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SUPPLEMENTARY INFORMATION 

SI TABLES 

Table S1. List of annotated phosphorylation sites  

The list of 7936 identified phosphorylation sites was annotated using ProteoConnections. The 

following data fields are reported: accession number, gene symbol, description, species, 

residue, position, site localization confidence, peptide sequence, peptide modifications, Mascot 

peptide score, known phosphorylation site, kinase motifs and predictions, phosphorylation 

binding motif, NLS, NES, protein domains, disordered regions prediction, secondary structure 

prediction, solvent accessibility prediction, PDB structure, glycosylation predictions, and site 

conservation in other species.  

 

Table S2. Kinetic profiles of phosphorylated peptides  

Kinetic profiles of identified phosphorylated peptides for cytosolic (3,015 profiles) and nuclear 

(5,222 profiles) fractions are reported with the following values: peptide m/z, retention time, 

charge, sequence, modifications, Mascot peptide score, protein accession, gene symbol, name, 

peptide start and stop position, modification positions on protein, ProteoConnections protein 

and kinetic graph links, average peptide abundance for each time point, number of replicates 

where the peptide is found, fold-change(treated/control) and p-value (two-tailed Student t-

test). 
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Table S3. Kinetic profiles of candidate ERK1/2 substrates  

Kinetic profiles of candidate ERK1/2 substrates are reported for cytosolic (73 profiles) and 

nuclear (171 profiles) fractions. Values are the same as in Table S2. In addition, annotations for 

each phosphorylation site are included in the file (as in Table S1) with two additional columns 

to show the presence of potential DEF and D domain motif in the protein. Substrates validated 

by in vitro kinase assays are highlighted in green. 

 

Table S4. Gene Ontology analysis of candidate ERK1/2 substrates 

Gene Ontology enrichment analyses were performed using the tools included in 

ProteoConnections. The following fields are reported: GO term identifier, ontology, ontology 

name, definition, depth, p-value (Fisher's exact test), number in candidate ERK1/2 substrates 

list, number in the rat proteome, ratio, enrichment, and IPI protein identifiers. 

 

Table S5. ERK1/2 substrates validated by in vitro kinase assays 

List of six ERK1/2 substrates validated by in vitro kinase assays. The following data fields are 

reported: gene symbol, description, molecular function, residue position, cellular fraction, Σ 

log10(Stimulated ti/Control t0 min) and Σ log10(PD184352 ti/DMSO ti) (ti : 0, 5, 15, 60 min time 

points). 

(Allen et al, 2007; Campbell et al, 1999; Carlson et al, 2011; Eblen et al, 2003; Han et al, 2007; 

Ishibe et al, 2004; Kosako et al, 2009; Ku & Meier, 2000; Marklund et al, 1993; Martinez-

Quiles et al, 2004; Old et al, 2009; Pan et al, 2009; Schonwasser et al, 1996; Sif et al, 1998; 

Sundberg-Smith et al, 2005; Warn-Cramer et al, 1996) 
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Figure S1. PD184352 inhibits the ac va ng phosphoryla on of ERK1/2
IEC-6 intes nal epithelial cells were starved of serum for 24 hours, treated or not with 2 μM
PD184352 for 1 h, and then s mulated with 10% fetal bovine serum for 5, 15 or 60 min. The
expression and ac va ng phosphoryla on of ERK1/2 were analyzed by immunoblo ng.
Tubulin was used as loading control.
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Figure S2. Reproducibility of label-free phosphopep de quan fica on
TiO2 enriched phosphopep des were analyzed in triplicates by nanoLC-MS/MS on LTQ-Orbitrap
and quan fied by a label-free method. Phosphopep des were detected from raw MS spectrum
and aligned between replicates. Shown are biological replicates of the PD184352-treated
cytosolic frac on s mulated for 5 min condi on to demonstrate the reproducibility of the
experiment. 95% of phosphopep des show less than two-fold change and the coefficient of
varia on (CV) of the measured peak intensi es for the replicates was on average 37%.
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Figure S3. Distribu ons of changes in phosphoryla on site abundance a er MEK1/2 inhibi on
The distribu ons show the measured  ? log10(PD184352/control) of phosphopep des for the
four experimental me points.
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Figure S4. Kine c profiles of the phosphoryla on of candidate ERK1/2 substrates
Phosphoryla on profiles of selected candidate ERK1/2 substrates a er serum s mula on (A)
and PD184352 inhibi on (B). So -clustering of kine c profiles (fuzzy c-means clustering MFuzz
R package, c=6, m=1.5) was done to show 6 pa erns (arbitrary chosen number) of
phosphoryla on change trends for both experimental groups. Fuzzy c-means clustering is a
so -clustering algorithm that dis nguishes itself from hard-clustering algorithm by providing
membership probability value to each member of the clusters (high and low memberships are
shown with a gradient from red and green).
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Figure S5. Identification of previously known ERK1/2 substrates 
(A) Kinetic analysis of the site-specific changes in phosphorylation for the twelve known ERK1/2
substrates in response to serum stimulation and MEK1/2 inhibition. (B) The name of the twelve
substrates and the sites phosphorylated by ERK1/2 are indicated with the original references.  

Kosako et al. Nat Struct Mol Biol 2009
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Eblen et al. J Biol Chem 2003
Allen et al. Nat Methods 2007
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Gene symbol Name Position Phosphorylation site
(other studies)(this study)
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substrate

Smarca5

Dync1li1

Nup153

Nup214

Ahctf1

Ahnak

Map1b

-

SWI/SNF-related matrix-associated 
actin-dependent regulator of chromatin 
subfamily A member 5 

S65 Kinase assay (Sif et al. Genes Dev 1998)- -

Cytoplasmic dynein 1 light intermediate 
chain 1
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Figure S6. Previously reported ERK1/2 substrates with unmapped or dis nct phosphoryla on sites
Each protein is described with the phosphoryla on site(s) iden fied in this study (this study), the phosphorylated residue(s)
iden fied in other studies, the type of biochemical valida on and the original references.
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Figure S7. Validation of the phospho-JunB(Ser256) specific an body
HEK 293 cells were transfected with HA-JunB wild type (WT) or S256A mutant. Cellular extracts
were treated or not with calf intes nal phosphatase (CIP) (20 U for 50 μg of extract) for 1 h at
37°C. Phosphoryla on of JunB was monitored by immunoblo ng with an -JunB (Ser256)
an body (Sigma). Phosphoryla on of ERK1/2 was used as a posi ve control of
dephosphoryla on.
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Figure S8. Impact of Ser256 and Thr252 phosphorylation of the interaction of JunB with  c-Fos
HEK 293 cells were transfected with the indicated constructs. After 36 h, the cells were lysed 
and JunB or c-Fos were immunoprecipitated using anti-HA or anti-Flag antibodies, respectively. 
Total lysates and immunoprecipitates were analyzed by immunoblotting.  
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Figure S9 . Phosphoryla on of Ser256 and Thr252 does not regulate the nuclear localiza on
of JunB
HEK 293 cells were transfected with the indicated HA-tagged JunB constructs and analyzed by
immunoflorescence with an -HA an body. Nuclei were stained with DAPI. JunB WT and
mutants were localized in the nucleus of 100% of cells.
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Figure S10. Phosphorylation of Ser256 and Thr252 does not regulate the stability of JunB in
proliferating NIH 3T3 cells 
(A)  NIH 3T3 cells were transfected with the indicated HA-tagged JunB constructs and treated 
with cycloheximide (50 μg/ml) for the indicated times. The expression of ectopic JunB was 
monitored by immunoblotting with anti-HA antibody. (B) Quantification of immunoblotting 
data shown in A. JunB levels were measured by densitometric analysis of immunoblots.  



Mut. CRE probe
+ + + - + + + + + + +
- - - + - - - - - - -

pC
3

Fl
ag

-c
-F

os

Fl
ag

-c
-F

os
Fl

ag
-c

-F
os

 +
 A

b 
Fl

ag

H
A

-J
un

B 
W

T

H
A

-J
un

B 
W

T
H

A
-J

un
B 

W
T 

+ 
A

b 
H

A

H
A

-J
un

B 
T2

52
A

H
A

-J
un

B 
T2

52
A

/S
25

6A

H
A

-J
un

B 
S2

56
A

H
A

-J
un

B 
W

T

H
A

-J
un

B 
T2

52
A

H
A

-J
un

B 
T2

52
A

/S
25

6A

H
A

-J
un

B 
S2

56
A

+ + + +
- - - -

Flag-c-Fos + Flag-c-Fos +

(1:1) (1:2)

WT CRE probe

A

B

Supershift

Free probe

A
P1

-C
RE

 c
om

pl
ex

 (f
ol

d)

0

0.4

0.8

1.2

1.6

2.0

0.2

0.6

1.0

1.4

1.8

+ Flag-c-Fos+ ++ + + ++ +
HA-JunB

--
--

1:2 ratio1:1 ratio

W
T

W
T

W
T

S2
56

A

S2
56

A

T2
52

A

T2
52

A

S2
56

A/T
25

2A

S2
56

A/T
25

2A

Figure S11. ERK1/2 phosphorylation of JunB on Ser256 promotes cooperative DNA binding of 
JunB/c-Fos heterodimers. 
(A) HEK 293 cells were transfected with the indicated constructs and nuclear extracts were 
analyzed by EMSA using a radiolabeled CRE probe. Supershift analyses were performed by 
incubating nuclear extracts with Flag or HA antibody. Results are representative of 3 
experiments. (B) Quantification of EMSA results in A by densitometric analysis. The results are 
normalized to control cells transfected with empty pcDNA3.  
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