Evolutionarily conserved genetic interactions with budding and fission yeast *MutS* identify orthologous relationships in mismatch repair-deficient cancer cells

Elena Tosti ¹, Joseph A. Katakowski ², Sonja Schaetzlein ¹, Hyun-Soo Kim ¹, Colm J. Ryan ^{3, 4, 5}, Michael Shales ³, Assen Roguev ³, Nevan J. Krogan ^{3, 4, 6}, Deborah Palliser ², Michael-Christopher Keogh ^{1, *} & Winfried Edelmann ^{1, *}

¹ Dept. of Cell Biology, Albert Einstein College of Medicine, New York, USA

- ² Dept. of Microbiology & Immunology, Albert Einstein College of Medicine, New York, USA
 - ³ Dept. of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA

⁴ California Institute for Quantitative Biosciences, San Francisco, USA

⁵ School of Medicine and Medical Science, University College Dublin, Ireland

⁶ J. David Gladstone Institutes, San Francisco, USA

* To whom correspondence should be addressed -

Email: michael.keogh@einstein.yu.edu, winfried.edelmann@einstein.yu.edu

Tel: 718 430 1086 Fax: 718 430 8574

Supplementary Information 2 x Supplementary Figures + Legends Supplementary References

SUPPLEMENTARY INFORMATION

siRNA sequences - *HEC59* cancer cells (*MSH2*⁻) and their isogenic chromosome 2complemented counterparts (*MSH2*⁺) [1] in six-well plates were transfected with siRNAs (*Dharmacon*) and *Trans*IT-siQUEST (*Mirus*) by specific optimization of the manufacturers suggested conditions. Each targeted siRNA gave a similar result (with regard to knockdown and phenotypic outcome) when used individually or appropriately pooled, reducing the likelihood of off-target effects.

siSENP6-1 (sense strand): GGACCAAUCUGCUCAGUGU [2] *siSENP6-C* (sense strand): GCACAGAUACCAGUAGUAA *siSENP7-1* (sense strand): GGAAAGAAGCCUAAGGAAU *siSENP7-2* (sense strand): GAGAAGAAUUGAAGCUGAA *siNT-1* (sense strand): UAGCGACUAAACACAUCAA

SUPPLEMENTARY FIGURE LEGENDS

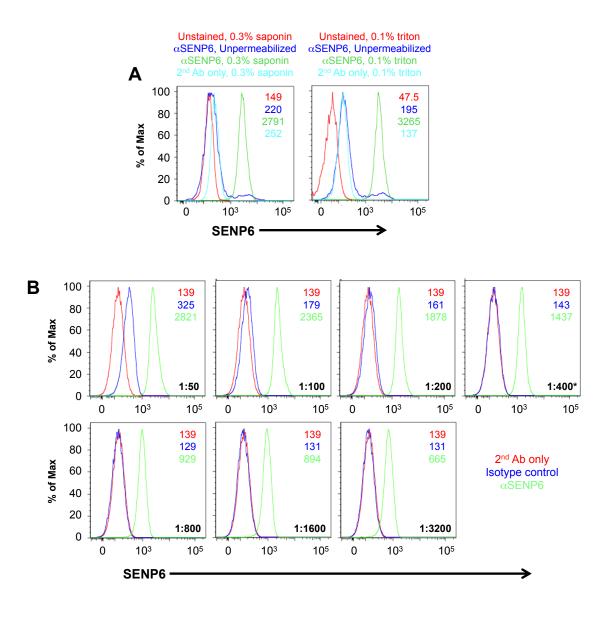

Figure S1 - Specificity of anti-SENP6. *SENP6* protein levels in permeabilized *HEC59* cells (*MSH2*⁻) were measured by fluorescence cytometry. In brief, cells were trypsinized, stained with *LIVE/DEAD fixable violet (Invitrogen)*, fixed with 2% paraformaldehyde, and permeabilized as noted. Each sample was then successively stained with monoclonal mouse anti-human SENP6 (αSENP6; *Novus Biologicals*) or an IgG2a-isotype control (*eBioscience*) and anti-mouse IgG2a-PE (2nd Ab; *eBioscience*), and analyzed by fluorescence cytometry. (A) Optimization of permeabilization approach (0.3% Saponin vs. 0.1% Triton X-100). (B) Titration of monoclonal mouse anti-human SENP6 (*, 1:400 chosen) after permeabilization with 0.3% Saponin.

Figure S2 - **Polysumoylation is lethal in** *msh2* Δ **fission yeast**. Strains were mated, sporulated, and the indicated number of tetrads dissected. The number of viable spores observed / expected (assuming independent Mendelian segregation) for each genotype is indicated. **(B-C)** *msh2* Δ is synthetic lethal with *ulp2* Δ but shows no genetic interaction with *ulp1* Δ . **(D-F)** *smt3* Δ or *nse2-SA* (catalytic dead *nse2-C195S*, *H197A*), but not *pli1* Δ , rescue the lethality of [*msh2* Δ / *ulp2* Δ]. ** Msh2 and Smt3 are genetically linked (separated by only 159,352bp on chromosome I), explaining the unexpectedly large number of triple mutant spores.

SUPPLEMENTARY REFERENCES

- 1. Watanabe Y, Haugen-Strano A, Umar A, Yamada K, Hemmi H, Kikuchi Y, Takano S, Shibata Y, Barrett JC, Kunkel TA, Koi M: Complementation of an hMSH2 defect in human colorectal carcinoma cells by human chromosome 2 transfer. *Mol Carcinog* 2000, **29:**37-49.
- Dou H, Huang C, Singh M, Carpenter PB, Yeh ET: Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. *Mol Cell* 2010, 39:333-345.

Figure S1: Tosti et al

Figure S2: Tosti et al

1				
	Genotype	# viable spores	% observed	% expected
	WT	12	27.3	25
	msh2 Δ	10	22.7	25
	ulp1 Δ	10	22.7	25
r	msh2 Δ / ulp1 Δ	12	27.3	25
	MISSING	0	0	0
	TOTAL	44	100	100

Genotype	# viable spores	% observed	% expected
WT	39	26.4	25
msh2∆	39	26.4	25
ulp2 Δ	35	23.6	25
msh2 Δ / ulp2 Δ	1 *	0.7	25
MISSING	34	23	0
TOTAL	148	100	100

С				
C	Genotype	# viable spores	% observed	% expected
	WT	15	22.1	12.5
	msh2 Δ	3	4.4	12.5
	smt3∆	3	4.4	12.5
	ulp2 Δ	10	14.7	12.5
	smt3 Δ / ulp2 Δ	1 *	1.5	12.5
	smt3 Δ / msh2 Δ	10	14.7	12.5
	msh2 ${\Delta}$ / ulp2 ${\Delta}$	0	0	12.5
	smt 3Δ / msh 2Δ / ulp 2Δ	16 **	23.5	12.5
	MISSING	10	14.7	0
	TOTAL	68	100	100

D

Genotype	# viable spores	% observed	% expected
WT	22	20.4	12.5
msh2 Δ	16	14.8	12.5
nse2-SA	12	11.1	12.5
ulp2 Δ	12	11.1	12.5
nse2-SA / ulp2 Δ	7	6.5	12.5
nse2-SA / msh2 Δ	13	12	12.5
msh2 ${\Delta}$ / ulp2 ${\Delta}$	0	0	12.5
nse2-SA / msh2 Δ / ulp2 Δ	13	12	12.5
MISSING	13	12	0
TOTAL	108	100	100

Small colony *
Smt3 & Msh2 are genetically linked **