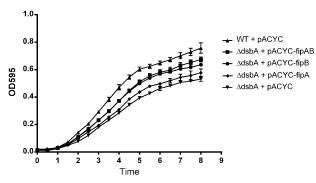
	Genotype	Comments	Source
F. tularensis			
Schu S4	Wild-type	F. tularensis tularensis	CDC
BJM1068	$\Delta fipA$		(1)
BJM1069	$\Delta fipAB$		(1)
BJM1076	fipA ⁺ fipB CMYC	<i>In cis</i> complement of BJM1069*	(1)
BJM1077	<i>fipA⁺fipB</i> AMYC	<i>In cis</i> complement of BJM1069*	(1)
BJM1078	fipA ⁺ fipB CMYA	<i>In cis</i> complement of BJM1069*	(1)
BJM1099	<i>fipB</i> ::26AS	<i>fipB</i> with Nhe1 site that adds Ala-Ser at amino amino 26*	This study
BJM1100	fipB-C22A	<i>fipB</i> with substitution in the lipobox motif*	This study
BJM1103	<i>fipA⁺fipB</i> AMYA	<i>In cis</i> complement of BJM1069*	This study
BJM1111	<i>fìpB</i> ::26AS,Daa-27- 117	<i>fipB</i> with Mip domain deleted*	This study
BJM1116	$\Delta fipA$ pFLNTP6-fip A^+	Episomal complement of $\Delta fipA$	This study
BJM1117	pFNLTP6-fipA ⁺	Episomal complement of wild- type	This study
BJM1072	pFNLTP6	Wild-type vector control	This study
F. novicida			
U112	Wild-type	F. novicida	BEI Resources
NR-6988	<i>F. novicida</i> TN:: <i>fipA</i>	Polar mutant affecting <i>fipB</i>	(2).
<i>E. coli</i> strains			
JCB571	dsbA		(3)
BMYZ266	dsbA pACYC184	vector control	This study
BMYZ279	$dsbA pfipA^+$	Episomal complement of <i>dsbA</i> with <i>fipA</i>	This study
BMYZ280	$dsbAfipB^+$	Episomal complement of <i>dsbA</i> with	This study
BMYZ280	$dsbAfipA\mathrm{B}^+$	Episomal complement of <i>dsbA</i> with <i>fipA</i> B	This study
RGP665	dsbC, pPDI	<i>dsbC</i> harbors PDI detector plasmid	(4)
BMYZ246	<i>dsbC</i> , pPDI, pACYC184	<i>dsbC</i> harbors PDI detector plasmid and episomal complement vector control	This study

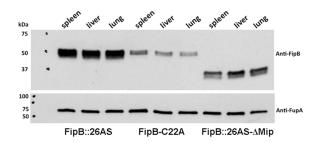
Supplemental Table 1.	Bacterial Strains and	plasmids used in this study


BMYZ247	$dsbC$, pPDI, p $dsbC^+$	<i>dsbC</i> harbors PDI detector plasmid and Episomal complement with <i>E. coli</i> WT	This study
BMYZ275	$dsbC$, pPDI, p $fipB^+$	<i>dsbC</i> <i>dsbC</i> harbors PDI detector plasmid and episomal	This study
BMYZ276	$dsbC$, pPDI, p $fipA^+$	complement with <i>fipB</i> <i>dsbC</i> harbors PDI detector plasmid and Episomal	This study
BMYZ277	$dsbC$, pPDI, p $fipAB^+$	complement with <i>fipA</i> <i>dsbC</i> harbors PDI detector plasmid and Episomal complement with <i>fipAB</i>	This study
Plasmids		······································	
pMP815		in cis complement vector	(5)
pFNLTP6-		Plasmid used for episomal	(6)
groE-gfp		complementation in <i>F</i> . <i>tularensis</i>	
pAQ207	<i>fipA⁺fipB</i> AMYA	<i>fipA⁺fipB</i> AMYA in pMP815 for <i>in cis</i> complement	This study
pAQ208	<i>fipB</i> 26AS,Daa-27- 117	<i>fipB</i> 26AS,Daa-27-117 in pMP815 for <i>in cis</i> complement"	This study
pAQ226	fipB Daa236-365	<i>fipB</i> Daa236-365 in pMP815 for <i>in cis</i> complement	This study
pAQ237	fipB C22A	<i>fipB</i> C22A in pMP815 for <i>in cis</i> complement	This study
pACYC184	Chloramphenicol, tetracycline resistant	Low copy plasmid	(7)
pPDI detector	pBR322 <i>bla</i> S81C, T108C	pPDI detector	(4)
pBMMR199	<i>fipAB</i> in pACYC184		This study
pBMMR200	<i>fipB</i> in pACYC184		This study
pBMMR251	<i>fipA</i> in pACYC184		This study

* All *in cis* complementation were integrated at the *blaB* locus with wild-type *fipA* and the native promoter

REFERENCES

- 1. Qin A, Scott DW, Rabideau MM, Moore EA, Mann BJ. 2011. Requirement of the CXXC Motif of Novel Francisella Infectivity Potentiator Protein B FipB, and FipA in Virulence of *F. tularensis* subsp. *tularensis*. PLoS One 6:e24611.
- 2. Gallagher LA, Ramage E, Jacobs MA, Kaul R, Brittnacher M, Manoil C. 2007. A comprehensive transposon mutant library of *Francisella novicida*, a bioweapon surrogate. Proc Natl Acad Sci U S A **104**:1009-1014.
- **3. Bardwell JC, McGovern K, Beckwith J. 1991.** Identification of a protein required for disulfide bond formation in vivo. Cell **67:**581-589.


- 4. **Ren G, Bardwell JC. 2011.** Engineered pathways for correct disulfide bond oxidation. Antioxid Redox Signal **14**:2399-2412.
- 5. LoVullo ED, Molins-Schneekloth CR, Schweizer HP, Pavelka MS, Jr. 2009. Singlecopy chromosomal integration systems for *Francisella tularensis*. Microbiology 155:1152-1163.
- 6. Maier TM, Havig A, Casey M, Nano FE, Frank DW, Zahrt TC. 2004. Construction and characterization of a highly efficient *Francisella* shuttle plasmid. Appl Environ Microbiol **70**:7511-7519.
- Chang AC, Cohen SN. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141-1156.

SUPPLEMENTAL FIG 1 Growth Curves of E. coli strains expressing pACYC187 plasmids. Overnight cultures were diluted 1:100 in LB plus 35 μ g/ml of chloramphenicol and grown at 37° with aeration.

SUPPLEMENTAL FIG 2 *F. novicida fipAB* mutant is more sensitive to copper than wild-type. Bacteria were grown at 37°C with shaking in the indicated media supplemented with increasing amounts of CuCl₂.

SUPPLEMENTAL FIG 3 Mice that succumbed to infection with strains expressing mutated *fipB* were not infected with cultures that were contaminated with wild-type bacteria. Western blot of FipB from bacteria recovered from the organs of mice that succumbed to infection with the indicated strains. Mice were intranasally challenged with indicated strains, and then euthanized at the first signs of irreversible mortality. Anti-FupA antibody was used as a loading control.