Supporting Information (SI)

Standing Surface Acoustic Wave Based Cell Coculture

Sixing Li,^{†,‡} Feng Guo,[†] Yuchao Chen,[†] Xiaoyun Ding,[†] Peng Li,[†] Lin Wang,[§] Craig E. Cameron,^{‡,} and Tony Jun Huang^{*,†,‡}

[§] Ascent Bio-Nano Technologies Incorporated, State College, Pennsylvania 16803, United States
^{II} Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Video captions

Supplementary Video 1: The time-lapse images taken every 20 min from 2 h to 12 h with 30

highlighted HeLa cell tracking for on-chip monoculture. HeLa cells show low level of mobility.

Supplementary Video 2: The time-lapse images taken every 20 min from 2 h to 12 h with 30

highlighted HeLa cell tracking for on-chip coculture. HeLa cells move significantly more when cocultured with HMVEC-d cells and migrate away from their original positions.

Supplementary Video 3: The time-lapse images taken every 20 min from 2 h to 12 h with 30 highlighted HeLa cell tracking for off-chip monoculture. HeLa cells in confluent monolayer on a petri dish also show low level of mobility.

Supplementary Video 4: The time-lapse images taken every 20 min from 2 h to 12 h with 30 highlighted HeLa cell tracking for off-chip coculture. HeLa cells show higher mobility compared with off-chip monoculture but tend to wander around locally with their final positions at 12 h close to their original positions at 2 h.

[†] Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

^{*} Molecular, Cellular and Integrative Biosciences Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States