Table S1: Strains used in this study

Table S2: Plasmids used in this study

Table S3: Oligonucleotides used in this study

Fig S1. Complementation constructs for *ligC1* and *ligC2* and *ligCTB*. LigC1 and LigC2 are divergently transcribed in the *M. smegmatis* genome. The active site lysine for LigC1 (K32) and LigC2 (K29) are indicated. The complementation constructs for LigC1, LigC1-HA, LigC2, LigC2 HA, MOP-LigC2-HA are indicated as horizontal lines.

Fig S2. Amplification products from white colonies of *ligD*-(K484A) and *ligD*-(D136A-D138A) strains in the I-Scel chromosomal assay. Representative gels showing the PCR-amplification products of the white colonies from *ligD*-(K484A) (A) and *ligD*-(D136A-D138A) (B) strains, obtained using primers that anneal 836 bp upstream and 511 bp downstream from the first I-Scel site on the chromosome. The PCR product arising from amplification of an intact chromosomal I-Scel site is indicated by the 1350 bp band (denoted by an arrow next to the gel) and is marked as "I" above the lane. NHEJ events with a deletion are marked as "D" above the lane.

Fig S3. Blunt-end junction sequences of non-faithful repair events in the strains *ligD*-(K484A) and *ligD*-(K484A) Δ *ligC1/C2/B* complemented with *ligC1*. The two halves of the EcoRV recognition site are colored blue and red. Non-templated nucleotide additions are shown in green. The length of the deletion is indicated by a number next to the junction.

Fig S4. Junction sequences of non-faithful repair events at the 5' end in the strains *ligD*-(K484A) and *ligD*-(K484A) Δ *ligC1/C2/B* complemented with *ligC1*. The two halves of the Asp718I recognition site are shown in blue and red. Templated and non-templated nucleotide additions are shown in green. The length of the deletion is indicated by a number next to the junction.

Fig S5. Amino acid sequence alignment of LigC1, LigCTB and LigC2. Clustal W2 was used to align amino acid sequences of LigC1, LigC2 and LigCTB. Amino acid sequence identity is marked by an asterisk (*), a match of the functional group by a colon (:) and a match of the charge of the R group by a full stop (.).

Fig S6. Relative mRNA expression level of *ligC1* (A), *ligC2* (B) and *ligCTB* (C) in complementation strains. The level of *ligC1*, *ligC2* and *ligCTB* mRNA expressed from *ligC1*,

MOP and *ligC2* promoters was measured using RT-PCR in strains complemented with *ligC1*, *ligC2* and *ligCTB*.

Fig S7. Ku is upregulated in nonreplicating *M. smegmatis*. RT-qPCR quantitation of *ku* (A), *ligD* (B), *ligC1* (C) and *ligC2* (D) in log and stationary phases. Relative mRNA levels are given in relation to the mRNA for *sigA*. E) β -galactosidase activity measured using the fluorescent β -galactosidase substrate C2FDG and reported as relative fluorescent units (RFU) at different cell densities. Grey bars are the control strain containing a promoterless *lacZ*. Significant differences (p<0.05) in mRNA expression or promoter activity are marked with an asterisk (*).

Table S1

Strain	Genotype	Reference	Description
Wild-type	<i>M. smegmatis</i> MC ² 155		
MGM 139	∆ligC1-C2	(1)	
MGM 140	∆ligD	(1)	
MGM 154	Δku	(1)	
MGM 801	<i>ligD-</i> (D136A-D138A)	(2)	inactivated polymerase
MGM 802	<i>ligD-</i> (ΔPOL)	(2)	POL domain deletion
MGM 803	<i>ligD-</i> (K484A)	(3)	inactivated ligase
MGM 805	<i>ligD-</i> (ΔLIG)	(2)	LIG domain deletion
MGM 806	ligD-(E310A)	(2)	no phosphomonoesterase activity
MGM 807	<i>ligD</i> -(H336A)	(2)	no phosphomonoesterase and phosphodiesterase activities
MGM 808	∆ligB/∆ligC/∆ligD	(2)	Lacking all ATP dependent DNA ligases
MGM 810	ligD-(K484A)∆ligC1-C2/∆ligB	8 (2)	
MGM 812	<i>ligD</i> -(POL only)	This work	
MGM 832h	MGM 810::pDB60	This work	<i>ligD</i> -(K484A) Δ <i>ligC1-C2/B</i> + vector
MGM 833h	MGM 810::pHB3	This work	<i>ligD-</i> (K484A) Δ <i>ligC1-C2/B</i> +LigB
MGM 834h	wild-type::pDB60	This work	WT + vector
MGM 835h	MGM 803::pDB60	This work	ligD-(K484A)+vector
MGM 839h	MGM 810::pHB1	This work	<i>ligD-</i> (K484A) Δ <i>ligC1-C2/B</i> +LigC1
MGM 840h	MGM 810::pHB2	This work	<i>ligD-</i> (K484A) Δ <i>ligC1-C2/B</i> +LigC2
MGM 843	ΔpolD1	(4)	
MGM 844h	Δ <i>polD1</i> in MGM 803	This work	
MGM 846	ligD-(D136A-D138A)∆polD1-	<i>D2</i> (4)	
MGM 854h	MGM 801::pDB60	This work	LigD-POL dead +vector
MGM 856h	MGM 154::pDB60	This work	Δku + vector
MGM 858h	MGM 140::pDB60	This work	$\Delta ligD$ + vector

MGM 859h	MGM 808::pDB60	This work	$\Delta ligB/\Delta ligC/\Delta ligD$ + vector
MGM 860h	MGM 808::pHB1	This work	$\Delta ligB/\Delta ligC/\Delta ligD$ +LigC1
MGM 861h	MGM 808::pHB2	This work	$\Delta ligB/\Delta ligC/\Delta ligD$ +LigC2
MGM 863h	MGM 810::pHB6	This work	<i>ligD</i> -(K484A)∆ <i>ligC1-C2/∆ligB+</i> LigC2-HA
MGM 864h	MGM 810::pHB7	This work	<i>ligD</i> -(K484A)∆ <i>ligC1-C2/∆ligB+</i> MOP-LigC2-HA
MGM 865h	MGM 810::pHB5	This work	<i>ligD</i> -(K484A)∆ <i>ligC1-C2/∆ligB+</i> LigC1-HA
MGM 866h	MGM 810::pHB8	This work	<i>ligD</i> -(K484A)∆ <i>ligC1-C2/∆ligB+</i> LigCTB
MGM 867h	wild-type::pJEM 13	This work	promoterless <i>lacZ</i>
MGM 164h	wild-type::pMSG335	This work	<i>lacZ</i> under native <i>ku</i> promoter
Mgm1602	mc ² 155 <i>attB</i> ::pRGM10	(5)	
Mgm1605	Mgm140 attB::pRGM10	(5)	
Mgm1642	Mgm801 attB::pRGM10	This work	
Mgm1644	Mgm802 attB::pRGM10	This work	
Mgm1638	Mgm803 attB::pRGM10	This work	
Mgm1646	Mgm805 attB::pRGM10	This work	

- Gong C, Bongiorno P, Martins A, Stephanou NC, Zhu H, Shuman S, Glickman MS. 2005. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 12:304–312.
- 2. Aniukwu J, Glickman MS, Shuman S. 2008. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes Dev 22:512–527.
- 3. Akey D, Martins A, Aniukwu J, Glickman MS, Shuman S, Berger JM. 2006. Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. J Biol Chem **281**:13412–13423.
- 4. **Zhu H, Bhattarai H, Yan HG, Shuman S, Glickman MS**. 2012. Characterization of Mycobacterium smegmatis PoID2 and PoID1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D. Biochemistry **51**:10147–10158.
- 5. **Gupta R, Barkan D, Redelman-Sidi G, Shuman S, Glickman MS**. 2011. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol Microbiol **79**:316–330.

Plasmid name	Relevant feature	Source
pHB1	pDB60 nat_ligC1	This study
pHB2	pDB60 nat_ligC2	This study
рНВЗ	pDB60 nat_ligB	This study
pHB4	pDB60MOP_ligC2	This study
рНВ5	pDB60 nat_ligC1HA	This study
рНВ6	pDB60 nat_ligC2HA	This study
рНВ7	pDB60 <i>MOP_ligC2HA</i>	This study
pHB8	pDB60 <i>ligC1p_ligCTBHA</i>	This study
pJEM13	lacZ translational fusion vector	(1)
pMSG335	Translational fusion of Ku (AA1-4) to B galactosidase	This study
pDB60	attB site and L1 transposon	(2)
pRGM10	I-Scel recombination substrate to assay NHEJ, SSA and HR	(3)

Table S2

- 1. **Timm J, Lim EM, Gicquel B**. 1994. Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: the pJEM series. J. Bacteriol. **176**:6749–53.
- Barkan D, Liu Z, Sacchettini JC, Glickman MS. 2009. Mycolic acid cyclopropanation is essential for viability, drug resistance, and cell wall integrity of Mycobacterium tuberculosis. Chem. Biol. 16:499–509.
- 3. **Gupta R, Barkan D, Redelman-Sidi G, Shuman S, Glickman MS**. 2011. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol Microbiol **79**:316–330.

Table S3		
oligonucleotides	sequence (5' to 3')	note
ligC1_3'	GGATCTGGTTCACGGACTTC	
ligC5′	CGCACTGGCCATCACTGTTC	
ligC3′	ACTGCGGTTCGGCTAAACCC	
ligC2_5′	GCCTTGGCAAGCATCGGTTC	
HA tag to LigC2	CCGATATCTTAAGCGTAGTCTGGGACGTCGTATGGGTAAACCCGGCACGATGTCAC	
HA into LigC1	CCTCTAGATTAAGCGTAGTCTGGGACGTCGTATGGGTACTGTTCCTCCAGCACGTCG	
LigB_pro_for	ATCAGTCGCGCTCGTAGAAC	
LigB_pro_rev	CTGGCACTACGTCACCTTCG	
ligCTBwithC1pF	GGTAAGAATGGGAAGGATGCAGTTACCCGTC	
ligCTBwithC1pR	GACGGGTAACTGCATCCTTCCCATTCTTACC	
ligCTBHAtag	CCGATATCTTAAGCGTAGTCTGGGACGTCGTATGGGTAGCGTAGGCCCGGCAC	
HB23	TCGAAGAACGCCTCTTCC	<i>ligD</i> qPCR
HB24	CCTGACAAGGTGCTCTATCC	<i>ligD</i> qPCR
HB17	GCCGGTCAAGGTCTACAG	<i>ku</i> qPCR
HB18	GTTGATGTCGCGGTACTCG	<i>ku</i> qPCR
НВ9	CGAGCAGTTCGGGAAAG	<i>ligC1</i> qPCR
HB10	AAGGCGCAGGTGAAG	<i>ligC1</i> qPCR
HB11	GTCGCCCATGCTGTC	<i>ligC2</i> qPCR
HB12	CGCGGCCACCAATTC	<i>ligC2</i> qPCR
HB21	TGGCGATGATGATCTCCC	<i>ligCTB</i> (Rv3731) qPCR
НВ22	ТССӨСТССАТСТӨСТТТС	ligCTB(Rv3731) qPCR

oAF485	CCAAGCGGGCAGCCAAG	<i>sigA</i> qPCR
oAF486	GGGCTCAGCCTCGAGATCGTC	<i>sigA</i> qPCR
ku promoter 5'	TCCGCGGCACATAAGTGGCACGTTC	
ku promoter 3'	TGGTACCGATGGATCGCATAAGGCCAG	

Figure S1

<u>Original</u>

GATGGTGCAGGATATCCTGCTGATGA CTACCACGTCCTATAGGACGACTACT

ligD-(K484A))∆*ligB/CattB:nat_ligC1* junctions

			TGCACACCGCCGA ACGTGTGGCGGCT	-169/-170	GCTACCGGCGATG CGATGGCCGCTAC
ligD-(K484A) junctio	ns		GATGGTGCAGGATG	ATCCTGCTGAT	GA
			CTACCACGTCCTAC	TAGGACGACTA	CT
GGTCTGCTGCTGC	-95/-205	TGCAGCGCGATCG			
CCAGACGACGACG		ACGTCGCGCTAGC	GCAGAAGCCTGCG	-140/-129	GGCATGGTGCCAA
			CGTCTTCGGACGC		CCGTACCACGGTT
TGATTGAAGCAGA	-148/-178	CGATGAGCGAACG			
ACTAACTTCGTCT		GCTACTCGCTTGC	ATCGATGAGCGTG	-278/-328	AGTATGAAGGCGG
			TAGCTACTCGCAC		TCATACTTCCGCC
CGCTCACATTTAA	-742/-353	CACGGCCACCGAT			
GCGAGTGTAAATT		GTGCCGGTGGCTA	TGATGGTGCTGCG	-556/-37	GCTGTTCGCATTA
			ACTACCACGACGC		CGACAAGCGTAAT
GATGGTGCAGGATG.	ATCCTGCTGAT(GA			
CTACCACGTCCTAC	TAGGACGACTA	СТ	тстатсстссст	-190/-136	тессаатеаатсе
			AGATAGCACGCCA	1907 190	ACCCTTACTTACC
GATGGTGCAGGAT	/-562	AGGGCGGCTTCGT	nonmoonedeen		1100011110111100
CTACCACGTCCTA	,	TCCCGCCGAAGCA	CATCCTCCACCAT	/ - 455	теслелелессе
			CTACCACCTCCTA	/ 455	ACCTCTCTCCCCCC
GATGGTGCAGGATT	/-678	TGTATGAACGGTC	CIACCACGICCIA		ACCICICIGCGCG
CTACCACGTCCTAA	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ACATACTTGCCAG		112/ 200	
emeencorcerm			GAAGCAGAAGCCI	-143/-200	
CCACAACCOTCCC	_140/	NTCOTCOTCATCA	AGATAGCACGCCA		ICGCGCIAGCAII
GCAGAAGCCIGCG	-140/			000/100	
CGICIICGGACGC		IAGGACGACIACI	GTCGAAAACCCCGA	-230/-168	TGGCTACCGGCGA
	400/		CAGCTTTTTGGGGCT		ACCGATGGCCGCT
TTTCCGTGACGTC	-489/	ATCCIGCIGATGA			
AAAGGCACTGCAG		TAGGACGACTACT	GATGGTGCAGGATC	ATCCTGCTGAT	GA
			CTACCACGTCCTAG	TAGGACGACTA	CT
GATGGTGCAGGAT	/-104	GGATGAAGCCAAT			
CTACCACGTCCTA		CCTACTTCGGTTA	GATGGTGCAGGAT	/-206	GCAGCGCGATCGT
			CTACCACGTCCTA		CGTCGCGCTAGCA
			GGTCTGCTGCTGC	-95/-243	TCGCTGGGGAATG

Figure S3

AGATAGCACGCCA

AGCGACCCCTTAC

Original GAATCTGCATGGTACCAAGCTTGCTC CTTAGACGTACCATGGTTCGAACGAG

ligD-(K484A))Δ*ligB/CattB:nat_ligC1* junctions

<i>liqD</i> -(K484A) junctions				
5 ,			CCCCCTAACCCGC -77/	GTACC AAGCTTGCTC
CTCAATGCCCCCT	-84/-80	CCCCTTTCGCCAG	GGGGGATTGGGCG	CATGGTTCGAACGAG
GAGTTACGGGGGA		GGGGAAAGCGGTC	TTTTCACAAAACG -198/	GTACC AAGCTTGCTC
TTCACAAAACGGT -	196/	GTACCAAGCTTGCTC	AAAAGTGTTTTGC	CATGGTTCGAACGAG
AAGTGTTTTGCCA		CATGGTTCGAACGAG	TTTTCACAAAACG -198/	GTACC AAGCTTGCTC
GAATCTGCATGGTAC	/-35	GGGAAAACCCTGG	AAAAGTGTTTTGC	CATGGTTCGAACGAG
CTTAGACGTACCATG		CCCTTTTGGGACC	GCTAGTACTGGGC -170/-74	CACATCCCCCTTT
TGATTCGATATTT	-30/-163	CGCTTTGCCTGGT	CGATCATGACCCG	GTGTAGGGGGAAA
ACTAAGCTATAAA		GCGAAACGGACCA	GAATCTGCATGGTACA /-149	TGAATGGCGAATG
GTGGCCGCTTGCG	-47/266	ACGGTTACGATGC	CTTAGACGTACCATGT	ACTTACCGCTTAC
CACCGGCGAACGC		TGCCAATGCTACG	GAATCTGCATGGTAC /-362	TCACATTTAATGT
CTGACCCCGGGGT -	130/-54	CCAACTTAATCGC	CTTAGACGTACCATG	AGTGTAAATTACA
GACTGGGGGCCCCA		GGTTGAATTAGCG	TAAAGCTAGTACT -174/-266	ACGGTTACGATGC
TAACTGTAGGCCT -	141/-1216	GTGGATGAAGCCA	ATTTCGATCATGA	TGCCAATGCTACG
ATTGACATCCGGA		CACCTACTTCGGT	GAATCTGCATGGTACC /-227	AGGCCGATACTGT
AGCGGTTAGCTCC -	409/-1245	CATGGTGCCAATG	CTTAGACGTACCATGG	TCCGGCTATGACA
TCGCCAATCGAGG		GTACCACGGTTAC	TCTTACTGTCATG -319/-79	CCCCCTTTCGCCA
			AGAATGACAGTAC	GGGGGAAAGCGGT

LigC1 LigCTB LigC2	MDLPVQPPIEPMLAKAQVKVPDEAGVWSYEPKWDGFRALVFRDGDDVVLQSRNGKDLGRY MQLPVMPPVSPMLAKSVTAIPPDASYEPKWDGFRSICFRDGDQVELGSRNERPMTRY MDLPVLPPVSPMLSKSVNQIPPGMSYEPKWDGFRSILFRDGAEVELGSRKERPMTRY *:*** **:.***: :* ******* :* *** :* * **: : : ***	60 57 57
LigC1 LigCTB LigC2	FPELLDALRDELVEKCVLDGEVVVPRDIAGRVRLDWESLSQRIHPAASRIKMLAEQTPAHFPELVAAIRAELPHRCVIDGEIIIATDHGLDFEALQQRIHPAESRVRMLADRTPASFPELVAAALTELPDRCVIDGEIVLPADNHLDFEALQLRLHPAASRVAMLAEQTPAA****: * ** .:**:***::: * **:*:*** **: ***:***	120 113 113
LigC1 LigCTB LigC2	FIGFDALALGDRSLLKEPFRVRREALAEAVDNKRWCHVTRTSEDPALGTEWLKTF FIAFDLLALGDDDYTGRPFSERRAALVDAVTGSGADADLSIHVTPATTDMATAQRWFSEF FIAFDLLALGDDDYTGRPFSERRAALETALADAGPTFHLTPATTDLPTAQRWFHEF **.** ******* ** ** *: . *:* :: **: *	175 173 169
LigC1 LigCTB LigC2	EGAGLDGVIAKRLDGPYLPGKREMVKVKHHRDADCVAMGYRIHKSG-DGIGSILLGLYRD EGAGLDGVIAKPPHITYQPDKRVMFKIKHLRTADCVVAGYRVHKSGSDAIGSLLLGLYQE EGAGLDGVIAKPLDLTYQPDKRVMFKVKHQRTADCVVAGYRLHKSGADAVGSLLLGLYDD *********** *.** *.*:** * ****. ***:**** *.:**:*****	234 233 229
LigC1 LigCTB LigC2	DGELQMVGGAASFTAKDRIKLLAELEPLREGDEMREGDPSRWN DGQLASVGVIGAFPMAERRRLLTELQPLVTSFDDHPWNWAAHVAGQRTPRKNEFSRWN DGSLASVGVIGAFPMATRRALFTELQTLVADFDHHPWNWAAQAAADPELARRYGGGSRWN **.* ** .:*. * *::**:.* * . ****	277 291 289
LigC1 LigCTB LigC2	SAADKRWTPLRPEKVCEVAYDQMEGNSVEGRRFRHAVKFLRWRPDREPSSCTFDQLDTPL VGKDLSFVPLRPERVVEVRYDRMEGARFRHTAQFNRWRPDRDPRSCSYAQLERPL AGKDLSFVPLRPERLVEVRYDHMEGRRFRHTAQFNRWRPDRDARSCTFAQLDSPP . * :.*****:: ** **:*** *****: ******: ******: ***: ***:	337 346 344
LigC1 LigCTB LigC2	NYDLYDVLEEQ- 348 TVSLSDIVPGLR 358 HSSSVTSCRV 354	

