Supplementary Information

Zhong-Liu Wu • Jing Qiao • Zhi-Gang Zhang • F. Peter Guengerich • Yan Liu •

Xiao-Qiong Pei

Biotechnology Letters (2009)

Enhanced bacterial expression of several mammalian cytochrome P450s by codon optimization and chaperone coexpression

Table S1. Oligonucleotides for the synthesis of Synthon 1 of 27C1org

Table S2. Oligonucleotides for the synthesis of Synthon 2 of 27C1org

Table S3. Oligonucleotides for the synthesis of optimized 2B1

Table S4. Oligonucleotides for site direct mutagenesis of 2S1 and 2U1 to modify N-terminal contiguous rare codons

Table S5. Oligonucleotides for N-terminal modifications of 2B1 and 2W1

Table S6. Nucleotide analysis of P450s with optimized or original codons

Figure S1. Modifications introduced into P450 2B1 cDNA to optimize codon usage in *E. coli*

Oligo name	Length	Sequence (5'->3')
27C1ns1- 1	49	TAGGAGGTCATATGGCTGGTCCACGTAGTCTGGCCGCCATGCCGGGGCC
27C1ns1- 2	55	CCGTCCCTGCAGAAGAACTCCGCCAGGTTGGCGAGGGTCCTCGGCCCCGGCATGG
27C1ns1- 3	55	GTTCTTCTGCAGGGACGGCTTCAGCCGCATCCACGAGATCCAGCAGAAGCACACA
27C1ns1- 4	55	ACCAAAGTGAGACTTGAAGATTTTTCCATATTCCCGTGTGTGCTGCTTCTGCTGGATC
27C1ns1- 5	55	GAAAAATCTTCAAGTCTCACTTTGGTCCTCAGTTTGTAGTATCTATTGCAGACCG
27C1ns1- 6	55	TCCGCCCGGAGCACCTGAGCCACCATATCGCGGTCTGCAATAGATACTACAAACT
27C1ns1- 7	55	TGCTCCGGGCGGAGGGCGCTGCGCCCCAGAGAGCCAACATGGAGTCCTGGCGGGA
27C1ns1- 8	55	CGAGATGAGCCCGGTGGCTCTCCCCCGCAAGTCTCGGTACTCCCGCCAGGACTCC
27C1ns1- 9	55	CACCGGGCTCATCTCGGCGGAGGGTGAACAGTGGCTCAAGATGAGAAGCGTATTG
27C1ns1- 10	55	GCCACATCTTTCGGTTTCAGAATTCTTTGTCTCAATACGCTTCTCATCTTGAGCC
27C1ns1- 11	55	TCTGAAACCGAAAGATGTGGCCATCTATTCTGGAGAAGTCAACCAAGTTATTGCT
27C1ns1- 12	55	TCCTGAGGAGGTAGATTCTTTTAATTAAGTCAGCAATAACTTGGTTGACTTCTCC
27C1ns1- 13	55	CTTAATTAAAAGAATCTACCTCCTCAGGAGCCAGGCAGAAGATGGAGAAACCGTG
27C1ns1- 14	55	TTGAATATTTGAAGAAAAGATCATTGACATTGGTCACGGTTTCTCCATCTTCTGC
27C1ns1- 15	55	CCAATGTCAATGATCTTTTCTTCAAATATTCAATGGAAGGAGTGGCCACCATCCT
27C1ns1- 16	55	GGATGCTGTTTTCCAGGCAGCCCAAACGACTCTCATAAAGGATGGTGGCCACTCC
27C1ns1- 17	55	TGCCTGGAAAACAGCATCCCACAGCTGACTGTGGAATACATCGAGGCCCTGGAGC
27C1ns1- 18	55	GCGCCTGCATACATGGAGGTCTTGAACATGCTAAACATGAGCTCCAGGGCCTCGA
27C1ns1- 19	55	TCCATGTATGCAGGCGCCATCCCCAGATGGCTTCGCCCCTTCATCCCAAAGCCCT
27C1ns1- 20	55	TTGAAGAGTCCATCCCAGGACCTGCAGAATTCCCGCCAGGGCTTTGGGATGAAGG
27C1ns1- 21	55	GTCCTGGGATGGACTCTTCAAATTCAGCCAAATTCATGTTGACAACAAGTTGAGG
27C1ns1- 22	55	CCGGCCTCGGTCCATTTGGTACTGTATGTCCCTCAACTTGTTGTCAACATGAATT
27C1ns1- 23	55	TGGACCGAGGCCGGAGGGTGAGCGGGGGGGCTTCTCACATACCTCTTCCTTAGCCA
27C1ns1- 24	50	GGCGTAGATCTCCTGCAGCGTCAGAGCCTGGCTAAGGAAGAGGTATGTGA

Table S1. Oligonucleotides for the synthesis of native Synthon 1 of 27C1

Oligo name	Length	Sequence (5'->3')
27C1ns2- 1	22	GCAGGAGATCTACGCCAACGTG
27C1ns2- 2	55	ACGTCGTGTCGACGCCGGCCAGCAGCATCTCAGTCACGTTGGCGTAGATCTCCTG
27C1ns2- 3	55	GGCGTCGACACGACGTCCTTCACCTTGTCTTGGACTGTGTACCTCCTGGCAAGGC
27C1ns2- 4	55	CAATCTCCCGGTACACCGTCTGCTGCACTTCTGGGTGCCTTGCCAGGAGGTACAC
27C1ns2- 5	55	GACGGTGTACCGGGAGATTGTGAAGAATTTAGGGGAAAGGCATGTTCCAACTGCA
27C1ns2- 6	55	GAGCTCTGACCAGCGGGACCTTGGGGACATCAGCTGCAGTTGGAACATGCCTTTC
27C1ns2- 7	55	CCCGCTGGTCAGAGCTCTCCTTAAGGAAACCCTGAGGCTGTTTCCAGTGCTGCCA
27C1ns2- 8	55	AATAACCAGGTCTTCCTGGGTGACCCGGCCGTTCCCTGGCAGCACTGGAAACAGC
27C1ns2- 9	55	TCACCCAGGAAGACCTGGTTATTGGCGGGTATCTGATTCCGAAAGGCACCCAGCT
27C1ns2- 10	55	TCTCATCCTGGTACGATGTGGCATAGTGGCAAAGGGCCAGCTGGGTGCCTTTCGG
27C1ns2- 11	55	GCCACATCGTACCAGGATGAGAACTTCCCTCGGGCCAAGGAGTTCCGGCCTGAGC
27C1ns2- 12	55	ATTGTCAACTCTATCTAAGTCTCCTTTCCGCAGCCAGCGCTCAGGCCGGAACTCC
27C1ns2- 13	55	GGAAAGGAGACTTAGATAGAGTTGACAATTTTGGATCCATCC
27C1ns2- 14	55	TTCTGCAATTCTCCGCCCTATGCAGCTGCGAACCCCATGACCAAAGGGGATGGAT
27C1ns2- 15	55	ATAGGGCGGAGAATTGCAGAACTGGAGATTCACCTCGTCGTGATCCAGTTGCTTC
27C1ns2- 16	55	TTGGTCTGAGAAGATGTTTTGATCTCAAAATGTTGAAGCAACTGGATCACGACGA
27C1ns2- 17	55	TTTGAGATCAAAACATCTTCTCAGACCAATGCTGTTCATGCAAAAACCCACGGGC
27C1ns2- 18	55	CAAATCGCACGTGGATGGGCCCCCTGGCGTCAGGAGCCCGTGGGTTTTTGCATG
27C1ns2- 19	55	CCCATCCACGTGCGATTTGTTAACAGAAAGCACCATCATCACCATTAATCTAGAG
27C1ns2- 20	32	TACCTCTAGATTAATGGTGATGATGGTGCTTT

Table S2. Oligonucleotides for the synthesis of native Synthon 2 of 27C1

Oligo name	Length	Sequence (5'->3')
2B1-1	49	TAGGAGGTCATATGGCTCTGTTATTAGCAGTTTTTCTGGCGCTGCTGGT
2B1-2	50	GTGACCACGCACCAGTAACAGTAAGAAGCCAACCAGCAGCGCCAGAAAAA
2B1-3	50	CTGTTACTGGTGCGTGGTCACCCAAAATCTCGCGGTAATTTTCCACCAGG
2B1-4	50	AGTTGCCTAACAGCGGCAGTGGACGCGGACCTGGTGGAAAATTACCGCGA
2B1-5	50	TGCCGCTGTTAGGCAACTTATTACAGTTAGACCGTGGCGGTCTGTTAAAC
2B1-6	50	GCCGTATTTTTCACGTAATTGCATGAAAGAGTTTAACAGACCGCCACGGT
2B1-7	50	CATGCAATTACGTGAAAAATACGGCGATGTTTTTACCGTGCATTTAGGCC
2B1-8	50	CCACATAACATGACAACTGGACGTGGGCCTAAATGCACGGTAAAAACATC
2B1-9	50	ACGTCCAGTTGTCATGTTATGTGGCACCGACACCATTAAAGAAGCGTTAG
2B1-10	50	CCGCTGAAATCTTCTGCTTGGCCGACTAACGCTTCTTTAATGGTGTCGGT
2B1-11	50	CCAAGCAGAAGATTTCAGCGGCCGTGGTACGATCGCAGTGATCGAACCAA
2B1-12	50	GGCGAAGATAACACCATATTCCTTAAAGATTGGTTCGATCACTGCGATCG
2B1-13	50	TCTTTAAGGAATATGGTGTTATCTTCGCCAATGGCGAACGTTGGAAAGCC
2B1-14	50	TCGCGCATCGTTGCCAGAGAGAAGCGACGTAAGGCTTTCCAACGTTCGCC
2B1-15	50	TGGCAACGATGCGCGATTTCGGCATGGGTAAACGTAGCGTGGAAGAGCGT
2B1-16	50	TCCTCGACTAAGCATTGGGCCTCCTCTTGAATACGCTCTTCCACGCTACG
2B1-17	50	GCCCAATGCTTAGTCGAGGAGCTGCGCAAAAGCCAGGGCGCACCACTGGA
2B1-18	50	TATTGGCCGTAATACATTGAAACAGAAAGGTCGGATCCAGTGGTGCGCCC
2B1-19	50	CTTTCTGTTTCAATGTATTACGGCCAATATCATTTGCAGCATCGTGTTCG
2B1-20	50	TTGACGATCCGTGTAATCAAAACGCTCGCCGAACACGATGCTGCAAATGA
2B1-21	50	CGTTTTGATTACACGGATCGTCAATTCCTGCGTTTACTGGAACTGTTTTA
2B1-22	50	GCTGCTTAATAAGCTGAACGTGCGATAAAACAGTTCCAGTAAACGCAGGA
2B1-23	50	GCACGTTCAGCTTATTAAGCAGCTTTAGCAGCCAAGTTTTCGAGTTCTTT
2B1-24	50	CCGGGAAGTATTTCAGGAAGCCGCTAAAGAACTCGAAAACTTGGCTGCTA
2B1-25	50	GGCTTCCTGAAATACTTCCCGGGTGCCCACCGCCAGATTAGCAAGAATTT
2B1-26	50	TGGCCGATATAGTCCAGGATCTCCTGTAAATTCTTGCTAATCTGGCGGTG
2B1-27	50	GAGATCCTGGACTATATCGGCCATATTGTCGAGAAACACCGCGCGACCTT
2B1-28	50	GTATCGATGAAGTCACGTGGGGCGCTCGGGTCTAAGGTCGCGCGGTGTTT
2B1-29	50	CCCCACGTGACTTCATCGATACCTACCTGTTACGTATGGAGAAGGAAAAG
2B1-30	50	GGAACACGGTATGGTGATTGCTCTTTTCCTTCTCCATACGTAACAGGTAG
2B1-31	50	GCAATCACCATACCGTGTTCCATCACGAGAATCTGATGATCAGCCTGCTG
2B1-32	50	CGTTTCCGTGCCTGCGAAAAACAGAGACAGCAGGCTGATCATCAGATTCT
2B1-33	50	TCGCAGGCACGGAAACGTCTAGCACCACCTTACGCTATGGTTTCCTGCTG
2B1-34	50	TTCGGCCACGTGTGGGTACTTTAACATCAGCAGGAAACCATAGCGTAAGG
2B1-35	50	CCCACACGTGGCCGAAAAGGTTCAGAAGGAGATTGATCAGGTTATCGGCT
2B1-36	50	TCATCTAACGTCGGTAAGCGGTGAGAGCCGATAACCTGATCAATCTCCTT
2B1-37	50	CCGCTTACCGACGTTAGATGATCGTTCTAAGATGCCGTACACCGATGCAG
2B1-38	50	TAAATCGCTAAAACGTTGAATTTCGTGGATAACTGCATCGGTGTACGGCA
2B1-39	50	CCACGAAATTCAACGTTTTAGCGATTTAGTCCCGATTGGCGTTCCACATC
2B1-40	50	TAACCGCGGAACATGGTATCTTTCGTGACGCGATGTGGAACGCCAATCGG
2B1-41	50	AAAGATACCATGTTCCGCGGTTATTTACTGCCAAAAAACACGGAAGTCTA
2B1-42	50	GTGCAGGGCAGAGCTCAGAATTGGGTAGACTTCCGTGTTTTTTGGCAGTA
2B1-43	50	TGAGCTCTGCCCTGCACGATCCACAATATTTCGACCATCCAGATAGCTTC
2B1-44	50	ATCCAGGAAATGCTCTGGGTTGAAGCTATCTGGATGGTCGAAATATTGTG
2B1-45	50	AACCCAGAGCATTTCCTGGATGCAAACGGCGCACTGAAAAAATCTGAAGC
2B1-46	50	CGTTTGCCGGTGCTAAATGGCATGAAGGCTTCAGATTTTTTCAGTGCGCC
2B1-47	50	CCATTTAGCACCGGCAAACGTATTTGCCTGGGTGAGGGCATCGCGCGTAA
2B1-48	50	TGTAAAATCGTGGTGAAGAACAGGAACAGCTCATTACGCGCGATGCCCTC
2B1-49	50	TCCTGTTCTTCACCACGATTTTACAGAACTTCTCTGTCAGCTCTCATCTG
2B1-50	50	GGGTTAAGTCAATATCCTTCGGGGCCAGATGAGAGCTGACAGAGAAGTTC
2B1-51	50	CCCCGAAGGATATTGACTTAACCCCAAAAGAGAGCGGTATCGGCAAGATC
2B1-52	50	GCGCTGAAGCAAATCTGGTACGTTGGCGGGATCTTGCCGATACCGCTCTC
2B1-53	50	GTACCAGATTTGCTTCAGCGCACGCCATCATCACCACCATCACTAATCTA
2B1-54	32	ТАССТСТАБАТТАБТБАТССТССТСАТСАТСС

Table S3. Oligonucleotides for the synthesis of optimized 2B1

Constructs	Primers	(5'-3')
2S1C1	2S1C1F	GGGAAGCTGCC <u>A</u> GGGCC <u>A</u> ACGCCGCTACC
	2S1C1R	GGTAGCGGCGT <u>T</u> GGCCC <u>T</u> GG <u>C</u> GGCAGCTTCCC
2S1C2	2S1C2F	CCTCCTGCAGCT <u>G</u> CG <u>T</u> CC <u>G</u> GGGGCGCTGTATTC
	2S1C2R	GAATACAGCGCCCCCGGACGCAGCTGCAGGAGG
2U1C1	2U1C1F	GTAAGCTGCCGCGGGGGCC <u>A</u> ACGCC <u>G</u> TGGCCTCTGG
	2U1C1R	CCAGAGGCCA <u>C</u> GGCGT <u>T</u> GGCCC <u>T</u> GGCGGCAGCTTAC
2U1C2	2U1C2F	CTCCCTTCCTCCG <u>T</u> CG <u>C</u> CG <u>T</u> AGCTGGCTGAGC
	2U1C2R	GCTCAGCCAGCT <u>A</u> CG <u>G</u> CG <u>A</u> CGGAGGAAGGGAG
2U1C3	2U1C3F	CTGGCTGAGCAGCCGTACCCGCGCCGCAGGGATTG
	2U1C3R	CAATCCCTGCGGCGCGGGTACGGCTGCTCAGCCAG

Table S4. Oligonucleotides for site direct mutagenesis of 2S1 and 2U1 to modify N-terminal contiguous rare codons.

		Primers
2W1	forward	TGCTCTGCCATATGGCTAAGAAAACGAGCTCTAAAGGTAAGCTGCCCCCGGGGCCTCGCCCGCTG
orignal	reverse	GACTCTAGATTAGTGATGGTGATGATGGGGGCCTGGGCACCGCACACAGG
2B1	forward	TGTTACTCCATATGGCTAAGAAAACGAGCTCTAAAGGTAAGCTGCCACCAGGACCTCGTCCCCTTCC
orignal	reverse	TGCTCTAGATTAGTGGTGGTGGTGGTGGCCGAGCTGAGAAGCAGATCTG
2B1	forward	TACTGTTACATATGGCTAAGAAAACGAGCTCTAAAGGTAAGCTGCCACCAGGTCCGCGTCCACTG
optimized	reverse	TACCTCTAGATTAGTGATGGTGGTGATGATGG

Table S5. Oligonucleotides for N-terminal modifications of 2B1 and 2W1

	CAI	%GC	%AT
27C1opt	0.562	53.3	46.7
27Clorg	0.313	54.3	45.7
2W1opt	0.537	57.3	42.7
2W1orgt	0.342	68.9	31.1
2B1opt	0.554	49.2	50.8
2Blorg	0.324	51.2	48.8

Table S6. Nucleotide analysis of P450s with optimized or original codons. Estimated online using Optimizer (http://genomes.urv.es/OPTIMIZER/).

Fig.S1 Modifications introduced into P450 2B1 cDNA to optimize codon usage in *E. coli*. Top line, predicted amino acid sequence; middle line, original nucleotide sequence; lower line, nucleotide sequence optimized for *E. coli* expression.

ORI	M A L L L A V F L A L L V G F L L L V R G H P K S R G N	87
OPT	ATGGCTCTGTTATTAGCAGTTTTTCTGGCTCTGTTAGTTGGTTTTCTGTTACTCTTAGTCCGTGGTCACCCAAAGTCCCGTGGCAAC	87
ORI OPT	F P G P R P L P L L G N L L Q L D R G G L L N S F M Q L TTCCCACCAGGACCTCGTCCCCTTCCCCCTCTGGGGAAACCTCCTGCAGTTGGACAGAGGGGGGCCTCCTCAATTCCTTCATGCAGCTT TTGAGGGACT-AT-AAC-TCTGT-ACTAT-A	174 174
ORI	R E K Y G D V F T V H L G P R P V V M L C G T D T I K E A	261
OPT	CGAGAAAAATATGGAGATGTGTTCACAGTACACCTGGGACCAAGGCCTGTGGTCATGCTATGTGGGACAGACA	261
ORI OPT	L V G Q A E D F S G R G T I A V I E P I F K E Y G V I F A CTGGTGGGCCAAGCTGAGGATTTCTCTGGTCGGGGAACAATCGCTGTGATTGAGCCAATCTTCAAGGAATATGGTGTGATCTTTGCC T-AC	348 348
ORI OPT	N G E K W K A L K K F S L A I M K D F G M G K K S V E E K AATGGGGAACGCTGGAAGGCCCTTCGGCGATTCTCTCTGGCTACCATGAGAGACTTTGGGATGGGAAGAGAGGGGGAGAGAGGGGGAAGAGAGGG 	$\begin{array}{c} 435\\ 435\end{array}$
ORI OPT	ATTCAGGAGGAAGCCCAATGTTTGGTGGAGGAACTGCGGAAATCCCAGGGAGCCCCACTGGATCCCACCTTCCTCTTCCAGTGCATC	522 522
ORI OPT	ACAGCCAACATCATCTGCTCCATTGTGTTTGGAGAGCGCCTTTGACTACACAGACCGCCCAGTTCCTACGCCTGTTGGAGCTGTTCTAC GTTAGCCCTGTAGTTACATT R T F S L L S S F S S Q V F F F F S G F L K Y F P G A H R	609 609
ORI	CGGACCTTTTCCCTCCTAAGTTCATTCTCCAGCCAGGTGTTTGAGTTCTTCTCTGGGTTCCTGAAATACTTTCCTGGTGCCCACAGA	696
OPT	CGCAG-T-ATCAGCTAGA-T-CTAGCCCGCC	696
ORI	CAAATCTCCCAAAAACCTCCAGGAAATCCTCGATTACATTGGCCATATTGTGGAGAAGCACAGGGCCACCTTAGACCCAAGCGCTCCA	783
OPT	GTAGGTT-AGGC	783
ORI	CGAGACTTCATCGACACTTACCTTCTGCGCATGGAGAAGGAGGAGGAGGAGGAGCCGACCACCACACAGTGTTCCATCATGAGAACCTCATGATC	870
OPT	TTCGT-ATAAGCTTCCCC	870
ORI	TCCCTGCTCTCTTCTTTGCTGGCACTGAGACCAGCAGCAGCACCACACCCCGCTATGGTTTCCTGCTGATGCTCAAGTACCCCCAT	957
OPT	AGGGTCAGAGTCTCT-AT-A	957
ORI	GTCGCAGAGAAAGTCCAAAAGGAGATTGATCAGGTGATCGGCTCACACCGGCTACCAACCCTTGATGACCGCAGTAAAATGCCATAC	1044
OPT	GCAGTGTTTCTGGG	1044
ORI	ACTGATGCAGTTATCCATGAGATTCAGAGGTTTTCAGAGTCTTGTCCCTATTGGAGTACCACACAGAGTCACCAAAGACACCATGTTC	1131
OPT	CCAC-TAGCT-AGCT	1131
ORI OPT	CGAGGGTACCTGCTTCCCAAGAACACTGAAGTGTACCCCATCCTGAGTTCAGCTCTCCATGACCCACAGTACTTTGACCACCCAGAC CTTT-AGAAGCATCTCGCTATCTT S F N P E H F L D A N G A L K K S E A F M P F S T G K R I	1218 1218
ORI OPT	AGCTTCAATCCTGAACACTTCCTGGATGCCAATGGGGCACTGAAAAAGAGTGAAGCTTTCATGCCCTTCTCCACAGGAAAGCGCATT CAGTACCATCCATAGCCAT C L G E G I A R N E L F L F F T T I L Q N F S V S S H L A	1305 1305
ORI OPT	TGTCTTGGCGAAGGCATTGCCCGAAATGAATTGTTCCTCTTCTTCACCACCATCCTCCAGAACTTCTCTGTGTCAAGCCATTTGGCT CGTGCGTGCGTT-ACAGCTCTCC P K D I D L T P K E S G I G K I P P T Y Q I C F S A R H H	1392 1392
ORI OPT	CCCAAGGACATTGACCTCACGCCCAAGGAGAGTGGCATTGGAAAAATACCTCCAACGTACCAGATCTGCTTCTCAGCTCGGCACCAC GTT-ACAACTCGCGTTAGCACTT H H H	1479 1479
ORI	CACCACCACTAA	1491
OPT	T	1491