

FIG S1 Alignment of SidC_{Llo}, SidC_{Lpn} and SdcA_{Lpn}. (A) Domain analysis of 111 kDa SidC_{Llo} and 106 kDa SidC_{Lpn}. (B) Amino acid sequence alignment of SidC_{Llo}, SidC_{Lpn} and SdcA_{Lpn} using the Clustal Omega algorithm. Full-length SidC_{Llo}/SidC_{Lpn} or the corresponding P4C domains share 40% or 45% identity, respectively. Identical or similar amino acids are marked in black or in gray.

Strain/plasmid	Properties	Reference
E. coli		
BL21(DE3)		Novagen
TOP10		Invitrogen
ST18	S17 $\lambda pir \Delta hem A$	(1)
L. longbeachae		
NSW150	L. longbeachae strain NSW150, serogroup 1	(2)
$\Delta dot A$	NSW150 $dotA$::Kan ^R ($\Delta dotA$)	(2)
IH02	NSW150 <i>llo3098</i> ::Kan ^R (Δ <i>sidC</i>)	This study
L. pneumophila		
JR32	L. pneumophila strain Philadelphia-1, serogroup 1	(3)
LELA3118	JR32 $dotA3118$::Kan ^R ($\Delta dotA$)	(3)
GS3011	JR32 $icmT3011$::Kan ^R ($\Delta icmT$)	(4)
CR01	JR32 <i>sidC-sdcA</i> ::Kan ^R (Δ <i>sidC-sdcA</i>)	(5)
Plasmids		
pET28a(+)	N-terminal His ₆ -fusion, P _{T7} , Kan ^R	Novagen
pGEX4T-1	N-terminal GST-fusion, P _{tac} , Amp ^R	Amersham
pMMB207-C-M45	pMMB207-C, Δ <i>mobC</i> , M45-(Gly) ₅ , Cam ^R	(6)
pCaln-GFP	Pact15, calnexinA-RSSSKLK-GFP (S65T), G418	(7)
pCR01	pET28a(+), His_6 -sid C_{Lpn} (P _{tac})	(6)
pCR02	pGEX4T-1, GST -sid C_{Lpn} (P _{tac})	(6)
pCR34	pMMB207-C, <i>M45-sidC</i> _{Lpn} (P _{tac})	(6)
pCR77	pMMB207-C-P _{tac} -RBS-dsred-RBS	(8)
pCR80	pMMB207-C-P _{tac} -RBS-dsred-RBS-sidC _{Lpn}	(8)
pGEX-PH _{FAPP1}	pGEX4T-1, GST-PH _{FAPP1} (P _{tac})	(9, 10)

TABLE S1. Bacterial strains and plasmids.

pHP56	pGEX4T-1, <i>GST-sidC</i> _{Lpn_609-776} (P _{tac})	(5)
pIH33	pLAW344-upstream $sidC_{Llo}$ '-Kan ^R -downstream $sidC_{Llo}$ '	This study
pIH47	pMMB207-C-P _{tac} -RBS-dsred-RBS-sdcA _{Lpn}	This study
pIH60	pGEX4T-1, <i>GST-sidC</i> _{Lpn_1-608-Llo_609-969}	This study
pLAW344	oriT (RK2), oriR (ColE1), sacB, Cam ^R , Amp ^R	(11)
pMH01	pGEX4T-1, <i>GST-sidC</i> _{Llo_1-608-Lpn_609-917}	This study
pSD01	pET28a(+); His_6 - $sidC_{Llo}$ (P _{T7})	This study
pSD02	pET28a(+); His_6 -sidC _{Llo} (P _{T7}), BamHI/SalI deleted in sidC	This study
pSD03	pGEX4T-1, GST -sid $C_{\text{Llo}_{609-782}}$ (P _{tac})	This study
pSD04	pGEX4T-1, GST -sid $C_{\text{Llo}_{1-340}}$ (P _{tac})	This study
pSD05	pGEX4T-1, GST-sidC _{Llo_341-608} (P _{tac})	This study
pSD06	pGEX4T-1, <i>GST-sidC</i> _{Llo_783-969} (P _{tac})	This study
pSD07	pGEX4T-1, GST -sid C_{Llo} (P _{tac})	This study
pSD13	pMMB207-C, <i>M45-sidC</i> _{Llo} (P _{tac})	This study
pSD14	pMMB207-C-P _{tac} -RBS-dsred-RBS-sidC _{Llo}	This study
pSW001	pMMB207-C, $\Delta lacl^{q}$, constitutive <i>dsred</i>	(12)
pUC4K	<i>oriR</i> (pBR322), Amp ^R , MCS::Kan ^R	Amersham

Abbreviations: ampicillin (Amp); chloramphenicol (Cam); kanamycin (Kan); geneticin (G418)

REFERENCES

- Thoma S, Schobert M. 2009. An improved *Escherichia coli* donor strain for diparental mating. FEMS Microbiol Lett 294:127-132.
- Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, Sansom FM, Jarraud S, Zidane N, Ma L, Bouchier C, Etienne J, Hartland EL, Buchrieser C. 2010. Analysis of the *Legionella longbeachae* genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genetics 6:e1000851.

- Sadosky AB, Wiater LA, Shuman HA. 1993. Identification of *Legionella pneumophila* genes required for growth within and killing of human macrophages. Infect Immun 61:5361-5373.
- 4. **Segal G, Shuman HA.** 1998. Intracellular multiplication and human macrophage killing by *Legionella pneumophila* are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol **30**:197-208.
- Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H. 2008. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416-2433.
- Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H. 2006. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46.
- Müller-Taubenberger A, Lupas AN, Li H, Ecke M, Simmeth E, Gerisch G. 2001. Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J 20:6772-6782.
- Finsel I, Ragaz C, Hoffmann C, Harrison CF, Weber S, van Rahden VA, Johannes L, Hilbi H. 2013. The *Legionella* effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14:38-50.
- 9. Dowler S, Kular G, Alessi DR. 2002. Protein lipid overlay assay. Sci STKE 2002:PL6.
- Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA. 2004. FAPPs control Golgi-to-cellsurface membrane traffic by binding to ARF and PtdIns(4)*P*. Nat Cell Biol 6:393-404.
- Wiater LA, Sadosky AB, Shuman HA. 1994. Mutagenesis of *Legionella pneumophila* using Tn903dll*lacZ*: identification of a growth-phase-regulated pigmentation gene. Mol Microbiol 11:641-653.
- Mampel J, Spirig T, Weber SS, Haagensen JAJ, Molin S, Hilbi H. 2006. Planktonic replication is essential for biofilm formation by *Legionella pneumophila* in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72:2885-2895.

TABLE S2. Oligonucleotides used in this study.

Oligo	Sequence (5' - 3') ^a	Comments
oCR1	AAAAACGC <u>GGATCC</u> ATGGTGATAAACATGGTTGACG	5'of sidC, BamHI (Ref. 5)
oIH19	AAAAACGC <u>TCTAGA</u> TCCTCTACTACCTTGTGAGT	5' upstr. $sidC_{Llo}$ (fo), $XbaI$
oIH20	AAAAACGC <u>GGATCC</u> GAAACATTAAGAAGTGTGCG	3' upstream $sidC_{Llo}$ (re)
oIH21	AAAAACGC <u>GGATCC</u> ATCTGAATGAAGCAAAATTG	5' downstream $sidC_{Llo}$ (fo)
oIH22	AAAAACGC <u>TCTAGA</u> AATTTACTGACTTGCAATCA	3' downstream $sidC_{Llo}$ (re)
oIH23	ATCCAAACCATCGTCGTGTC	5' upstream oIH019 (fo)
oIH24	ATCCTGAGGAGTTGCAGAAAG	3' downstream oIH022 (re)
oIH39	AAAAACGC <u>CTGCAG</u> CTGACCAGGTAATTGC	3' of $sidC_{Lpn1-608}$ (re), $PstI$
oIH40	AAAAACGC <u>CTGCAG</u> TTATTTCCTGGGAAAC	5' of $sidC_{Llo609-969}$ (fo), $PstI$
oMH01	GGATCCACGCGGAACCAGATCCGATTTTGG	pGEX-4T-1 (re)
oMH02	CCGGAATTCCCGGGTCGACTCGAGCGGCCG	pGEX-4T-1 (fo)
oMH03	gttccgcgtggatccATGAGAGTCACTAAAATGCC	5' of $sidC_{Llo1-608}$ (fo)
oMH04	aggaatatttATTTTCTCTATTCACGTTTGC	3' of $sidC_{Llo1-608}$ (re)
oMH05	tagagaaaatAAATATTCCTCCAAGCCATTATTG	5' of $sidC_{Lpn609-917}$ (fo)
oMH06	acccgggaattccggCTATTTCTTTATAATTCCCGTGTAC	3' of $sidC_{Lpn609-917}$ (re)
oSD05	TTTTG <u>GGATCC</u> GAATATAGAGAACTAAAATG	5' flanking sequence $sidC_{Llo}$
		(fo), <i>Bam</i> HI
oSD06	TTTTT <u>GTCGAC</u> GAAATAAAGTTAAGTACGTGAATTAAA	3' flanking sequence $sidC_{Llo}$
	AGTACG	(re), <i>Pst</i> I
oSD07	TTTT <u>CATATG</u> ATGAGAGTCACTAAAATGCCTAAAGAC	5' flanking sequence $sidC_{Llo}$
		(fo), <i>Nde</i> I
oSD08	TTTTT <u>GCTAGC</u> TTAAGTACGTGAATTAAAAGTACGTCC	3' flanking sequence $sidC_{Llo}$
		(re), NheI
oSD16	TTTTG <u>GGATCC</u> ATGAGAGTCACTAAAATGCTTAAAGAC	5' of $sidC_{Llo1-340}$ (fo)
oSD17	TTTTT <u>GTCGAC</u> TCATCCAGTGATTTTTTCTACGTC	3' of $sidC_{Llo1-340}$ (re)
oSD18	TTTTG <u>GGATCC</u> GCTGCTGTTATTTCCTGGG	5' of $sidC_{Llo609-782}$ (fo)
oSD19	TTTTT <u>GTCGAC</u> TCATTCATTGAAAAAGTTAAGCGCTG	3' of $sidC_{Llo609-782}$ (re)
oSD22	GAAAATAATATCAAGGCATGGTCCACTGATCTTGAAGC	Quick Change sidC _{Llo}
	AATCG	$(\Delta SalI)$ (fo)
oSD23	CGATTGCTTCAAGATCAGTGGACCATGCCTTGATATTA	Quick Change $sidC_{Llo}$
	TTTTC	$(\Delta Sal1)$ (re)
oSD24	AAACGC <u>GGATCC</u> GATGAATCACAGCAAAAGGAAGC	5' of $sidC_{Llo341-608}$ (fo)

oSD25	AAACGC <u>GTCGAC</u> TCAATTTTCTCTATTCACGTTTGCTGG	3' of $sidC_{Llo341-608}$ (re)
	AG	
oSD26	AAACGC <u>GGATCC</u> TTGTCTTTACATGAGGTGCTTAAAGT	5' of $sidC_{ m Llo783-969}$ (fo)
	AGC	
oSD27	AAACGC <u>GTCGAC</u> TTAAGTACGTGAATTAAAAGTACGTC	3' of $sidC_{Llo783-969}$ (re)
	С	
oSD28	GATGAGTTCTTTTTGATGGACCCCAATAGAAAAGG	Quick Change $sidC_{Llo}$ (ΔBam HI) (fo)
oSD29	CCTTTTCTATTGGGGTCCATCAAAAAGAACTCATC	Quick Change $sidC_{Llo}$ (ΔBam HI) (re)

^a Restriction sites are underlined.