Supplementary Data

SUPPLEMENTARY FIG. S1. Behavior of embryonic stem (ES)-green fluorescent protein (GFP) cells in different culture conditions. (A) Number of ES-GFP cells after 3, 6, 9, and 12 days of culture in different media; *P < 0.05; **P < 0.01. Three independent experiments were performed. (B) Immunofluorescent detection of Oct-4 and MyoD in ES-GFP cells pretreated with 10 µM 5-azaC and then cultured in DMEM + LIF or DMEM + FBS + HS for 12 days. *White arrow* indicates cells devoid of pluripotency marker Oct-4; *green arrows* indicate nuclei positive for MyoD. Scale bar, 20 µm. (C) Morphology of ES-GFP cell colonies pretreated with 5-azaC and then cultured in DMEM + LIF or DMEM + FBS + HS for 12 days. In control cultures, incubation with 5-azaC was omitted. *Black arrow* indicates one of the elongated cells observed among ES cells treated with 5-azaC and cultured in DMEM + FBS + HS (or DMEM + HS). Scale bar, 100 µm. (D) The number of ES-GFP cells pretreated with different concentrations of 5-azaC and then cultured in different types of media for 12 days. Three independent experiments were performed.

SUPPLEMENTARY FIG. S2. Co-culture of ES cells and myoblasts. Morphology of ES-GFP cells and C2C12 myoblasts after 3, 6, and 9 days of co-culture (*lower row*). *White arrows* indicate ES cells colonies; *black arrows* indicate myotubes. A control myoblast culture is shown in the *upper row*. Scale bar, 100 µm.

SUPPLEMENTARY FIG. S3. Immunolocalization of ADAM12, CD9, and CD81 in ES-GFP cells and myoblasts. "prol.," indicates images showing localization of analyzed proteins in proliferating C2C12 or SC-derived myoblasts; "diff.," indicates images showing presence of proteins in differentiating myoblasts. Scale bar, 20 µm.

SUPPLEMENTARY FIG. S4. Immunolocalization of integrin $\alpha 3$ and $\beta 1$ in ES-GFP cells and myoblasts. "prol.," marks images showing localization of analyzed proteins in proliferating C2C12 or SC-derived myoblasts; "diff.," indicates images showing presence of proteins in differentiating myoblasts. Scale bar, 20 μ m.

Gene	Sequence	Product size (bp)	Annealing temperature (°C)	References
Oct-4	5' GAAGTTGGAGAAGGTGGAACC 3'	450	55	1
	5' AACCACATCCTTCTCTAGCCC 3' 5' GGCGTTCTCTTTGGAAAGGTGTTC 3' 5' CTCGAACCACATCCTTCTCT 3'	312	55	2
Nanog	5' AGGGTCTGCTACTGAGATGCTCTG 3' 5' CAACCACTGGTTTTTCTGCCACCG 3'	363	59	3
	5' CAGGTGTTTGAGGGTAGCTC 3' 5' CGGTTCATCATGGTACAGTC 3'	222	52	4
Sox2	5' GGCGGCAACCAGAAGAACAG 3' 5' GTTGCTCCAGCCGTTCATGTG 3'	414	55	5
Pax3	5' GCTGTCTGTGATCGGAACACT 3' 5' CTCCAGCTTGTTTCCTCCATC 3'	417	55	6
	5' GCTGTCTGTGATCGGAACACTG 3' 5' GTCTCCGACAGCTGGTATGTTG 3'	509	62	7
Pax7	5' CTGGATGAGGGCTCAGATGT 3' 5' GGTTAGCTCCTGCCTGCTTA 3'	243	52	6
	5' CAAGAGGTTTATCCAGCCGAC 3' 5' GAGGGCACCGTGCTTCGGTC 3'	498	57	7
MyoD	5' ACATAGACTTGACAGGCCCCGA 3' 5' AGACCTTCGATGTAGCGGATGG 3'	450	52	8
	5' GCCCGCGCTCCAACTGCTCTGAT 3' 5' CCTACGGTGGTGCGCCCTCTGC 3'	397	59	9
Myf-5	5' GAGCCAAGAGTAGCAGCCTTCG 3' 5' GTTCTTTCGGGACCAGACAGGG 3'	440	54	8
	5' TGCCATCCGCTACATTGAGAG 3' 5' CCGGGGTAGCAGGCTGTGAGTTG 3'	353	59	9
Myog	5' CCATCCAGTACATTGAGCGCCTA 3' 5' GGGGCTCTCTGGACTCCATCTT 3'	550	55	8
	5' GGGCCCCTGGAAGAAAAG 3' 5' AGGAGGCGCTGTGGGAGTT 3'	364	55	9
Mrf4	5' CTGCGCGAAAGGAGGAGACTAAAG 3' 5' ATGGAAGAAAGGCGCTGAAGACTG 3'	367	55	10
	5' CTACATTGAGCGTCTACAGGACC 3' 5' CTGAAGACTGCTGGAGGCTG 3'	234	55	11
Ncam	5' TGTCAAGTGGCAGGAGATGC 3' 5' GGCGTTGTAGATGGTGAGGGT 3'	137	52	12
Vcam-1	5' ACACTCTTACCTGTGCGCTGT 3' 5' ATTTCCCGGTATCTTCAATGG 3'	304	57	13
Itga3	5' AAGCCAAATCTGAGACTGTG 3' 5' GTAGTATCGGTCCCAATCT 3'	660	47	14
Itgb1	5' TGTGGAGACTCCAGACTGTCCTACT 3' 5' TCATTTTCCCTCATACTTCGGATT 3'	247	57	14
Mcad	5' CCACAAACGCCTCCCCTACCCACTT 3' 5' TCGTCGATGCTGAAGAACTCAGGGC 3'	446	58	10
Adam12	5' CACGAATCGCTGCTGTAACGCTA 3' 5' CTCTCAGCTCACATTTGGCGAAGGC 3'	396	49	15
Cd9	5' GAGCATGCCGGTCAAAGGAGGTAG 3' 5' TCAGCACATTTCTCGGCTCC 3'	685	58	16
Cd81	5' AGTACACGGAGCTGTTCCGG 3' 5' ATGGGAGTGGAGGGCTGCAC 3'	304	52	17
GAPDH	5' ACTCCACTCACGGCAAATTC 3' 5' ACTGTGGTCATGAGCCCTTC 3'	385	59	7]

SUPPLEMENTARY TABLE S1. PRIMERS USED IN REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

Supplementary References

- Sebastiano V, L Gentile, S Garagna, CA Redi and M Zuccotti. (2005). Cloned pre-implantation mouse embryos show correct timing but altered levels of gene expression. Mol Reprod Dev 70:146–154.
- Toyooka Y, N Tsunekawa, R Akasu and T Noce. (2003). Embryonic stem cells can form germ cells *in vitro*. Proc Natl Acad Sci U S A 100:11457–11462.
- Furusawa T, K Ohkoshi, C Honda, S Takahashi and T Tokunaga. (2004). Embryonic stem cells expressing both platelet endothelial cell adhesion molecule-1 and stagespecific embryonic antigen-1 differentiate predominantly into epiblast cells in a chimeric embryo. Biol Reprod 70:1452–1457.
- 4. Takahashi K and S Yamanaka. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676.
- Buehr M, S Meek, K Blair, J Yang, J Ure, J Silva, R McLay, J Hall, QL Ying and A Smith. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298.
- Holterman CE, F Le Grand, S Kuang, P Seale and MA Rudnicki. (2007). Megf10 regulates the progression of the satellite cell myogenic program. J Cell Biol 179:911–922.
- Lepper C, SJ Conway and CM Fan. (2009). Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460:627–631.
- De Bari C, F Dell'Accio, F Vandenabeele, JR Vermeesch, JM Raymackers and FP Luyten. (2003). Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160:909–918.
- Cornelison DD, BB Olwin, MA Rudnicki and BJ Wold. (2000). MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol 224:122–137.

- Cornelison DD and BJ Wold. (1997). Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283.
- Patapoutian A, JK Yoon, JH Miner, S Wang, K Stark and B Wold. (1995). Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121:3347–3358.
- 12. Yoong LF, ZN Peng, G Wan and HP Too. (2005). Tissue expression of alternatively spliced GFRalpha1, NCAM and RET isoforms and the distinct functional consequence of ligand-induced activation of GFRalpha1 isoforms. Brain Res Mol Brain Res 139:1–12.
- Zerfaoui M, Y Suzuki, AS Naura, CP Hans, C Nichol and AH Boulares. (2008). Nuclear translocation of p65 NF-kappaB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cell Signal 20:186–194.
- Maitra N, IL Flink, JJ Bahl and E Morkin. (2000). Expression of alpha and beta integrins during terminal differentiation of cardiomyocytes. Cardiovasc Res 47:715–725.
- Abe E, H Mocharla, T Yamate, Y Taguchi and SC Manolagas. (1999). Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif Tissue Int 64:508–515.
- 16. Takemura T, S Hino, Y Murata, H Yanagida, M Okada, K Yoshioka and RD Harris. (1999). Coexpression of CD9 augments the ability of membrane-bound heparin-binding epidermal growth factor-like growth factor (proHB-EGF) to preserve renal epithelial cell viability. Kidney Int 55:71– 81.
- Clark KL, Z Zeng, AL Langford, SM Bowen and SC Todd. (2001). PGRL is a major CD81-associated protein on lymphocytes and distinguishes a new family of cell surface proteins. J Immunol 167:5115–5121.