Supporting Information

for

A modular phosphate tether-mediated divergent strategy to complex polyols

Paul R. Hanson*, Susanthi Jayasinghe[‡], Soma Maitra[‡], Cornelius N. Ndi and Rambabu Chegondi

Address: Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA

Email: Paul R. Hanson - phanson@ku.edu

*Corresponding author

[‡]Equal contributors

Experimental section

General Methods:	S1 to S5
Experimental Data:	S6 to S14
¹ H NMR, ¹³ C NMR, ³¹ P NMR spectra:	S15 to S32

All reactions were carried out in an oven- or flame-dried glassware under argon atmosphere using standard gastight syringes, cannulae, and septa. Stirring was achieved with oven-dried magnetic stir bars. Et₂O, THF and CH₂Cl₂ were purified by passage through a purification system (Solv-Tek) employing activated Al₂O₃ (Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Safe and Convenient Procedure for Solvent Purification *Organometallics*, **1996**, *15*, 1518–1520). Et₃N was purified by passage over basic alumina and stored over KOH. Butyllithium was purchased from Aldrich and titrated prior to use. All olefin metathesis catalysts were acquired from Materia and used without further purification. Flash column chromatography was performed with Sorbent Technologies (30930M-25, Silica Gel 60A, 40-63 µm) and thin layer chromatography was performed on silica gel 60F₂₅₄ plates (EM-5717, Merck). Deuterated solvents were purchased from Cambridge Isotope laboratories. ¹H and ¹³C NMR spectra were recorded in CDCl₃ (unless otherwise mentioned) on a Bruker DRX-500 spectrometer operating at 500 MHz, and 125 MHz, respectively and calibrated to the solvent peak. ³¹P NMR spectra was recorded on Bruker DRX-400 spectrometer operating at 162 MHz. High-resolution mass spectrometry (HRMS) was recorded on a LCT Premier Spectrometer (Micromass UK Limited) operating on ESI (MeOH). Observed rotations at 589 nm, were measured using AUTOPOL IV Model automatic polarimeter. IR was recorded on Shimadzu FTIR-8400S instrument.

General procedure for RCM/CM/hydrogenation (Procedure A)

To a stirring solution of triene (*S*,*S*) in freshly distilled, freeze-degas-thawed dichloroethane [1] (0.007 M) was added Hoveyda-Grubbs 2^{nd} Gen. catalyst (HG-II) (3 mol %) and the reaction was refluxed for 2 hours. After completion of RCM (monitored by TLC), the solvent was removed under reduced pressure and olefin cross partner [3–5 equivalent with respect to the triene (*S*,*S*)] dissolved in freeze-degas-thawed CH₂Cl₂ (0.1 M) was introduced , followed by addition of HG-II (3–5 mol %). It should be noted that the use of dichloromethane was critical for successful cross-metathesis reaction in order to avoid the formation of isomerized ketone byproducts. Cross-metathesis (CM) reaction in dichloroethane provided the isomerized ketone byproduct (confirmed by ¹H and ¹³C spectra) and the cross-metathesis product with 1:1 ratio both at 70 °C and 90 °C. The reaction was refluxed for an additional 2–3 hours upon which the reaction showed the CM product formation along with some amounts of RCM starting material (*S*,*S*,*S*). The reaction mixture was cooled to RT and *o*-nitrobenzenesulfonylhydrazine (*o*-NBSH) (12 equiv.) and Et₃N (2 mL/g of *o*-NBSH) were added, upon which the reaction was stirred at RT overnight. The reaction mixture was quenched with sat. NaHCO₃ (1 mL), and diluted with CH₂Cl₂ (10 mL). The aqueous layer was washed with CH₂Cl₂ (3x5 mL) and the combined organic layers were dried (Na₂SO₄), concentrated under reduced pressure and purified using flash column chromatography.

General procedure for RCM/CM/hydrogenation (Procedure B)

To a stirring solution of triene (*S*,*S*) in freshly distilled, freeze-degas-thawed CH₂Cl₂ (0.007 M) was added HG-II (3 mol %) and the reaction was refluxed for 2 hours. After completion of RCM (monitored by TLC), the solvent was removed and olefin cross partner [3 equivalent with respect to the triene (*S*,*S*)] dissolved in freeze-degas-thawed CH₂Cl₂ (0.1 M) was introduced, followed by addition of HG-II (3 mol %). It should be noted that the use of dichloromethane was critical for successful CM reaction in order to avoid the formation of isomerized ketone byproducts. Cross-metathesis reaction in dichloroethane provided the isomerized ketone byproduct (confirmed by ¹H and ¹³C spectra) and the CM product with 1:1 ratio both at 70 °C and 90 °C. The reaction was refluxed for an additional 2–3 hours upon which the reaction showed the CM product formation along with some amounts of RCM starting material (*S*,*S*,*S*_P). The reaction mixture was cooled to RT and *o*-nitrobenzenesulfonyl hydrazine (*o*-NBSH) (12 equiv.) and Et₃N (2 mL/g of *o*-NBSH) were added, upon which the reaction was stirred at RT overnight. The

^[1] In CH₂Cl₂, the RCM appeared to be slower in the presence of HG-II.

reaction mixture was quenched with sat. NaHCO₃ (1 mL), and diluted with CH_2Cl_2 (10 mL). The aqueous layer was washed with CH_2Cl_2 (3x5 mL) and the combined organic layers were dried (Na₂SO₄), concentrated under reduced pressure and purified using flash column chromatography.

General procedure for RCM/CM/hydrogenation and subsequent reduction with LiAlH₄ (Procedure C)

The above-mentioned procedure for one-pot RCM/CM/hydrogenation was followed and the crude product was purified using flash column chromatography [2]. To a stirring solution of the hydrogenated product in dry THF (0.5 M), LiAlH₄ (2–4 equiv.) was added portion wise at 0 °C and the reaction was stirred at 0 °C for 2 hours. After the completion of reduction, the reaction was quenched via slow sequential addition of H₂O (1 mL/g of LiAlH₄), 10% NaOH (1 mL/g of LiAlH₄), and H₂O (3 mL/g of LiAlH₄) [Feiser workup] [3], and the ice bath was removed and the reaction was stirred for 2 h. The reaction was filtered through Celite[®] and washed with EtOAc (2x5 mL). The combined organic layers were concentrated under reduced pressure and purified using flash column chromatography.

General procedure for RCM/CM/LiAlH₄ reduction (Procedure D)

To a stirring solution of triene (*S*,*S*) in freshly distilled, freeze-degas-thawed dichloroethane (0.007 M) was added HG-II (3 mol %) and the reaction was refluxed for 2 hours. After completion of RCM (monitored by TLC), the solvent was removed and olefin cross partner [3–5 equivalent with respect to the triene (*S*,*S*)] dissolved in freeze-degas-thawed CH₂Cl₂ (0.1 M) was introduced, followed by addition of HG-II (3–6 mol %). The reaction was refluxed for an additional 2–3 hours upon which the reaction showed the CM product formation along with some amounts of RCM starting material (*S*,*S*,*S*_p). After the completion of CM, the solvent was evaporated under reduced pressure. The crude reaction mixture was then dissolved in dry THF (0.5 M) and cooled to 0 °C. To this solution LiAlH₄ (4 equiv.) was added portion wise and the reaction was stirred at 0 °C for 2 hours. After the completion of reduction, the reaction was quenched via slow sequential addition of H₂O (1 mL/g of LiAlH₄), 10% NaOH (1 mL/g of LiAlH₄), and H₂O (3 mL/g of LiAlH₄) [Feiser workup], and the ice bath was removed and the reaction was

^[2] Purification was necessary at this stage for subsequent successful LAH reduction.

^[3] Fieser, L.F.; Fieser, M. Reagents for Organic Synthesis Vol. 1, Wiley, New York 1967, pp 581–595.

stirred for 2 h. The reaction was filtered through Celite[®] and washed with EtOAc (2x5 mL). The combined organic layers were concentrated under reduced pressure and purified using flash column chromatography.

General procedure for RCM/CM/LiAlH₄ reduction (Procedure E)

To a stirring solution of triene (*S*,*S*) in freshly distilled, freeze-degas-thawed CH₂Cl₂ (0.007 M) was added HG-II (3 mol %) and the reaction was refluxed for 2 hours. After completion of RCM (monitored by TLC), the solvent was removed and olefin cross partner [3 equivalent with respect to the triene (*S*,*S*)] dissolved in freeze-degas-thawed CH₂Cl₂ (0.1 M) was introduced, followed by addition of Hoveyda-Grubbs 2^{nd} Gen. catalyst (3 mol %). The reaction was refluxed for an additional 2–3 hours upon which the reaction showed the CM product formation along with some amounts of RCM starting material (*S*,*S*,*S*_P). After the completion of CM, the solvent was evaporated under reduced pressure. The crude reaction mixture was then dissolved in dry THF (0.5 M) and cooled to 0 °C. To this solution LiAlH₄ (4 equiv.) was added portion wise and the reaction was stirred at 0 °C for 2 hours. After the completion of reduction, the reaction was quenched via slow sequential addition of H₂O (1 mL/g of LiAlH₄), 10% NaOH (1 mL/g of LiAlH₄), and H₂O (3 mL/g of LiAlH₄) [Feiser workup], and the ice bath was removed and the reaction was stirred for 2 h. The reaction was filtered through Celite[®] and washed with EtOAc (2x5 mL). The combined organic layers were concentrated under reduced pressure and purified using flash column chromatography.

General procedure for RCM/CM/ LiAlH₄ reduction and subsequent global hydrogenation (Procedure F)

The above-mentioned procedure (D or E) was followed to obtain the reduced product and the crude product was dissolved in CH_2Cl_2 (0.1 M) and *o*-nitrobenzenesulfonyl hydrazine (*o*-NBSH) (20 equiv.) and Et₃N (2 mL/g of *o*-NBSH) were added, upon which the reaction was stirred at RT overnight. The reaction mixture was quenched with sat. NaHCO₃ (1 mL) and diluted with CH_2Cl_2 (10 mL). The aqueous layer was washed with CH_2Cl_2 (3x5 mL) and the combined organic layers were dried (Na₂SO₄), concentrated under reduced pressure and purified using flash column chromatography. At this stage, purification was performed twice in order to remove all the byproducts arising from the use of *o*-NBSH.

(4*S*,6*S*)-2-(((1*S*,2*R*)-1-(4-bromophenyl)-2-methylbut-3-en-1-yl)oxy)-4,6-divinyl-1,3,2-dioxaphosphinane 2-oxide (5)

Synthesized by following the literature precedence [4]. **Yield :** 75%

FTIR (neat): 2962, 2927, 2349,1724, 1593, 1488, 1283, 1120, 1070, 997 cm⁻¹; **Optical Rotation**: $[\alpha]_D = +26.7$ (c = 0.075, CHCl₃);

¹**H** NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 2H, aromatic), 7.17 (d, J = 8.4 Hz, 2H, aromatic), 6.00 (dddd, J = 17.1, 10.6, 5.5, 0.9 Hz, 1H, H₂C=C<u>H</u>CH(OP)CH₂), 5.68 (dddd, J = 17.3, 10.6, 5.4, 1.6 Hz, 1H, H₂C=C<u>H</u>CH(OP)CH₂), 5.58 (ddd, J = 17.1, 10.5, 7.4 Hz, 1H, H₂C=C<u>H</u>CH(CH₃)CH(OP)Ar), 5.39–5.30 (m, 2H, <u>H</u>₂C=CHCH(OP)CH₂), 5.18–5.12 (m, 2H, <u>H</u>₂C=CHCH(OP)CH₂), 5.10 (d, J = 1.3 Hz, 1H, H₂C=CHCH(CH₃)C<u>H</u>(OP)Ar), 5.05 (dddd, J = 14.3, 6.8, 3.3, 1.4 Hz, 1H, H₂C=CHC<u>H</u>(OP)CH₂), 5.01–4.93 (m, 2H, <u>H</u>₂C=CHCH(CH₃)CH(OP)Ar), 2.09 (dddd, J = 14.7, 8.3, 5.0, 1.5 Hz, 1H, H₂C=CHCH(OP)C<u>H</u>₂CH(OP)CH), 1.93 (dddd, J = 14.8, 5.2, 3.5, 1.9 Hz, 1H, H₂C=CHCH(OP)C<u>H</u>₂CH(OP)CH), 1.13 (d, J = 6.8 Hz, 3H, H₂C=CHCH(C<u>H</u>₃)CH(OP)Ar).

¹³C NMR (126 MHz, CDCl₃) δ 137.9, 137.8 (d, J = 2.3 Hz), 135.2 (d, J = 3.0 Hz), 134.7 (d, J = 7.9 Hz), 131.3 (2C), 129.0 (2C), 122.2, 117.8, 117.6, 116.7, 83.5 (d, J = 6.2 Hz), 78.0 (d, J = 6.8 Hz), 75.7 (d, J = 6.0 Hz), 44.1 (d, J = 6.8 Hz), 35.0 (d, J = 7.4 Hz), 15.8.

³¹**P NMR** (162 MHz, CDCl₃) δ -6.85;

HRMS: cald. for C₁₈H₂₂BrO₄PNa (M+Na)⁺ 435.0337; found 435.0325 (TOF MS ES+).

(1*S*,3*S*,4*R*,7*S*,9*R*,*Z*)-9-((*S*)-4-(benzyloxy)-3-hydroxybutyl)-3-(4-bromophenyl)-4-methyl-2,10,11-trioxa-1-

phosphabicyclo[5.3.1]undec-5-ene 1-oxide (8)

Synthesized by following procedure B

Yield: 33% over 3 reactions (70% avg/rxn)

FTIR (neat): 3411, 2962, 2927, 2873,1593, 1454, 1488, 1284, 1105, 1007, 979 cm⁻¹;

Optical Rotation: $[\alpha]_D = -18.3 \ (c = 0.59, CHCl_3);$

¹**H** NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 13.6 Hz, 2H aromatic), 7.34–7.11 (m, 5H, aromatic), 7.03 (d, J = 13.6 Hz, 2H, aromatic), 5.47 (dt, J = 11.8, 1.8 Hz, 1H, CHOPC<u>H</u>=CHCHCH₃CHOPAr), 5.26–5.16 (m, 3H,

^[4] Chegondi, R.; Maitra, S.; Markley, J. L. Hanson, P. R. Chem. Eur. J. 2013, 19, 8088-8093.

 $CH_{2}C\underline{H}OPCH=C\underline{H}CHCH_{3}C\underline{H}OPAr), 4.70 (t, J = 11.5 Hz, 1H, CH_{2}C\underline{H}OPCH_{2}CHOP), 4.46 (s, 2H, CH_{2}OC\underline{H}_{2}Ph), 4.01-3.92 (m, 1H, CH=CHC\underline{H}CH_{3}CHOPAr), 3.77-3.68 (m, 1H, CH_{2}C\underline{H}OHCH_{2}OCH_{2}Ph), 3.41 (dd, J = 9.4, 3.2 Hz, 1H CHOHC\underline{H}_{2}OCH_{2}Ph), 3.24 (dd, J = 9.5, 7.9 Hz, 1H, CHOHC\underline{H}_{2}OCH_{2}Ph), 2.34 (s, 1H, OH), 2.15 (ddd, J = 14.4, 11.8, 6.1 Hz, 1H, CH_{2}CHOPC\underline{H}_{2}CHOP), 1.89-1.76 (m, 2H, CHOHCH_{2}C\underline{H}_{2}CHOPC\underline{H}_{2}CHOP), 1.74-1.60 (m, 2H, CHOHC\underline{H}_{2}CH_{2}CHOPCH_{2}CHOP), 1.42-1.34 (m, 1H, CHOHC\underline{H}_{2}CH_{2}CHOPCH_{2}CHOP), 0.69 (d, J = 6.9 Hz, 3H, CH=CHCHC\underline{H}_{3}CHOHAr);$

¹³C NMR (126 MHz, CDCl₃) δ 137.7, 135.6 (d, J_{CP} = 13.6 Hz), 132.0, 131.1 (2C), 130.4, 129.0 (2C), 128.5 (2C), 127.9, 127.8 (2C), 122.4, 79.1 (d, J_{CP} = 4.0 Hz), 78.7 (d, J = 6.9 Hz), 78.5 (d, J_{CP} = 7.4 Hz), 74.5, 73.4, 70.3, 36.4 (d, J_{CP} = 6.5 Hz), 34.2, 32.6 (d, J_{CP} = 9.3 Hz), 28.5, 16.9;

³¹**P NMR** (162 MHz, CDCl₃) δ -8.89;

HRMS: cald. for $C_{25}H_{30}BrO_6PNa (M+Na)^+ 559.0861$; found 559.0865 (TOF MS ES+).

(1*S*,3*S*,6*S*,8*R*)-3-((benzyloxy)methyl)-8-((3*R*,4*S*)-4-(4-bromophenyl)-4-hydroxy-3-methylbutyl)-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-ene 1-oxide (9):

Synthesized by following procedure A

Yield: 40% over 3 reactions (72% avg/rxn)

FTIR (neat): 3400, 2974, 2285, 1630, 1288, 1209, 1101, 977, 848 cm⁻¹;

Optical Rotation: $[\alpha]_D = +17.34(c = 1, CHCl_3);$

¹**H NMR** (500 MHz, CDCl₃) δ 7.50–7.43 (m, 2H, aromatic), 7.40–7.29 (m, 5H, aromatic), 7.21–7.16 (m, 2H, aromatic), 6.01 (ddd, J = 11.9, 3.0, 2.1 Hz, 1H, CH=CHCHOPCH₂OBn), 5.56 (ddd, J = 11.9, 3.9, 2.4 Hz, 1H, CH=CHCHOPCH₂OBn), 5.27 (dddd, J = 5.3, 5.3, 2.6, 2.6 Hz, 1H, CH=CHCHOPCH₂OBn), 5.18 (dddd, $J_{PH} = 24.6$, $J_{HH} = 6.2$, 4.1, 1.9 Hz, 1H, CH₂CHOPCH=CH), 4.65–4.58 (m, 2H, CH₂OCH₂Ph), 4.58–4.47 (m, 2H, 4-BrC₆H₄CHOH, CH₂CH₂OPO), 3.71 (ddd, J = 10.3, 5.1, 1.2 Hz, 1H, CH₂OBn), 3.61 (dd, J = 10.2, 6.0 Hz, 1H, CH₂OBn), 2.16 (ddd, J = 14.7, 12.0, 6.2 Hz, 1H, CHOPCH₂CHOP), 1.88 (d, J = 3.5 Hz, 1H, OH), 1.87–1.71 (m, 2H, 4-BrC₆H₄CHOHCH(CH₃)CH₂, CHOPCH₂CHOPCH₂CHOP), 1.67 (ddd, J = 14.6, 3.5, 2.0 Hz, 1H, CHOPCH₂CHOP), 1.58–1.48 (m, 1H, CH₂CHOPCH₂CHOP), 1.48–1.40 (m, 1H, CH₂CHOPCH₂CHOP), 1.39–1.30 (m, 1H, CH₂CH₂CHOPCH₂CHOP), 0.88 (d, J = 6.7 Hz, 3H, 4-BrC₆H₄CHOHCH(CH₃)CH₂)

¹³C NMR (126 MHz, CDCl₃) δ 142.4, 137.5, 131.3 (2C), 129.9, 129.6, 128.5 (2C), 128.0 (2C), 127.9, 127.7 (2C), 121.1, 77.3 (d, $J_{CP} = 6.8$ Hz), 77.0, 76.8 (d, $J_{CP} = 7.2$ Hz), 73.5, 72.2 (d, $J_{CP} = 6.1$ Hz), 71.2 (d, $J_{CP} = 12.2$ Hz), 39.9, 34.8 (d, $J_{CP} = 6.0$ Hz), 33.5 (d, $J_{CP} = 9.3$ Hz), 27.9, 14.0;

³¹**P NMR** (162 MHz, CDCl₃) δ -5.30;

HRMS: cald. for $C_{25}H_{30}BrO_6P(M+Na)^+$ 559.0861; found (TOF MS ES+) 559.0856.

Synthesized by following procedure C

Yield: 24% over 4 reactions (70% avg/rxn)

FTIR (neat): 3367, 3335, 3061, 2921, 2852, 1595, 1519, 1456, 1093, 1072, 1026, 910 cm⁻¹;

Optical Rotation: $[\alpha]_D$ =-32.3 (*c* = 0.33, CHCl₃);

¹**H** NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 2H, aromatic), 7.38–7.28 (m, 5H, aromatic), 7.16 (d, *J* = 7.8 Hz, 2H, aromatic), 5.64 (dd, *J* = 8.5, 10.4 Hz, 1H, CHOHC<u>H</u>=CHCHCH₃CHOHAr), 5.03 (dd, *J* = 10.5, 10.6 Hz, 1H, CHOHCH=C<u>H</u>CHCH₃CHOHAr), 4.70 (dd, *J* = 7.3, 10.7 Hz, 1H, C<u>H</u>OHCH=CHCHCH₃CHOHAr), 4.60 (d, *J* = 4.6 Hz, 1H, CHOHCH=CHCHCH₃CHOHAr), 4.50 (s, 2H, CH₂OC<u>H₂Ph), 4.06–3.93 (m, 1H, OH), 3.87 (m, 1H, CH₂C<u>H</u>OHCH₂CHOHCH₂CHOH), 3.71 (dd, *J* = 5.7, 5.7 Hz, 1H, CHOHCH₂OCH₂Ph), 3.51 (dd, *J* = 3.2, 9.4 Hz, 1H, CHOHC<u>H₂OCH₂Ph), 3.37 (dd, *J* = 8.9, 8.9 Hz, 1H, CHOHC<u>H₂OCH₂Ph), 3.07 (dq, *J* = 12.8, 6.4 Hz, 1H, CH=CHC<u>H</u>CH₃CHOHAr), 2.92 (s, 1H, OH), 1.78–1.44 (m, 8H, OH, CHOHC<u>H₂CHOHCH₂CHOHC<u>H₂CHOHCH₂CHOHCH₂CHOHC), 0.95 (d, *J* = 6.8 Hz, 3H, CH=CHCHCHC<u>H₃CHOHAr</u>);</u></u></u></u></u>

¹³C NMR (126 MHz, CDCl₃) δ 139.8, 137.9, 133.7, 133.4, 130.9(2C), 128.9(2C), 128.4(2C), 127.8(2C), 127.2, 121.5, 77.7, 74.4, 73.2, 70.3, 68.7, 64.3, 42.1, 38.2, 33.4, 29.8, 17.4;

HRMS: cald. for $C_{25}H_{33}BrO_5 (M+Na)^+ 515.1409$; found 515.1397 (TOF MS ES+).

(1*S*,2*R*,5*R*,7*S*,10*S*,*Z*)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundec-8-ene-1,5,7,10-tetraol (11)

Synthesized by following procedure C

Yield: 26% over 4 reactions (71% avg/rxn)

FTIR (neat): 3365, 3294, 2943, 2872, 2349, 2872, 1631, 1485, 1454, 1070, 1028, 827, 750, 698 cm⁻¹;

Optical Rotation: $[\alpha]_D = +5.0 (c = 0.12, CHCl_3);$

¹H NMR (500 MHz, CDCl₃) δ 7.50–7.44 (m, 2H, aromatic), 7.39–7.28 (m, 5H, aromatic), 7.22–7.17 (m, 2H, aromatic), 5.71 (ddd, J = 11.5, 7.3, 1.4 Hz, 1H, CHOHCH=CHCHOHCH₂OBn), 5.50 (ddd, J = 11.4, 7.3, 1.3 Hz, 1H, CHOHCH=CHCHOHCH₂OBn), 4.85–4.77 (m, 1H, CHOHCH=CHCHOHCH₂OBn), 4.75–4.69 (m, 1H, CHOHCH=CHCHOHCH2OBn), 4.62–4.54 (m, 3H, 4-BrC6H4CHOHCH(CH3)CH2, CH2OCH2Ph), 3.88 (bs, 1H, OH), 3.76–3.68 (m, 1H, CH₂CHOHCH₂CHOHCH=CH), 3.50 (dd, J = 9.4, 4.1 Hz, 1H, CH₂OBn), 3.45 (dd, J = 9.4, 7.6 Hz, 1H, CH₂OBn), 1.84–1.74 (m, 1H, 4-BrC₆H₄CHOHCH(CH₃)CH₂), 1.72–1.68 (m, 1H, OH), 1.67–1.62 (m, 2H, CH₂CH₂CHOHCH₂CHOH), 2H. CHOHCH₂CHOH), 1.46-1.37 (m, 1.26 (s. 4H. OH, CH₂CH₂CHOHCH₂CHOH), 0.88 (d, J = 6.8 Hz, 3H, 4-BrC₆H₄CHOHCH(CH₃)CH₂).

¹³C NMR (126 MHz, CDCl₃) δ 142.5, 137.5, 136.5, 131.2 (2C), 129.2, 128.5 (2C), 128.0 (2C), 127.99, 127.9 (2C), 120.9, 76.9, 73.6, 73.5, 67.3, 66.2, 62.9, 42.6, 40.0, 28.9, 28.8, 14.3.

HRMS: cald. for $C_{25}H_{33}BrO_5$ (M+Na)⁺ 515.1409; found (TOF MS ES+) 515.1398.

(1*S*,2*R*,3*Z*,5*S*,7*S*,8*E*,10*S*)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundeca-3,8-diene-1,5,7,10-tetraol (12)

Synthesized by following procedure E

Yield: 38% over 3 reactions (73% avg/rxn)

FTIR (neat): 3377, 3330, 2962, 2926, 2868, 1865, 1591, 1454, 1215, 1101, 1070, 1009, 976 cm⁻¹;

Optical Rotation: $[\alpha]_D$ =-38.8 (*c* = 0.45, CHCl₃);

¹**H** NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H, aromatic), 7.40–7.29 (m, 5H, aromatic), 7.15 (d, *J* = 8.4 Hz, 2H, aromatic), 5.91 (ddd, *J* = 15.6, 5.6, 1.4 Hz, 1H, CHOHCH=C<u>H</u>CHOHCH₂CHOH), 5.74 (ddd, *J* = 15.6, 5.8, 1.4 Hz, 1H, CHOHC<u>H</u>=CHCHOHCH₂), 5.63 (ddd, *J* = 10.9, 8.2, 0.9 Hz, 1H, CH₂CHOHC<u>H</u>=CHCHCH₃), 4.97 (td, *J* = 10.6, 1.2 Hz, 1H, CHOHCH=C<u>H</u>CHCH3), 4.65 (ddd, *J* = 11.4, 6.3, 2.2 Hz, 1H, CH₂C<u>H</u>OHCH=CHCHCH₃), 4.58 (d, *J* = 2.9 Hz, 4H, OH, PhC<u>H₂OCH₂CHOHCH=CHCHOHCH₂CHOHCH=CHCHCH₃C<u>H</u>OHCH=CHCHCH₃), 4.58 (d, *J* = 2.9 Hz, 4H, OH, PhC<u>H₂OCH₂CHOHCH=CHCHOHCH₂CHOHCH=CHCHCH₃, 5.6 (dd, *J* = 9.6, 3.3 Hz, 1H, PhCH₂OC<u>H₂CHOHCH=CHCHOH</u>), 3.56 (dd, *J* = 9.6, 3.3 Hz, 1H, PhCH₂OC<u>H₂CHOH</u>), 3.13 (s, 1H, OH), 3.12–3.01 (m, 1H, CHOHCH=CHC<u>H</u>CH₃), 2.62 (s, 1H, OH), 1.87 (ddd, *J* = 14.4, 8.7, 3.6 Hz, 1H, CH=CHCHOHC<u>H₂CHOH</u>), 1.70 (ddd, *J* = 14.3, 7.5, 3.3 Hz, 1H, CH=CHCHOHC<u>H₂CHOHCH=CHOHCH₂CHOH</u>), 1.61 (s, 1H, OH), 0.9 (s, 3H, CH=CHCHCH<u>4</u>);</u></u>

¹³C NMR (126 MHz, CDCl₃) δ 139.6, 137.7, 134.8, 133.8, 133.5, 130.9 (2C), 128.9 (2C), 128.5 (2C), 128.4, 127.90, 127.8 (2C), 121.6, 76.9, 74.1, 73.4, 70.7, 69.5, 64.1, 41.9, 38.2, 17.4;

HRMS: cald. for C₂₅H₃₁BrO₅ (M+Na)⁺513.1253; found 513.1255 (TOF MS ES+).

(1*S*,2*R*,3*E*,5*S*,7*S*,8*Z*,10*S*)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundeca-3,8-diene-1,5,7,10-tetraol (13)

Synthesized by following procedure D

Yield: 35% over 3 reactions (70% avg/rxn)

FTIR (neat): 3440, 3417, 3386, 2390, 1643, 1633, 1054, 698, 522 cm⁻¹;

Optical Rotation: $[\alpha]_D = -4.81$ (*c* = 0.22, CHCl₃)

¹**H NMR** (500 MHz, CDCl₃) δ 7.47–7.43 (m, 2H, aromatic), 7.37–7.29 (m, 5H, aromatic), 7.18–7.12 (m, 2H, aromatic), 5.68 (ddd, J = 11.4, 7.6, 1.4 Hz, 1H, CHOHC<u>H</u>=CH_{cis}CHOHCH₂OBn), 5.61 (ddd, J = 15.6, 7.0, 1.0 Hz, 1H, C<u>H</u>=CH_{trans}CHOHCH₂CHOH), 5.53 (d, J = 6.2 Hz, 1H, CH=C<u>H_{trans}CHOHCH₂CHOH), 5.48 (ddd, J = 11.4, 7.4, 1.3 Hz, 1H, CH=CH_{cis}C<u>H</u>OHCH₂CHOH), 4.76 (dd, J = 7.9, 2.9 Hz, 1H, C<u>H</u>OHCH=CHCHOHCH₂OBn), 4.68 (ddd, J = 7.5, 4.1, 1.4 Hz, 1H, CHOHCH=CHC<u>H</u>OHCH₂OBn), 4.59 (d, J = 5.1 Hz, 1H, 4-BrC₆H₄C<u>H</u>OHCH(CH₃)CH₂), 4.56 (bs, 2H, C<u>H₂OBn</u>), 4.35 (dd, J = 6.6, 10.4 Hz, 1H, CH=CHC<u>H</u>OHCH₂CHOH), 3.55 (s, 1H, OH), 3.48 (dd, J = 9.5, 4.1 Hz, 1H, C<u>H</u>₂OBn), 3.44 (dd, J = 9.5, 7.5 Hz, 1H, C<u>H₂OBn</u>), 3.16 (s, 1H, OH), 2.90 (s, 1H, OH), 2.52 (dd, J = 12.6, 6.7 Hz, 1H, 4-BrC₆H₄CHOHC<u>H</u>(CH₃)CH₂), 2.46 (s, 1H, OH), 1.74 (ddd, J = 14.4, 8.7, 3.8 Hz, 1H, CHOHC<u>H₂CHOH</u>), 1.61 (ddd, J = 14.3, 7.5, 3.3 Hz, 1H, CHOHC<u>H₂CHOH</u>), 0.96 (d, J = 6.8 Hz, 3H, 4-BrC₆H₄CHOHCH(C<u>H₃)CH₂)</u></u>

¹³C NMR (126 MHz, CDCl₃) δ 141.6, 137.5, 136.3, 133.8, 132.5, 131.1 (2C), 129.2, 128.5 (2C), 128.1 (2C), 127.9, 127.9 (2C), 121.0, 76.6, 73.6, 73.5, 70.1, 67.2, 65.7, 43.3, 42.8, 14.0.

HRMS: cald. for C₂₅H₃₁BrO₅ (M+Na)⁺513.1253; found (TOF MS ES+) 513.1237.

(1S,2R,5R,7R,10S)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundecane-1,5,7,10-tetraol (14)

Synthesized by following procedure F

Yield: 26% over 4 reactions (72% avg/rxn)

FTIR (neat): 3377, 3330, 2962, 2926, 2868, 1865, 1454, 1215, 1070, 1009, 976 cm⁻¹;

Optical Rotation: $[\alpha]_D = -11.4$ (*c* = 0.285, CHCl₃);

¹**H** NMR (500 MHz, CDCl₃) δ 7.46 (d, J = 8.3 Hz, 2H, aromatic), 7.38–7.28 (m, 5H, aromatic), 7.2 (d, J = 8.3 Hz, 2H, aromatic), 4.60 (d, J = 4.9 Hz, 1H, CH₂CHCH₃C<u>H</u>OHAr), 4.56 (s, 2H, PhC<u>H₂OCH₂CHOH), 4.06–3.93 (m, 1H, CH₂C<u>H</u>OHCH₂CHOH), 3.92–3.85 (m, 2H, PhCH₂OCH₂C<u>H</u>OHCH₂CHOHCH₂C<u>H</u>OHCH, 3.50 (dd, J = 9.3, 3.5 Hz, 1H, PhCH₂OC<u>H₂CHOH), 3.37 (m, 1H, PhCH₂OC<u>H₂CHOH), 1.84–1.74 (m, 1H CH₂C<u>H</u>CH₃CHOHAr), 1.65–1.55 (m, 11H, OH, aliphatic), 1.46–1.37 (m, 2H, aliphatic), 1.28–1.21 (m, 1H, aliphatic), 0.95 (d, J = 6.8 Hz, 3H, CH₂CH₂CHOHAr);</u></u></u>

¹³C NMR (126 MHz, CDCl₃) δ 142.6, 137.7, 131.2, 128.5(2C), 128.1(2C), 127.8(2C), 126.4(2C), 121.0, 77.1, 74.3, 73.4, 70.3, 69.4, 69.0, 42.4, 40.0, 34.8, 33.4, 29.0, 28.9, 14.3;

HRMS: cald. for $C_{25}H_{35}BrO_5 (M+Na)^+ 517.1566$; found 517.1584 (TOF MS ES+).

(1S,3S,7S,9R,Z)-9-((S)-4-benzyloxy-3-hydroxybutyl)-3-((benzyloxy)methyl)-2,10,11-trioxa-1-

phosphabicyclo[5.3.1]undec-5-ene 1-oxide (15)

Synthesized by following procedure B

Yield: 40% over 3 reactions (72% avg/rxn)

FTIR (neat): 3413, 3028, 2923, 2858, 1679, 1452, 1363, 1288, 1101, 979 cm⁻¹;

Optical Rotation: $[\alpha]_D = +7.6$ (c = 0.41, CHCl₃);

¹**H** NMR (500 MHz, CDCl₃) δ 7.40–7.30 (m, 10H, aromatic), 5.69 (dtd, J = 11.8, 8.8, 2.9 Hz, 1H, CHOPCH=CHCH₂CHOP), 5.45 (dt, J = 11.8, 1.7 Hz, 1H, CHOPCH=CHCH₂CHOP), 5.25 (dd, J = 25.0, 4.3 Hz, 1H, CH₂CHOPCH₂CHOPCH=CH), 4.76–4.65 (m, 1H, CH=CHCH₂CHOPCH₂OBn), 4.59–4.52 (m, 5H, OCH₂Ph, CHOPCH₂CHOPCH=CH), 3.79 (ddd, J = 11.4, 8.9, 3.1Hz, 1H, PhCH₂OCH₂CHOHCH₂), 3.51 (ddd, J = 11.3, 9.7, 4.2 Hz, 2H, PhCH₂OCH₂CHOHC₂H₄CHOPCH₂CHOPCH=CHCH₂CHOPCH₂OCH₂Ph), 3.43 (dd, J = 9.4, 7.4 Hz, 1H, CH=CHCH₂CHOPCH₂OBn), 3.36–3.29 (m, 2H, BnOCH₂CHOHC₂H₄CHOPCH₂CHOPCH=CHCH₂CHOPCH=CHCH₂CHOP), 2.36 (dd, J = 13.9, 8.5 Hz, 1H, CH=CHCH₂CHOPCH₂OBn), 2.14 (ddd, J = 14.5, 11.7, 6.0 Hz, 1H, CHOPCH₂CHOPCH=CH), 1.91–1.79 (m, 1H, CHOHCH₂CH₂CHOPCH₂CHOP), 1.78–1.65 (m, 3H, CHOHCH₂CH₂CHOPCH₂CHOP), 1.62 (s, 1H, OH), 1.44 (dddd, J = 15.2, 12.9, 7.5, 3.0 Hz, 1H, CHOHCH₂CH₂CHOPCH₂CHOP);

¹³**C NMR** (126 MHz, CDCl₃) δ 137.8, 137.7, 131.5, 128.5 (2C), 128.5 (2C), 127.9, 127.8, 127.7 (2C), 127.6 (2C), 125.03, 78.4 (d, $J_{CP} = 7.1$ Hz), 78.1 (d, $J_{CP} = 7.2$ Hz) 74.4, 73.4, 73.2, 72.3 (d, $J_{CP} = 4.9$ Hz), 70.4 (d, $J_{CP} = 15.5$ Hz), 70.2, 36.2 (d, $J_{CP} = 6.5$ Hz), 32.4 (d, $J_{CP} = 8.8$ Hz), 28.5, 27.4;

³¹**P NMR** (162 MHz, CDCl₃) δ –8.2;

HRMS: cald. for $C_{26}H_{33}O_7P$ (M+Na)⁺ 511.1862; found 511.1855 (TOF MS ES+).

(1S,3S,6S,8R)-8-((S)-5-benzyloxy-4-hydroxypentyl)-3-((benzyloxy)methyl)-2,9,10-trioxa-1-

phosphabicyclo[4.3.1]dec-4-ene 1-oxide (16)

Synthesized by following procedure A

Yield: 35% over 3 reactions (70% avg/rxn)

FTIR (neat): 3520, 3444, 2395, 1633, 1286, 1101, 973, 734 cm⁻¹;

Optical Rotation: $[\alpha]_D = +21.57(c = 0.26, CHCl_3);$

¹H NMR (500 MHz, CDCl₃) δ 7.42–7.28 (m, 10H, aromatic), 6.02 (ddd, J = 11.9, 3.0, 2.1 Hz, 1H, CH=CHCHOPCH₂OBn), 5.57 (ddd, *J* = 11.9, 3.9, 2.4 Hz, 1H, CH=CHCHOPCH₂OBn), 5.28 (ddddd, *J* = 5.3, 5.3, 2.7, 2.7, 2.7 Hz, 1H, CH=CHCHOPCH₂OBn), 5.19 (ddddd, $J_{PH}=$ 24.5, $J_{HH}=$ 6.2, 4.1, 1.8, 1.8 Hz, 1H, CH₂CHOPCH=CH), 4.66–4.52 (m, 5H, CH₂OCH₂Ph, $CH_2CH_2CH_2CHOP)$, 3.84-3.77 (m. 1H. CH₂CHOHCH₂OBn), 3.72 (ddd, *J* = 10.2, 5.1, 1.1 Hz, 1H, CH₂OBn), 3.61 (dd, *J* = 10.2, 6.1 Hz, 1H, CH₂OBn), 3.50 (dd, J = 9.4, 3.1 Hz, 1H, CH₂OBn), 3.32 (dd, J = 9.4, 7.9 Hz, 1H, CH₂OBn), 2.34 (d, J = 3.4 Hz, 1H, BnOCH₂CHOHCH₂CH₂CH₂CHOP), 2.22–2.12 (m, 2H, CHOPCH₂CHOP), 1.83-1.55 (m. 4H. BnOCH₂CHOHCH₂CH₂CH₂CHOP), 1.52–1.37 (m, 2H, BnOCH₂CHOHCH₂CH₂CH₂CHOP).

¹³C NMR (126 MHz, CDCl₃) δ 137.8, 137.5, 129.9, 129.6, 128.5 (4C), 127.9, 127.8, 127.7 (4C), 77.3 (d, $J_{CP} = 6.7$ Hz), 76.6 (d, $J_{CP} = 6.8$ Hz), 74.4, 73.5, 73.4, 72.1 (d, $J_{CP} = 6.0$ Hz), 71.2 (d, $J_{CP} = 12.2$ Hz), 70.0, 35.4 (d, $J_{CP} = 9.3$ Hz), 34.7 (d, $J_{CP} = 6.0$ Hz), 32.4, 20.5.

³¹**P NMR** (162 MHz, CDCl₃) δ -5.46 ;

HRMS: cald. for C₂₆H₃₃O₇PNa (M+Na)⁺ 511. 1862; found (TOF MS ES+) 511.1847.

(2*S*,5*R*,7*S*,11*S*,*Z*)-1,12-bis(benzyloxy)dodec-8-ene-2,5,7,11-tetraol (17)

Synthesized by following procedure C

Yield: 24% over 4 reactions (70% avg/rxn)

FTIR (neat): 3367, 2914, 2858, 2914, 2331, 1093, 1076, 698 cm⁻¹;

Optical Rotation: $[\alpha]_D = +6.8 (c = 0.44, CHCl_3);$

¹**H** NMR (500 MHz, CDCl₃) δ 7.40–7.30 (m, 10H, aromatic), 5.70 (ddt, J = 11.0, 8.2, 1.4 Hz, 1H, CHOHC<u>H</u>=CHCH₂CHOH), 5.51 (dddd, J = 11.0, 8.6, 7.5, 1.1 Hz, 1H, CHOHCH=C<u>H</u>CH₂CHOH), 4.79 (dt, J = 7.6, 5.6 Hz, 1H, CHOHCH₂C<u>H</u>OHCH=CHCH₂CHOH), 4.60–4.53 (m, 4H, CH₂OC<u>H₂Ph</u>), 4.01–3.93 (m, 1H, CH₂C<u>H</u>OCH₂CHOCH=CH), 3.93 (ddd, J = 11.2, 5.1, 3.5 Hz 1H, CH=CHCH₂C<u>H</u>OHCH₂OBn), 3.89–3.82 (m, 1H, CH₂CH₂CHOHCH₂OBn), 3.51(td, J = 9.4, 3.3 Hz, 2H, CH=CHCH₂CHOHCH₂OBn), 3.45–3.33 (m, 2H, CH₂CH₂CHOHCH₂OBn), 3.15 (bs, 1H, OH), 2.90 (bs, 2H, OH), 2.43 (dddd, J = 14.5, 8.6, 5.1, 1.1 Hz, 1H, CH=CHCH<u>4</u>₂CHOHCH₂OBn), 2.30 (dddd, J = 14.2, 7.7, 6.5, 1.3 Hz, 1H, CH=CHCH<u>4</u>₂CHOHCH₂OBn), 1.77–1.67 (m, 2H, CHOHCH<u>2</u>CHOHCH=CHCH₂CHOH), 1.67–1.49 (m, 4H, CHOHC<u>H₂CH₂CHOHCH₂CHOH), 1.30 (s, 1H, OH);</u>

¹³C NMR (126 MHz, CDCl₃) δ 137.9, 137.7, 135.6, 128.5 (2C), 128.4 (2C), 127.9, 127.8 (3C), 127.7 (2C), 126.4, 74.4, 73.6, 73.5, 73.3, 70.4, 69.6, 68.9, 65.3, 42.5, 33.5, 31.2, 29.2;

HRMS: cald. for $C_{26}H_{36}O_6 (M+Na)^+ 467.2410$; found 467.2390 (TOF MS ES+).

(2S,5S,7R,11S,Z)-1,12-bis(benzyloxy)dodec-3-ene-2,5,7,11-tetraol (18)

Synthesized by following procedure C

Yield: 23% over 4 reactions (69% avg/rxn)

FTIR (neat): 3400, 3290, 2943, 2350, 1631, 1480, 1070, 750, 698cm⁻¹;

Optical Rotation: $[\alpha]_{D} = +6.32(c = 0.19, CHCl_{3});$

¹**H** NMR (500 MHz, CDCl₃) δ 7.40–7.28 (m, 10H, aromatic), 5.70 (ddd, J = 11.5, 7.5, 1.4 Hz, 1H, CHOHC<u>H</u>=CHCHOHCH₂OBn), 5.48 (ddd, J = 11.4, 7.4, 1.4 Hz, 1H, CHOHCH=C<u>H</u>CHOHCH₂OBn), 4.80 (ddd, J = 10.4, 7.3, 3.4 Hz, 1H, C<u>H</u>OHCH=CHCHOHCH₂OBn), 4.75–4.67 (m, 1H, CHOHCH=CHC<u>H</u>OHCH₂OBn), 4.59–4.53 (m, 4H, CH₂OC<u>H</u>₂Ph), 3.97–3.88 (m, 1H, CH₂C<u>H</u>OHCH₂CHOHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CHCHOHCH₂CHOHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CHCHOHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CHCHOHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CHCHOHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CHCHOHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CHCHOHCH=CHCHOHCH=CH), 3.88–3.79 (m, 1H, CH₂C<u>H</u>OHCH=CHCH

BnOCH₂C<u>H</u>OHCH₂CH₂CH₂), 3.56–3.41 (m, 4H, C<u>H</u>₂OBn), 3.40–3.29 (m, 2H, BnOC<u>H</u>₂CHOHCH₂CH₂CH₂), 1.66 (dd, J = 14.5, 7.5, 2.6 Hz, 1H, CHOHC<u>H</u>₂CHOH), 1.63–1.57 (m, 3H, CHOHC<u>H</u>₂CHOH, BnOCH₂CHOHC<u>H</u>₂CH₂CH₂, O<u>H</u>), 1.53–1.35 (m, 6H, BnOCH₂CHOHC<u>H</u>₂CH₂CHOH).

¹³C NMR (126 MHz, CDCl₃) δ 137.9, 137.6, 136.5, 129.2, 128.5 (2C), 128.46 (2C), 127.9, 127.85 (2C), 127.8, 127.7 (2C), 74.5, 73.6, 73.4, 73.3, 70.23, 68.8, 67.1, 66.1, 42.7, 37.2, 32.8, 21.5.

HRMS: cald. for $C_{26}H_{36}O_6 (M+Na)^+ 467.2410$; found (TOF MS ES+) 467.2413.

(2S,3E,5S,7S,8Z,11S)-1,12-bis(benzyloxy)dodeca-3,8-diene-2,5,7,11-tetraol (19)

Synthesized by following procedure E

Yield: 42% over 3 reactions (75% avg/rxn)

FTIR (neat): 3377, 3361, 3028, 2916, 2858, 1602, 1452, 1101 cm⁻¹;

Optical Rotation: $[\alpha]_{D} = +10.4$ (*c* = 0.67, CHCl₃);

¹**H NMR** (500 MHz, CDCl₃) δ 7.40–7.29 (m, 10H, aromatic), 5.89 (ddd, J = 15.5, 5.4, 1.3 Hz, 1H, CHOHCH=C<u>H</u>CHOHCH₂), 5.77–5.64 (m, 2H, CHOHC<u>H</u>=CHCHOHCH₂CHOHCH=CHCH₂), 5.53–5.48 (m, 1H, CHOHCH=C<u>H</u>CH₂CHOHCH₂OBn), 4.71 (td, J = 2.1 Hz, 1H, CHOHCH₂C<u>H</u>OHCH=CHCH₂), 4.57 (d, J = 2.1 Hz, 2H, CH₂OC<u>H₂Ph</u>), 4.55 (d, J = 3.8 Hz, 2H, CH₂OC<u>H₂Ph</u>), 4.46 (bs, 1H, CHOHCH=CHC<u>H</u>OHCH₂), 4.38 (bs, 1H, PhCH₂OCH₂C<u>H</u>OHCH=CHCHOH), 3.91 (ddt, J = 11.0, 6.7, 3.4 Hz, 1H, CH=CHCH₂C<u>H</u>OHCH₂OBn), 3.54 (ddd, J = 9.5, 3.4, 2.2 Hz, 1H, CH=CHCHOHC<u>H₂OBn</u>), 3.51 (dd, J = 9.5, 3.4 Hz, 1H, CH=CHCH₂CHOHCH₂OBn), 3.54 (ddd, J = 13.9, 8.7, 5.1, 1.3 Hz, 1H, CH=CHC<u>H</u>₂CHOHCH₂OBn), 2.28 (dddd, J = 14.1, 7.6, 6.3, 1.3 Hz, 1H, CH=CHC<u>H</u>₂CHOHCH₂OBn), 1.85 (ddd, J = 14.3, 8.1, 3.6 Hz, 1H, CHOHC<u>H</u>₂CHOHCH=CHCH₂), 1.70 (ddd, J = 14.3, 7.6, 3.7 Hz, 1H, CHOHC<u>H</u>₂CHOHCH=CHCH₂), 1.64 (s, 1H, OH);

¹³C NMR (126 MHz, CDCl₃) δ 137.7, 137.6, 135.4, 134.9, 128.51 (2C), 128.5, 128.48 (2C), 128.4, 127.92, 127.89, 127.86, 127.8 (2C), 126.6, 74.1, 73.5, 73.4, 73.36, 70.7, 69.6, 69.5, 64.9, 42.4, 31.1;

HRMS: cald. for $C_{26}H_{34}O_6 (M+Na)^+ 465.2253$; found 465.2241 (TOF MS ES+).

(2S,3Z,5S,7S,8E,11S)-1,12-bis(benzyloxy)dodeca-3,8-diene-2,5,7,11-tetraol (20)

Synthesized by following procedure D

Yield: 40% over 3 reactions (72% avg/rxn)

FTIR (neat): 3408, 3402, 3385, 2918, 2852, 2349, 1637, 1632, 1072, 1027, 972, 737, 698 cm⁻¹;

Optical Rotation: $[\alpha]_D = +5.92(c = 0.14, CHCl_3);$

¹**H** NMR (500 MHz, CDCl₃) δ 7.42–7.28 (m, 10H, aromatic), 5.75–5.64 (m, 2H, CHOHC<u>H</u>=C<u>H</u>CHOHCH₂OBn), 5.62–5.53 (m, 1H, BnOCH₂CHOHCH₂CH=C<u>H</u>CHOH), 5.48 (ddd, J = 11.3, 7.4, 1.3 Hz, 1H, BnOCH₂CHOHCH₂C<u>H</u>=CHCHOH), 4.78 (ddd, J = 7.8, 7.8, 3.0 Hz, 1H, C<u>H</u>OHCH=CHCHOHCH₂OBn), 4.70 (dddd, J = 7.5, 7.5, 4.3, 1.4 Hz, 1H, CHOHCH₂CHOHCH=CHC<u>H</u>OHCH₂OBn), 4.59–4.52 (m, 4H, CH₂OC<u>H₂Ph), 4.42–4.35 (m, 1H, CHOHCH₂CH=CHC<u>H</u>OH), 3.90–3.82 (m, 1H, BnOCH₂CHOHCH₂CH=CH), 3.54–3.40 (m, 4H, BnOC<u>H₂CHOH</u>, OH), 3.36 (dd, J = 9.5, 7.3 Hz, 2H, BnOC<u>H₂CHOH), 2.30–2.13 (m, 4H, BnOCH₂CHOHC<u>H₂CH=CH</u>), 1.77 (ddd, J = 14.3, 8.6, 3.6 Hz, 1H, CHOHC<u>H₂CHOH</u>), 1.64 (ddd, J = 14.4, 7.7, 3.3 Hz, 1H, CHOHC<u>H₂CHOH</u>).</u></u>

¹³C NMR (126 MHz, CDCl₃) δ 137.8, 137.6, 136.3, 135.5, 129.3, 128.5 (2C), 128.4 (2C), 127.9, 127.85 (2C), 127.8, 127.7 (2C), 126.7, 77.2, 73.9, 73.6, 73.4, 73.3, 69.9, 67.1, 65.6, 42.6, 36.2;

HRMS: cald. for $C_{26}H_{34}O_6$ (M+Na)⁺ 465.2253; found (TOF MS ES+) 465.2236.

(2*S*,5*R*,7*R*,11*S*)-1,12-bis(benzyloxy)dodecane-2,5,7,11-tetraol (21)

Synthesized by following procedure F

Yield: 34% over 4 reactions (77% avg/rxn)

FTIR (neat): 3283, 2943, 2394, 1454, 1093, 1076, 737 cm⁻¹;

Optical Rotation: $[\alpha]_{D} = +2.80 \ (c = 0.25, \text{CHCl}_{3});$

¹**H** NMR (500 MHz, CDCl₃) δ 7.40–7.29 (m, 10H, aromatic), 4.60–4.52 (m, 4H, CH₂OC<u>H</u>₂Ph), 4.04–3.91 (m, 2H, C<u>H</u>OHCH₂C<u>H</u>OH), 3.92–3.76 (m, 2H, C<u>H</u>OHCH₂OBn), 3.51 (ddd, *J* = 9.5, 4.9, 3.2 Hz, 2H, BnOC<u>H</u>₂CHOH), 3.36 (ddd, *J* = 17.2, 9.4, 8.0 Hz, 2H, BnOC<u>H</u>₂CHOH), 2.80 (s, 1H, OH), 2.61 (s, 1H, OH), 2.40 (bs, 1H, OH), 1.70–1.37 (m, 13H, aliphatic, OH).

¹³C NMR (126 MHz, CDCl₃) δ 137.9, 137.8, 128.5 (4C), 127.9, 127.8, 127.77 (2C), 127.75 (2C), 74.3, 74.5, 73.3 (2C), 70.4, 70.3, 69.3, 69.0, 42.3, 37.2, 33.5, 32.8, 29.1, 21.6.

HRMS: cald. for $C_{26}H_{38}O_6 (M+Na)^+ 469.2566$; found (TOF MS ES+) 469.2567.

(4*S*,6*S*)-2-(((1*S*,2*R*)-1-(4-bromophenyl)-2-methylbut-3-en-1-yl)oxy)-4,6-divinyl-1,3,2-dioxaphosphinane 2-oxide (5)

(1*S*,3*S*,4*R*,7*S*,9*R*,*Z*)-9-((*S*)-4-(benzyloxy)-3-hydroxybutyl)-3-(4-bromophenyl)-4-methyl-2,10,11-trioxa-1-phosphabicyclo[5.3.1]undec-5-ene 1-oxide (8)

90 80 70 60 50 40 30 20 10 0 10 -20 -30 -40 -50 -60 -70 -80 -90

(1*S*,3*S*,6*S*,8*R*)-3-((benzyloxy)methyl)-8-((3*R*,4*S*)-4-(4-bromophenyl)-4-hydroxy-3-methylbutyl)-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-ene 1-oxide (9)

(1*S*,2*R*,5*S*,7*R*,10*S*,*Z*)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundec-3-ene-1,5,7,10-tetraol (10)

(1*S*,2*R*,5*R*,7*S*,10*S*,*Z*)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundec-8-ene-1,5,7,10-tetraol (11)

(1*S*,2*R*,3*Z*,5*S*,7*S*,8*E*,10*S*)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundeca-3,8-diene-1,5,7,10-tetraol (12)

(1*S*,2*R*,3*E*,5*S*,7*S*,8*Z*,10*S*)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundeca-3,8-diene-1,5,7,10-tetraol (13)

(1*S*,2*R*,5*R*,7*R*,10*S*)-11-(benzyloxy)-1-(4-bromophenyl)-2-methylundecane-1,5,7,10-tetraol (14)

(1*S*,3*S*,7*S*,9*R*,*Z*)-9-((*S*)-4-(benzyloxy)-3-hydroxybutyl)-3-((benzyloxy)methyl)-2,10,11-trioxa-1-phosphabicyclo[5.3.1]undec-5-ene 1-oxide (15)

(1*S*,3*S*,6*S*,8*R*)-8-((*S*)-5-(benzyloxy)-4-hydroxypentyl)-3-((benzyloxy)methyl)-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-ene 1-oxide (16)

(2S,5R,7S,11S,Z)-1,12-bis(benzyloxy)dodec-8-ene-2,5,7,11-tetraol (17)

(2S,5R,7R,11S)-1,12-bis(benzyloxy)dodecane-2,5,7,11-tetraol (21)

