

Figure S1. Disruption of the *CgMED2* gene leads to increased susceptibility to fluconazole.

Growth profile analysis of indicated *C. glabrata* strains in the YPD medium containing or lacking $16 \mu g/ml$ fluconazole (FLC 16) at 30° C. Data represent the means from three independent growth analyses ± SEM. Solid and dotted lines indicate untreated and fluconazole-treated cultures, respectively.

Figure S2. Disruption of the *CgMED2* gene does not affect the uptake of *C. glabrata* cells by THP-1 macrophages.

- A. wt and the Cgmed2∆cells were infected to THP-1 macrophages at a MOI of 1:10. After 2 h coincubation, extracellular C. glabrata cells were washed off with three PBS washes and the number of intracellular yeast cells was determined by plating appropriate dilutions of macrophage lysates on YPD medium. % phagocytosis rate was calculated by dividing the number of intracellular yeast cells 2 h post infection to the number of yeast cells infected to THP-1 macropahges. Data represent means±SEM of three independent infection experiments.
- B. *wt* and the $Cgmed2\Delta$ cells were grown in RPMI medium for indicated time periods and growth was recorded by plating appropriate culture dilutions on YPD medium and counting the total number of CFUs.

Figure S3. The *Cgmed2* Δ mutant exhibits sensitivity to caspofungin. *wt* and *Cgmed2* Δ cells were grown in CAA medium lacking or containing 0.05 µg/ml caspofungin for 24 h, diluted 10-, 100- and 1000-fold in PBS and 3 µl of each culture dilution was spotted on YPD medium. Growth was recorded after 24 h.

Figure S4. Expression of the GOF *CgPDR1* allele conferred fluconazole resistance in $Cgbem2\Delta$ cells.

Serial dilution spot assay of indicated *C. glabrata* strains on YPD and YPD medium containing8 (FLC 8) and 64 µg/ml (FLC 64) fluconazole. The *Cgpdr1* Δ mutant was used as a control. Expression of the wild-type *CgPDR1* allele complemented the fluconazole sensitivity of the *Cgpdr1* Δ mutant while expression of the GOF *CgPDR1*^{L280F} allele rendered the mutant hyper-resistant to fluconazole. Plates were imaged after 1 day of incubation at 30°C.

Figure S5. N- and C-terminally-myc-tagged CgMed2 could rescue the fluconazole sensitivity of the $Cgmed2\Delta$ mutant.

- A. Representative Western blot analysis for expression of N- and C-terminally-myc-tagged CgMed2protein in log-phase *wt* cells.Protein extracts were resolved on a SDS-12% PAGE and immunoblotted with the polyclonal antibody against the myc-tag (Sigma-Aldrich # C3956).
- B. Serial dilution spot assay of indicated *C. glabrata* transformants on YPD and YPD medium containing 8 μg/ml fluconazole (FLC). Plates were imaged after 1 day of incubation at 30°C.
- C. Serial dilution spot assay of indicated *C. glabrata* transformants on YPD and YPD medium containing 32 μg/ml (FLC) fluconazole. Plates were imaged after 1 day of incubation at 30°C.

Strain	Relevant genotype	Reference	
Yeast			
BG2	Clinical isolate	Fidel et al., 1996	
VDV10	$ura3\Delta$::Tn903 G418 ^R	Cormack and Falkow,	
IKKI9		1999	
YRK20	URA3	De Las Peñas et al., 2003	
YRK527	$ura3\Delta::Tn903 G418^{R}Cgbem2\Delta::nat1$	Borah <i>et al.</i> , 2011	
YRK747	$Cgmed2\Delta::nat1$	This study	
YRK758	$ura3\Delta::Tn903 G418^{R}Cgmed2\Delta::nat1$	This study	
YRK798	YRK758/pBRK74	This study	
YRK799	YRK758/pBRK1021	This study	
YRK809	$ura3\Delta::Tn903 \ G418^{R}Cgpdr1\Delta::nat1$	This study	
YRK810	$ura3\Delta::Tn903 \ G418^{R}Cgbem2\Delta Cgpdr1\Delta::nat1$	This study	
YRK812	YRK809/pBRK943 ($Cgpdr1\Delta/V$)	This study	
YRK813	YRK809/pBRK945 (<i>Cgpdr1</i> Δ/ <i>CgPDR1</i>)	This study	
YRK814	YRK809/pBRK946 ($Cgpdrl\Delta/Cgpdrl^{L280F}$)	This study	
YRK815	YRK810/pBRK943 (<i>Cgbem2</i> Δ <i>Cgpdr1</i> Δ / <i>V</i>)	This study	
YRK816	$YRK810/pBRK945 (Cgbem2\Delta Cgpdr1\Delta/CgPDR1)$	This study	
YRK817	YRK810/pBRK946	This study	
	$(Cgbem2\Delta Cgpdr1\Delta/Cgpdr1^{L280F})$		
YRK821	YRK19/pBRK943 (<i>wt/V</i>)	This study	
YRK822	YRK19/pBRK945 (<i>wt/CgPDR1</i>)	This study	
YRK823	YRK19/pBRK946 (<i>wt/Cgpdr1^{L280F}</i>)	This study	
YRK835	YRK758/pBRK943 ($Cgmed2\Delta/V$)	This study	
YRK836	YRK758/pBRK945 (<i>Cgmed2</i> \/ <i>CgPDR1</i>)	This study	
YRK837	$YRK758/pBRK946 (Cgmed2\Delta/Cgpdr1^{L280F})$	This study	
YRK858	$YRK758/pBRK961(Cgmed2\Delta/CgMED2-c-myc)$	This study	
YRK859	YRK758/pBRK963 (<i>Cgmed2</i> \/ <i>CgMED2-c-myc</i>)	This study	
YRK1130	YRK19/CgPDR1-HA	This study	
YRK1131	YRK809/CgPDR1-HA	This study	
Transposon			
Tn7	Tn7 R6Kγori URA3 npt (Km ^R)	Castaño <i>et al.</i> , 2003	
YRK673	$Cgmed2\Delta$::Tn7	Borah <i>et al.</i> , 2011	
YRK675	$Cgpgd1\Delta::Tn7$	Borah <i>et al.</i> , 2011	
YRK943	$Cgnutl\Delta::Tn7$	Kaur <i>et al.</i> , 2004	
YRK945	$Cgrgrl\Delta$::Tn7	Kaur <i>et al.</i> , 2004	
YRK947	$Cgsrb8\Delta::Tn7$	Kaur et al., 2004	
YRK1011	wt::Cgpdr1 ^{L280F}	This study	
YRK1012	$Cgmed2\Delta::Tn7::Cgpdr1^{L280F}$	This study	
YRK1014	$Cgpgd1\Delta$::Tn7::Cgpdr1 ^{L280F}	This study	
YRK1015	$Cgrgr1\Delta::Tn7::Cgpdr1^{L280F}$	This study	
YRK1016	$Cgnut1\Delta$::Tn7::Cgpdr1 ^{L280F}	This study	

YRK1017	$Cgsrb8\Delta::Tn7::Cgpdr1^{L280F}$	This study
Plasmid	Description	Reference
pRK74	CEN-ARS plasmid (pGRB2.2) of C. glabrata carrying S. cerevisiae URA3 as a selection marker. MCS sites are flanked by S. cerevisiae PCK1 promotor at one and and by 3' UTP of HIS3	Frieman <i>et al.</i> , 2002
	at the other end	
pBRK943	CEN-ARS vector pCgACU5	Sanglard laboratory
pBRK945	pSF4, pCgACU5-derived plasmid containing <i>CgPDR1</i> from wild-type strain	Sanglard laboratory
pBRK946	pSF5, pCgACU5-derived plasmid containing <i>CgPDR1</i> from azole resistant strain (DSY565)	Sanglard laboratory
pBRK947	pSF2, <i>CgPDR1</i> deletion plasmid, <i>SAT1-FLIP</i> marker	Sanglard laboratory
pBRK949	pSF67, plasmid with <i>CgPDR1</i> hyperactive allele (DSY565)	Sanglard laboratory
pBRK961	CgMED2 tagged with c-myc at C-terminal	This study
pBRK963	CgMED2 tagged with c-myc at N-terminal	This study
pBRK1021	<i>CgMED2</i> (<i>CAGL0C04477g</i>) cloned into pRK74 plasmid	This study

Table S2: List of primers used in the study

Primer	Sequence	Details	Reference		
Primers for generation of <i>Cgmed2</i> ∆deletion strain					
OgRK801	GTATCATCGGGGGGTTGTGAC	<i>CgMED2</i> 5' UTR Forward	This study		
OgRK802	GCGTCGACCTGCAGCGTACGAA AGACCCAGTGTTCGCAGT	<i>CgMED2</i> 5' UTR Reverse	This study		
OgRK803	CGACGGTGTCGGTCTCGTAGAA AGTTTGAAAGTGTTTTACCTTG TG	<i>CgMED2</i> 3' UTR Forward	This study		
OgRK804	ATGGGATGTCATAGACGATCAA	<i>CgMED2</i> 3' UTR Reverse	This study		
OgRK805	CGGGTACCCATATTTCGATG	<i>CgMED2</i> 5' integration check Forward	This study		
OgRK806	TTGCTCAGCATGTTCTCCAG	<i>CgMED2</i> 5' integration check Reverse	This study		
OgRK807	AATCCATCTGCCATGCTAGG	<i>CgMED2</i> 3' integration check Forward	This study		
OgRK808	TGCAAAGAGTCGAGAAAGCA	<i>CgMED2</i> 3' integration check Reverse	This study		
OgRK809	AATCCATCTGCCATGCTAGG	<i>CgMED2</i> internal Forward	This study		
OgRK810	GTCTAGGTCACCGCCTTCAC	<i>CgMED2</i> internal Reverse	This study		
Primers for cloning					
OgRK843	GAGACCCGGGGGCGAACACTGG GTCTTTTT	<i>CgMED2</i> Forward	This study		
OgRK844	GAGGTCGACGCATTTAGATATT AAAGCCATTTAGG	CgMED2 Reverse	This study		
OgRK1143	GAGACCCGGGTGGAACAAAAA CTTATTTCTGAAGAAGATCTGA GTTACAAGAACAGGCTTAC	<i>CgMED2-c-myc</i> Forward	This study		
OgRK1144	GAGGTCGACTTACAGATCTTCT TCAGAAATAAGTTTTTGTTC GATATTAAAGCCATTTAGG	<i>CgMED2-c-myc</i> Reverse	This study		
OgRK1179	CCGGATCCAATATGCAAACATT AGAAACTACATCA	<i>CgPDR1-HA</i> Forward	This study		
OgRK1182	CGCCCCGGGTTAAGCGTAGTCT GGGACGTCGTATGGGTACAAGT AAACATCAGAAA	<i>CgPDR1-HA</i> Reverse	This study		
Primers for aRT-PCR					

OgRK127	TGCAGGACCAAGTCAGACAG	CgCDR1 Forward	Borah et al.,2011	
OgRK128	CTCATCGGAAGTAGGGTCCA	CgCDR1 Reverse	Borah et al.,2011	
OgRK133	ACGGTACCAAGCCATACGAG	CgERG11	Borah et al.,2011	
		Forward		
OgRK134	GAACACTGGGGTGGTCAAGT	CgERG11 Reverse	Borah et al.,2011	
OgRK135	AAAGGGAGTGACAGCGAGAA	CgPDR1 Forward	Borah et al.,2011	
OgRK136	CTCAATGGCGTCAATGGATGA	CgPDR1 Reverse	Borah et al.,2011	
OgRK191	TTTCAGAGTGCCAACTGTCG	CgTDH3 Forward	Borah et al.,2011	
OgRK192	TGAAACAACAGCGTCCTCAG	CgTDH3 Reverse	Borah et al.,2011	
OgRK1183	ACTATGTTACTTTATGGTTA	CgEPA1 Forward	This study	
OgRK1184	TGAGCCCCAGATGGCGTAGG	CgEPA1 Reverse	This study	
OgRK1592	CCGAATTAGATCATTTACCGG	CgEPA7 Forward	Iraquiet al.,2005	
OgRK1593	GAAGGAGTACTATTGGTGATCG	CgEPA7 Reverse	Iraquiet al.,2005	

REFERENCES

- Fidel Jr PL, Cutright JL, Tait L,Sobel JD.1996. A murine model of *Candida glabrata* vaginitis. J Infect Dis 173:425-431.
- 2. Cormack BP, Falkow S. 1999. Efficient homologous and illegitimate recombinationin the opportunistic yeast pathogen *Candida glabrata*. Genetics **151**:979-987.
- De Las Penas A, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP. 2003. Virulencerelated surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 17:2245-2258.
- 4. Borah S, Shivarathri R, Kaur R. 2011. The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in *Candida glabrata*. J. Biol. Chem. **286**:34311-34324.
- Castano I, Kaur R, Pan S, Cregg R, Penas Ade L, Guo N, Biery MC, Craig NL, Cormack BP. 2003. Tn7-based genome-wide random insertional mutagenesis of *Candida glabrata*. Genome Res.13:905-915.

- Kaur R, Castaño I, Cormack BP. 2004. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast *Candida glabrata*: roles of calcium signaling and mitochondria. Antimicrob. Agents Chemother. 48:1600-1613.
- Frieman MB, McCaffery JM, Cormack BP. 2002. Modular domain structure in the *Candida* glabrata adhesin Epa1p, a beta1, 6 glucan-cross-linked cell wall protein. Mol. Microbiol.46:479-492.
- Iraqui I, Garcia-Sanchez S, Aubert S, Dromer F, Ghigo JM, d'Enfert C, Janbon G. 2005. The Yak1p kinase controls expression of adhesins and biofilm formation in *Candida glabrata* in a Sir4p-dependent pathway. Mol. Microbiol. 5:1259-1271.