Supplementary Material

Role of white adipose lipolysis in the development of NASH induced by methionine- and choline-deficient diet

Naoki Tanaka¹, Shogo Takahashi¹, Zhong-Ze Fang^{1,2}, Tsutomu Matsubara^{1,3}, Kristopher W. Krausz¹, Aijuan Qu¹, and Frank J. Gonzalez¹

¹Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD

²Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China

³Department of Anatomy and Regenerative Biology, Osaka City University, Osaka, Japan

Numbers of Supplementary Figures and Tables: 6 figures and 2 tables.

Supplementary Fig. 1. Phenotypic changes in mice with 3-day or 1-week MCD treatment.

(A) Liver histology. Hematoxylin and eosin staining; $Bar = 200 \mu m$.

(B) The mRNA levels of *Emr1* and *Itgam*. The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of MCS-treated mice.

Statistical analysis was performed using the Student's *t*-test. n = 5 /group. **P*<0.05, ***P*<0.01, ****P*<0.001 vs. MCS-treated mice in the same time point. The full terms of the gene names are listed in Supplementary Table 2.

Supplementary Fig. 2. Serum metabolomic analysis of mice with 1-week MCD treatment.

(A) PCA of serum metabolites between mice treated with 1-week MCD (red diamond, n = 5) and MCS (black circle, n = 5).

(B) S-plot of OPLA analysis using the same samples as (A). Retention time and molecular mass were indicated.

(C) MS/MS fragmentation patterns of oleic acid and linoleic acid.

Supplementary Fig.3. The effect of supplementation of methionine or choline to the phenotypic changes in mice with 2-week MCD treatment.

(A) Food intake.

(B) Liver histology. Hematoxylin and eosin staining; Bar = $100 \mu m$.

(C) The mRNA levels of *Emr1* and *Itgam*. The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of MCS-treated mice. (D) Epididymal WAT weight.

Statistical analysis was performed using the one-way ANOVA test with Bonferroni's correction. n = 5 / group; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Supplementary Fig. 4. The changes in mRNAs encoding *Lcat*, *Lypla1*, and *Lpl* in mice treated with MCD.

(A) The mRNA levels of mice treated with MCD for 3 days and 1 week. The same samples used in Supplementary Fig. 1 were conducted. Statistical analysis was performed using the Student's *t*-test. n = 5 /group. *P<0.05, **P<0.01, ***P<0.001 vs. MCS-treated mice in the same time point.

(B) The effect of supplementation of methionine or choline on the levels of mRNAs encoding *Lcat* and *Lpl* in mice with 2-week MCD treatment. The same samples used in Fig. 4 and 5 were assayed. Statistical analysis was performed using the one-way ANOVA test with Bonferroni's correction. n = 5 /group. *, *P*<0.05; **, *P*<0.01; ***, *P*<0.001.

Supplementary Fig. 5. The effect of dietary methionine deficiency on hepatic mRNA levels of *Itgam*.

The same samples used in Fig. 7 were conducted. The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of MCS-treated mice.

Statistical analysis was performed using the Student's *t*-test. **P < 0.01 vs. CD-treated mice (designated as CD+ MD-); NS, not significant.

Supplementary Fig. 6. The changes in mRNAs encoding genes associated with steatogenesis in mice treated with CD and MCD for 2 weeks.

The same samples in Fig. 7 were used for this qPCR analysis. The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of MCS-treated mice.

Statistical analysis was performed using the Student's *t*-test. n = 4-5 /group. *P<0.05, **P<0.01, ***P<0.001 vs. MCS-treated mice. Full terms of the gene names were listed in Supplementary Table 2. FA, fatty acid; TG, triglyceride; VLDL, very-low-density lipoprotein.

	MCS	MCD	CD	MD
Cornstarch	100	100	100	100
Dextrin	100	100	100	100
Sucrose	392	409	407	394
Cellulose	50	50	50	50
Corn oil	50	50	50	50
Primex	100	100	100	100
Salt	35	35	35	35
Sodium bicarbonate	4.3	4.3	4.3	4.3
Vitamin mix	10	10	10	10
Choline Bitartrate	14.5	0	0	14.5
Ferric Citrate, U.S.P.	0.3	0.1	0.3	0.3
Amino acid	144	142	144	142
L-Alanine	5.1	5.1	5.1	5.1
L-Arginine	12.7	12.7	12.7	12.7
L-Aspartic Acid	15.8	15.8	15.8	15.8
L-Cystine	3.7	3.7	3.7	3.7
L-Glutamic Acid	28.9	28.9	28.9	28.9
Glycine	6.2	6.2	6.2	6.2
L-Histidine	3.4	3.4	3.4	3.4
L-Isoleucine	6.1	6.1	6.1	6.1
L-Leucine	10.5	10.5	10.5	10.5
L-Lysine-HCl	9.1	9.1	9.1	9.1
L-Methionine	1.7	0	1.7	0
L-Phenylalanine	7.3	7.3	7.3	7.3
L-Proline	7.6	7.6	7.6	7.6
L-Serine	7.2	7.2	7.2	7.2
L-Threonine	4.6	4.6	4.6	4.6
L-Tryptophan	1.8	1.8	1.8	1.8
L-Tyrosine	5.7	5.7	5.7	5.7
L-Valine	63	63	63	63

Supplementary Table 1. Composition of the diet used in this study

Values indicate gram/kilogram of diet.

Gene	GenBank Accession Number		Primer Sequence (5'-3')	
18S	NR 003278	F	ATTGGAGCTGGAATTACCGC	
	—	R	CGGCTACCACATCCAAGGAA	
Acadl	NM 007381	F	TCTTGCGATCAGCTCTTTCA	
	—	R	GGTACATGTGGGAGTACCCG	
Acadm	NM_007382	F	AGCTCTAGACGAAGCCACGA	
	_	R	GCGAGCAGAAATGAAACTCC	
Acaca	NM_133360	F	TGGTGCAGAGGTACCGAAGTG	
		R	CGTAGTGGCCGTTCTGAAACT	
Acly	NM_134037	F	GTGGCCCCAACTATCAAGAG	
		R	AATGGCCGTCATGTGAGTTT	
Acsl1	NM_007981	F	CTTCCAACCAACACCCTCAT	
		R	ACCATCAGTGGTACCCGCTA	
Apob	NM_009693	F	AAGCACCTCCGAAAGTACGTG	
		R	CTCCAGCTCTACCTTACAGTTGA	
Adrbl	NM_007419	F	GCTGATCTGGTCATGGGATT	
		R	AAGTCCAGAGCTCGCAGAAG	
Adrb2	NM_007420	F	ATTTTGGCAACTTCTGGTGC	
4 1 1 2		K	TAGCGATCCACTGCAATCAC	
Adrb3	NM_013462	F D	ACAGGAAIGCCACICCAAIC	
C 1) (NINA 007(42	К	GGGGAAGGIAGAAGGAGAGA	
Cd36	NM_007643	F D	GCGACAIGAIIAAIGGCACA	
C 2	NIN 052200	K E		
Cess	NM_053200	Г		
Cntla	NIM 012405	К Г	GCCCATCTTCTACACCTTCC	
Cpila	INM_013493	Г		
Doat1	NM 010046	к Е	GACGGCTACTGGGATCTGA	
Dgui	INNI_010040	R		
Doat?	NM 026384	F	CGCAGCGAAAACAAGAATAA	
Dgui2	10101_020304	R	GAAGATGTCTTGGAGGGCTG	
Emrl	NM 010130	F	GGATGTACAGATGGGGGGATG	
11111		R	CATAAGCTGGGCAAGTGGTA	
Fahnl	NM 017399	F	TGCAGAGCCAGGAGAACTTT	
1 00001		R	GATTTCTGACACCCCCTTGA	
Fabp4	NM 024406	F	CATGGCCAAGCCCAACAT	
····I		R	CGCCCAGTTTGAAGGAAATC	
Fasn	NM 007988	F	AAGTTGCCCGAGTCAGAGAACC	
	—	R	ATCCATAGAGCCCAGCCTTCCATC	
Fgf21	NM 020013	F	CCTGGGTGTCAAAGCCTCTA	
a	_	R	CTCCAGCAGCAGTTCTCTGA	
Fsp27	NM_178373	F	TGGGAGGTCCAACACAATCCA	
-	_	R	GTGCTCACTGCCACATGCCT	
Lipe	NM_010719	F	CCTCCAAGCAGGGCAAAGA	
		R	GCGTAAATCCATGCTGTGTGA	
Illb	NM_008361	F	GGACCCATATGAGCTGAAAGCT	
		R	TGTCGTTGCTTGGTTCTCCTT	
Itgam	NM_008401	F	ATTCGGTGATCCCTTGGATT	
		R	GTTTGTTGAAGGCATTTCCC	
Lcat	NM_008490	F	GGTTTTATCTCTCGGGGGC	
		R	TATGTTGGACAGGATGGGGA	

Supplementary Table 2. Primer pairs used for qPCR

Lpl	NM 008509	F	TTTGGCTCCAGAGTTTGACC
-	_	R	TGTGTCTTCAGGGGTCCTTAG
Lypla1	NM_008866	F	CCTTCACGGATTGGGAGATA
		R	GGGGCATGTGGACAGATGTA
Mttp	NM_008642	F	AGGTGCTGGGGGGTCAGTT
_		R	GGCAAAAGCCCTGGTCTCTT
Plin1	NM_175640	F	TGAAGCAGGGCCACTCTC
		R	GACACCACCTGCATGGCT
Pnpla2	NM_025802	F	CCACTCACATCTACGGAGCC
_		R	TAATGTTGGCACCTGCTTCA
Scd1	NM 009127	F	ACGCCGACCCTCACAATTC
		R	CAGTTTTCCGCCCTTCTCTTT
Slc2a4	NM 009204	F	TTTTAAAACAAGATGCCGTCG
	_	R	CAGTGTTCCAGTCACTCGCT
Tnf	NM 013693	F	CCACCACGCTCTTCTGTCTAC
-	—	R	AGGGTCTGGGCCATAGAACT

F, forward sequence; R, reverse sequence.

Acadl, acyl-CoA dehydrogenase, long-chain Acadm, acyl-CoA dehydrogenase, medium-chain
Acaca, acetyl-CoA carboxylase alpha
Acly, ATP citrate lyase
Acsl1, acyl-CoA synthetase long-chain family member 1
Apob, apolipoprotein B
Adrb, adrenergic receptor, beta
<i>Cd36</i> , CD36 antigen (fatty acid translocase)
<i>Ces3</i> , carboxylesterase 3
<i>Cpt1a</i> , carnitine palmitoyltransferase 1a, liver
Dgat, diacylglycerol O-acyltransferase
<i>Emr1</i> , EGF-like module containing, mucin-like, hormone receptor-like sequence 1
Fabp, fatty acid-binding protein
Fasn, fatty acid synthase
Fgf21, fibroblast growth factor 21
<i>Fsp27</i> , fat-specific protein 27 (cell death-inducing DFFA-like effector c)
<i>Illb</i> , interleukin 1 beta
Itgam, integrin alpha M
Lcat, lecithin cholesterol acyltransferase
Lipe, hormone-sensitive lipase
<i>Lpl</i> , lipoprotein lipase
Lypla1, lysophospholipase 1
<i>Mttp</i> , microsomal triglyceride transfer protein
<i>Plin1</i> , perilipin 1
<i>Pnpla2</i> , patatin-like phospholipase domain containing 2 (adipose triglyceride lipase)
Scd1, stearoyl-CoA desaturase 1
<i>Slc2a4</i> , solute carrier family 2, member 4 (glucose transporter type 4)
<i>Tnf</i> , tumor necrosis factor alpha