure S25**. Left: UV-vis spectrum of CyHBET shown as a function of pH. Arrow indicates increase in absorbance at 308 nm with increasing pH. Right: Absorbance at 308 nm as a function of pH. Solid line represents the fit to the data.



**Figure S26**. Left: UV-vis spectrum of CyHBET-OMe shown as a function of pH. Arrow indicates increase in absorbance at 312 nm with increasing pH. Right: Absorbance at 312 nm as a function of pH. Solid line represents the fit to the data.



**Figure S27**. Left: UV-vis spectrum of CyHBET-NO<sub>2</sub> shown as a function of pH. Arrow indicates increase in absorbance at 400 nm with increasing pH. Right: Absorbance at 400 nm as a function of pH. Solid line represents the fit to the data.



**Figure S28**. Left: UV-vis spectrum of  $[Mn(HBET)]^{2-}$  shown as a function of pH. Arrow indicates increase in absorbance at 288 nm with increasing pH. Right: Absorbance at 288 nm as a function of pH. Solid line represents the fit to the data.



**Figure S29**. Left: UV-vis spectrum of [Mn(HBET-OMe)]<sup>2-</sup> shown as a function of pH. Arrow indicates increase in absorbance at 308 nm with increasing pH. Right: Absorbance at 308 nm as a function of pH. Solid line represents fit to the data.



**Figure S30**. Left: UV-vis spectrum of [Mn(CyHBET)]<sup>2-</sup> shown as a function of pH. Arrow indicates increase in absorbance at 296 nm with increasing pH. Right: Absorbance at 296 nm as a function of pH. Solid line represents fit to the data.



**Figure S31**. Left: UV-vis spectrum of [Mn(CyHBET-OMe)]<sup>2-</sup> shown as a function of pH. Arrow indicates increase in absorbance at 308 nm with increasing pH. Right: Absorbance at 296 nm as a function of pH. Solid line represents fit to the data.



**Figure S32**. Left: UV-vis spectrum of  $[Mn(CyHBET-NO_2)]^{2-}$  shown as a function of pH. Arrow indicates increase in absorbance at 396 nm with increasing pH. Right: Absorbance at 396 nm as a function of pH. Solid line represents fit to the data.



**Figure S33**. Plot of  $r_2^0$  as a function of temperature at pH 6 (left) and pH 9 (right) for  $[Mn^{II}(CyHBET)]^{2-}$  (filled circles),  $[Mn^{II}(CyHBET-OMe)]^{2-}$  (open circles), and  $[Mn^{II}(CyHBET-NO_2)]^{2-}$  (triangles).



**Figure S34**. Reduced  $H_2^{17}O$  chemical shift in the presence of  $[Mn^{II}(HBET)]^{2-}$  (left) and  $[Mn^{II}(HBET-OMe)]^{2-}$  (right) at pH 9.



**Figure S35**. Reduced  $H_2^{17}O$  chemical shift in the presence of [Mn<sup>II</sup>(CyHBET-NO<sub>2</sub>)]<sup>2-</sup> at pH 6.



**Figure S36**. Reduced  $H_2^{17}O$  chemical shift in the presence of (A)  $[Mn^{II}(CyHBET)]^{2^-}$ , (B)  $[Mn^{II}(CyHBET-OMe)]^{2^-}$ , and (C)  $[Mn^{II}(CyHBET-NO_2)]^{2^-}$  at pH 9.



**Figure S37**. CV of  $[Mn^{II/II}(HBET)]^{2-/1-}$  (left) and  $[Mn^{II/II}(HBET-OMe)]^{2-/1-}$  (right) between -0.3 to 1.2 V. GC working electrode, Pt counter electrode, pH 7.4 with 0.5 M KNO<sub>3</sub> as supporting electrolyte, scan rate: 100 mV/s. Arrows indicate the position from which the scans were initiated.



**Figure S38**. Top: CV of  $[Mn^{II/III}(CyHBET)]^{2-/1-}$  between -0.3 to 0.7 V (blue) or -0.3 to 1.2V (black). Bottom: CV of  $[Zn(CyHBET)]^2$ . 5 mM complex, GC working electrode, Pt counter electrode, pH 7.4 w/ 0.5 M KNO<sub>3</sub> as supporting electrolyte, scan rate: 100 mV/s. Arrows indicate the position from which the scans were initiated.



**Figure S39**. Top: CV of  $[Mn^{II/III}(CyHBET-OMe)]^{2-/1-}$  between -0.3 to 0.7 V (blue) or -0.3 to 1.2 V (black). Bottom: CV of corresponding  $[Zn(CyHBET-OMe)]^{2-}$  complex. 5 mM complex, GC working electrode, Pt counter electrode, pH 7.4 with 0.5 M KNO<sub>3</sub> as supporting electrolyte, scan rate: 100 mV/s. Arrows indicate the position from which the scans were initiated.



**Figure S40**. A: CV of  $[Mn^{II/III}(HBET-NO_2)]^{2-/1-}$  scanning from -0.2 to 0.7 V (blue) or -0.3 to 1.2 V (black). B: CV of  $[Mn^{II/III}(CyHBET-NO_2)]^{2-/1-}$  scanning from -0.2 to 0.7 V (blue) or 1.2 V (black). C: CV of  $[Zn(HBET-NO_2)]^{2-}$ . D: CV of  $[Zn(CyHBET-NO_2)]^2$ . 5 mM complex, GC working electrode, Pt counter electrode, pH 7.4 with 0.5 M KNO<sub>3</sub> as supporting electrolyte, scan rate: 100 mV/s. Arrows indicate the position from which the scans were initiated.



**Figure S41**. Conversion of 0.5 mM Mn(III) to Mn(II) in the presence of 10 mM cysteine in pH 7.4 Tris buffer. Left: [Mn<sup>III</sup>(HBET)]<sup>-</sup>. Right: [Mn<sup>III</sup>(CyHBET)]<sup>-</sup>.



**Figure S42**. Conversion of 0.5 mM Mn(III) to Mn(II) in the presence of 10 mM cysteine in pH 7.4 Tris buffer. Left: [Mn<sup>III</sup>(HBET-NO<sub>2</sub>)]<sup>-</sup>. Right: [Mn<sup>III</sup>(CyHBET-NO<sub>2</sub>)]<sup>-</sup>.

| Ligand                 | р <i>К</i> а | Complex                                     | p <i>K</i> a |
|------------------------|--------------|---------------------------------------------|--------------|
| HBET                   | 11.09        | [Mn(HBET)] <sup>2-</sup>                    | 7.64         |
| HBET-OMe               | 11.69        | [Mn(HBET-OMe)] <sup>2-</sup>                | 7.91         |
| HBET-NO <sub>2</sub>   | 7.46         | [Mn(HBET-NO <sub>2</sub> )] <sup>2-</sup>   | 4.84         |
| CyHBET                 | 11.37        | [Mn(CyHBET)] <sup>2-</sup>                  | 7.95         |
| CyHBET-OMe             | 12.48        | [Mn(CyHBET-OMe)] <sup>2-</sup>              | 7.95         |
| CyHBET-NO <sub>2</sub> | 8.12         | [Mn(CyHBET-NO <sub>2</sub> )] <sup>2-</sup> | 4.87         |

Table S1. Phenol  $pK_a$  Values Determined by UV-vis Spectroscopy.