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SUPPLEMENTARY FIG. S1. Behavior of embryonic stem (ES)-green fluorescent protein (GFP) cells in different
culture conditions. (A) Number of ES-GFP cells after 3, 6, 9, and 12 days of culture in different media; *P < 0.05;
**P < 0.01. Three independent experiments were performed. (B) Immunofluorescent detection of Oct-4 and MyoD in ES-
GFP cells pretreated with 10 mM 5-azaC and then cultured in DMEM + LIF or DMEM + FBS + HS for 12 days. White arrow
indicates cells devoid of pluripotency marker Oct-4; green arrows indicate nuclei positive for MyoD. Scale bar, 20mm. (C)
Morphology of ES-GFP cell colonies pretreated with 5-azaC and then cultured in DMEM + LIF or DMEM + FBS + HS for
12 days. In control cultures, incubation with 5-azaC was omitted. Black arrow indicates one of the elongated cells observed
among ES cells treated with 5-azaC and cultured in DMEM + FBS + HS (or DMEM + HS). Scale bar, 100mm. (D) The
number of ES-GFP cells pretreated with different concentrations of 5-azaC and then cultured in different types of media for
12 days. Three independent experiments were performed.



SUPPLEMENTARY FIG. S2. Co-culture of ES cells and myoblasts. Morphology of ES-GFP cells and C2C12 myo-
blasts after 3, 6, and 9 days of co-culture (lower row). White arrows indicate ES cells colonies; black arrows indicate
myotubes. A control myoblast culture is shown in the upper row. Scale bar, 100 mm.



SUPPLEMENTARY FIG. S3. Immunolocalization of ADAM12, CD9, and CD81 in ES-GFP cells and myoblasts.
‘‘prol.,’’ indicates images showing localization of analyzed proteins in proliferating C2C12 or SC-derived myoblasts;
‘‘diff.,’’ indicates images showing presence of proteins in differentiating myoblasts. Scale bar, 20 mm.



SUPPLEMENTARY FIG. S4. Immunolocalization of integrin a3 and b1 in ES-GFP cells and myoblasts. ‘‘prol.,’’ marks
images showing localization of analyzed proteins in proliferating C2C12 or SC-derived myoblasts; ‘‘diff.,’’ indicates
images showing presence of proteins in differentiating myoblasts. Scale bar, 20 mm.



Supplementary Table S1. Primers Used in Reverse Transcription-Polymerase Chain Reaction

Gene Sequence
Product
size (bp)

Annealing
temperature (�C) References

Oct-4 5¢ GAAGTTGGAGAAGGTGGAACC 3¢ 450 55 1
5¢ AACCACATCCTTCTCTAGCCC 3¢
5¢ GGCGTTCTCTTTGGAAAGGTGTTC 3¢ 312 55 2
5¢ CTCGAACCACATCCTTCTCT 3¢

Nanog 5¢ AGGGTCTGCTACTGAGATGCTCTG 3¢ 363 59 3
5¢ CAACCACTGGTTTTTCTGCCACCG 3¢
5¢ CAGGTGTTTGAGGGTAGCTC 3¢ 222 52 4
5¢ CGGTTCATCATGGTACAGTC 3¢

Sox2 5¢ GGCGGCAACCAGAAGAACAG 3¢ 414 55 5
5¢ GTTGCTCCAGCCGTTCATGTG 3¢

Pax3 5¢ GCTGTCTGTGATCGGAACACT 3¢ 417 55 6
5¢ CTCCAGCTTGTTTCCTCCATC 3¢
5¢ GCTGTCTGTGATCGGAACACTG 3¢ 509 62 7
5¢ GTCTCCGACAGCTGGTATGTTG 3¢

Pax7 5¢ CTGGATGAGGGCTCAGATGT 3¢ 243 52 6
5¢ GGTTAGCTCCTGCCTGCTTA 3¢
5¢ CAAGAGGTTTATCCAGCCGAC 3¢ 498 57 7
5¢ GAGGGCACCGTGCTTCGGTC 3¢

MyoD 5¢ ACATAGACTTGACAGGCCCCGA 3¢ 450 52 8
5¢ AGACCTTCGATGTAGCGGATGG 3¢
5¢ GCCCGCGCTCCAACTGCTCTGAT 3¢ 397 59 9
5¢ CCTACGGTGGTGCGCCCTCTGC 3¢

Myf-5 5¢ GAGCCAAGAGTAGCAGCCTTCG 3¢ 440 54 8
5¢ GTTCTTTCGGGACCAGACAGGG 3¢
5¢ TGCCATCCGCTACATTGAGAG 3¢ 353 59 9
5¢ CCGGGGTAGCAGGCTGTGAGTTG 3¢

Myog 5¢ CCATCCAGTACATTGAGCGCCTA 3¢ 550 55 8
5¢ GGGGCTCTCTGGACTCCATCTT 3¢
5¢ GGGCCCCTGGAAGAAAAG 3¢ 364 55 9
5¢ AGGAGGCGCTGTGGGAGTT 3¢

Mrf4 5¢ CTGCGCGAAAGGAGGAGACTAAAG 3¢ 367 55 10
5¢ ATGGAAGAAAGGCGCTGAAGACTG 3¢
5¢ CTACATTGAGCGTCTACAGGACC 3¢ 234 55 11
5¢ CTGAAGACTGCTGGAGGCTG 3¢

Ncam 5¢ TGTCAAGTGGCAGGAGATGC 3¢ 137 52 12
5¢ GGCGTTGTAGATGGTGAGGGT 3¢

Vcam-1 5¢ ACACTCTTACCTGTGCGCTGT 3¢ 304 57 13
5¢ ATTTCCCGGTATCTTCAATGG 3¢

Itga3 5¢ AAGCCAAATCTGAGACTGTG 3¢ 660 47 14
5¢ GTAGTATCGGTCCCAATCT 3¢

Itgb1 5¢ TGTGGAGACTCCAGACTGTCCTACT 3’ 247 57 14
5¢ TCATTTTCCCTCATACTTCGGATT 3’

Mcad 5¢ CCACAAACGCCTCCCCTACCCACTT 3¢ 446 58 10
5¢ TCGTCGATGCTGAAGAACTCAGGGC 3¢

Adam12 5¢ CACGAATCGCTGCTGTAACGCTA 3¢ 396 49 15
5¢ CTCTCAGCTCACATTTGGCGAAGGC 3¢

Cd9 5¢ GAGCATGCCGGTCAAAGGAGGTAG 3¢ 685 58 16
5¢ TCAGCACATTTCTCGGCTCC 3¢

Cd81 5¢ AGTACACGGAGCTGTTCCGG 3¢ 304 52 17
5¢ ATGGGAGTGGAGGGCTGCAC 3¢

GAPDH 5¢ ACTCCACTCACGGCAAATTC 3¢ 385 59 7]
5¢ ACTGTGGTCATGAGCCCTTC 3¢
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