Supporting Information

The mycobacterial gene *cuvA/Rv1422* is required for optimal carbon-source utilization and virulence

Mushtaq Mir^{1*}, Sladjana Prisic¹, Choong-Min Kang^{1**}, Shichun Lun², Haidan Guo², Jeffrey

Murry^{3***}, Eric Rubin³, Robert N. Husson^{1***}

¹Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA,

02115

²Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore,

MD

³Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston,

MA 02115

*Current address: Wadsworth Center, Albany, NY

**Current address: Department of Biological Sciences, California State University Stanislaus,

Turlock, CA 95382

***Current address: Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404

***Corresponding author information: Robert N. Husson Division of Infectious Diseases Children's Hospital Boston 300 Longwood Ave. Boston, MA 02115 Tel 617-919-2900 Fax 617-730-0254 robert.husson@childrens.harvard.edu

Supporting Methods

Time-lapse microscopy

 $600 \ \mu$ L sterile 1% agarose made in Middlebrook 7H9 medium containing 0.2% acetamide was poured into a rectangular chamber made of 4 Frame-Seals (Bio-Rad) on a glass slide and a coverslip was immediately placed over the agarose to smoothen the surface. After solidification of the agarose, the coverslip was removed and 5/6th of the agarose pad was discarded. *M. smegmatis* containing plasmid pMV306Ac-*Rv1422-gfp* (RH558), grown in 7H9 broth to an O.D₆₀₀ of 0.5 and washed in minimal medium was then spotted on the remaining agarose pad. The chamber was closed with a new coverslip and the slide was incubated at 37°C for 15 hrs before being observed under a TK spinning Disk Confocal microscope using 63x oil objective. The images were captured manually every 20 min using filters for GFP and phase contrast. The images were acquired using Slidebook 4 and a movie was created in imageJ.

Cellular Localization of PBP1

For localization of *M. smegmatis* PBP1 (encoded by *MSMEG_6900*), a C-terminal MSMEG_6900-RFP fusion protein was expressed. The *MSMEG6900* gene was amplified by PCR from *M. smegmatis* genomic DNA using primers *MSMEG6900*-F and *MSMEG6900*-R. Similarly *rfp* was PCR-amplified using primers Rfp_F and Rfp_R. Overlap PCR was then carried out using the primers *MSMEG6900*-F and Rfp_R. The resulting fusion PCR product was cloned into the *Ndel* and *Xbal* sites in pMV261Ac 3' of the acetamidase promoter to obtain pMV261Ac-*MSMEG6900-rfp*. This construct was transformed into wild type and cuvA_{Ms} deletion strains of M. smegmatis, cells were grown in liquid MM containing 0.2% glucose or 0.01% cholesterol for 6-8 hours and examined by DIC and fluorescence microscopy as described for localization of CuvA.

Table S1. Primers, plasmids and strains used in this study

Primer	Sequence
Rv1422AE	Ggatccattaatgaattcgatgaccgatggcatcgtcgcg
Rv1422rPac1	Cttctcctttgctagccatgttaattaagcgccacgcgtcgtcacccctcg
GFP3Pac1	Gacgacgcgtggcgcttaattaacatggctagcaaaggagaagaacttt
GFP4XK	Ggttctagaggtacctcagccatgtgtaatcccagcagcag
MSMEG3080-cond-1	Ctagtctagaacaggtggaccgggtatg
MSMEG3080-cond-2	Gttggcacagtccgttccttaattaagacgatgcgtcgtggtgtcat
MSMEG3080-cond-3	Ggaacggactgtgccaac
MSMEG3080-cond-4	Ctagtctagagactcggtgtcggggatg
MSMEG3080-us	Gcgcgtgctgcaccgggacctgggtcgcg
MSMEG3080-ds	Gctcagctcgtccttcacctcggctgtc
MSMEG3080-int-1	Gcgacgcatatgtgcttaattaacatgacaccacgcatcgtcgccctcgga
MSMEG3080-int-2	Ggacagatcgagaggggatgccccgtggcgaccatggtgatatcgacg
yrbE4A-F	Gtacaaggccgccgccttgatccaacaacttgcggttc
yrbE4A-R	Gcggatatcttactgcgccgagattcgcac
mCherry-F	Gcatgcttaattaagaaggagatatacatatggtgagcaagggcgaggag
mCherry-yrbE4A_R	Gatcaaggcggcggccttgtacagctcgtccatgc
mCherry_R	Gtcgcggatatctacttgtacagctcgtccatg
MSMEG6900_F	Ggaatccatatgaataacgaagggcgccac
MSMEG6900_R	Ggaggaggccatgttaattaacggaggcggcgggggctccggg
Rfp_F	Tccgttaattaacatggcctcctccgaggacgtc
Rfp_R	Gcaagttctagatcaagcgccggtggagtggc
PbpA_F	Gaggatccatatgaacgcctctctgcgccg
PbpA_R	Ggccatgttaattaatggttccccctgcagtgc

Plasmid	Characteristics	Source
pRH1351	An Integrating vector that contains the counter-selection marker <i>sacB</i> , a gentamicin resistance gene, a catechol 2,3-dioxygenase gene (<i>xylE</i>) and a temperature sensitive mycobacterial replication origin.	(1)
pMV306Ac	A mycobacterial integrating vector containing the acetamidase promoter, Kan ^R	This study
pMV306A <i>c-gfp</i>	An integrating vector having <i>gfp</i> cloned downstream to the acetamidase promoter,	This study

pMV306Ac-Rv1422-gfp	An Integrating vector having <i>Rv1422-gfp</i> cloned downstream to the acetamidase	This study
pJEB402	Integrating vector containing the <i>hsp70</i> (MOP) promoter, Kan ^R	(2)
pJEB- <i>Rv1422</i>	<i>Rv1422</i> cloned downstream to MOP promoter in pJEB402, Kan ^R	This study
pMind	Replicating shuttle vector with tet promoter, coli El ori, pAL1500 ori, Kan ^R , Hyg ^R	(3)
pMind-MSMEG3080	MSMEG3080 cloned downstream to tet promoter in pMind, Kan ^R	This study
pMV261-P _{tet} - <i>mCherry-</i> <i>yrbE4A</i>	<i>mCherry-yrbE4A</i> cloned downstream to tet promoter in replicating vector, Hyg ^R , Kan ^R	This study
pMV261-P _{tet} -mCherry	<i>mCherry</i> cloned downstream to tet promoter in replicating vector, Hyg ^R	This study
pMV261Ac- MSMEG6900-rfp	<i>MSMEG6900-rfp</i> cloned downstream to the acetamidase promoter in replicating vector,	This study
pMV261Ac-pbpA-rfp	<i>pbpA-rfp</i> cloned downstream to the acetamidase promoter in replicating vector,	This study
pMV261Ac- <i>rfp</i>	<i>rfp</i> cloned downstream to acetamidase promoter in replicating vector, Hyg ^R	This study

Strain	Characteristics	Source
<i>E. coli</i> Top10	Cloning strain	Invitrogen
<i>M. smegmatis</i> mc ² 155	Wild type	(4)
<i>M. tuberculosis</i> H37Rv	Wild type	Lab collection
<i>M. tuberculosis</i> mc ² 6206	<i>∆leuD∆panCD</i> double auxoptroph of <i>M.</i> <i>tuberculosis</i> H37Rv	(5)
RH477	<i>MSMEG3080</i> deletion mutant in <i>M. smegmatis mc</i> ² 155	This study
RH478	<i>Rv1422</i> deletion strain in <i>M. tuberculosis</i> H37Rv	This study
RH479	RH478 containing pJEB402 integrated at <i>attB</i> site, Kan ^R , Hyg ^R	This study
RH480	RH478 containing plasmid pJEB-Rv1422 integrated at <i>attB</i> site, Kan ^R , Hyg ^R	This study
RH481	Wild type strain harboring plasmid pJEB402 integrated at <i>attB</i> site, Kan ^R	This study
RH558	Wild type <i>M. smegmatis</i> mc ² 155 containing plasmid pMV306Ac- <i>Rv1422-gfp</i> integrated at <i>attB</i> site. Kan ^R	This study
RH555	Wild type <i>M. smegmatis</i> mc ² 155 containing pMV261Ac- <i>rfp</i> , Hyg ^R	This study
RH661	Wild type <i>M. smegmatis</i> mc ² 155 containing plasmid pMV261-P _{tet} - <i>mCherry-YrbE4A</i> , Hyg ^R ,	This study

RH741	Wild type <i>M. smegmatis</i> mc ² 155 containing plasmid pMV261Ac- <i>pbpA-rfp</i> , Kan ^R	This study
RH773	<i>MSMEG3080</i> deletion strain of <i>M. smegmatis</i> containing pMV261Ac- <i>MSMEG6900-rfp</i> , Kan ^R	This study
RH861	Wild type <i>M. smegmatis</i> mc ² 155 containing plasmid pMV261-P _{tet} - <i>mCherry</i> , Hyg ^R	This study
RH862	<i>MSMEG3080</i> deletion strain of <i>M. smegmatis</i> containing pMV306-P _{tet} - <i>mCherry-YrbE4A</i> , Hyg ^R , Kan ^R	This Study
RH893	<i>M. tuberculosis</i> mc2-6206 containing pMV306Ac- <i>Rv1422-gfp</i> inserted at <i>attB</i> site,	This study

Supporting Methods References

- 1. **Raman S, Song T, Puyang X, Bardarov S, Jacobs Jr. W, Husson R.** 2001. The alternative sigma factor SigH regulates major components of the oxidative and heat stress responses in *Mycobacterium tuberculosis*. J Bacteriol **183:**6119-6125.
- Farrow MF, Rubin EJ. 2008. Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. J. Bacteriol. 190:1783-1791.
- 3. Blokpoel MC, Murphy HN, O'Toole R, Wiles S, Runn ES, Stewart GR, Young DB, Robertson BD. 2005. Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res **33**:e22.
- 4. **Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR, Jr.** 1990. Isolation and characterization of efficient plasmid transformation mutants of *Mycobacterium smegmatis*. Mol Microbiol **4**:1911-1919.
- 5. Sampson SL, Dascher CC, Sambandamurthy VK, Russell RG, Jacobs WR, Bloom BR, Hondalus MK. 2004. Protection elicited by a double leucine and pantothenate auxotroph of *Mycobacterium tuberculosis* in guinea pigs. Infect immun **72:**3031-3037.