Table S1 . Statistical analysis of (E) - β -farnesene and (E) - α -bergamotene emission for two lines of <i>TPS10</i> and WT plants (Fig. 1), after applying
the Holm-Bonferroni correction for the number of tests listed (No. tests). Significant P-values (< 0.05) are in bold , while marginal P-values
(< 0.1) are in <i>italics</i> .

Compound	Treatment	Comparison	Test statistic	DF or n	No. tests	Corrected P
(E) - β -Farnesene	Con	WT vs. 10-3	W = 16	n = 4	2	0.0421
		WT vs. 10-4	W = 14	n = 4	2	0.0689
	W+W	WT vs. 10-3	W = 16	n = 4	2	0.0421
		WT vs. 10-4	W = 16	n = 4	2	0.0211
	W+OS	WT vs. 10-3	t = 3.397	df = 4.639	2	0.0434
		WT vs. 10-4	W = 12.5	n = 4	2	0.2186
	Lan	WT vs. 10-3	W = 16	n = 4	2	0.0421
		WT vs. 10-4	W = 10	n = 3 to 4	2	0.1227
	Lan+MJ	WT vs. 10-3	W = 16	n = 4	2	0.0421
		WT vs. 10-4	W = 16	n = 4	2	0.0211
(E)-a-Bergamotene	Con	WT vs. 10-3	W = 16	n = 4	2	0.0530
		WT vs. 10-4	W = 16	n = 4	2	0.0530
	W+W	WT vs. 10-3	t = 4.885	df = 3.957	2	0.0167
		WT vs. 10-4	W = 15	n = 4	2	0.0591
	W+OS	WT vs. 10-3	t = 3.421	df = 3.671	2	0.0612
		WT vs. 10-4	t = 1.643	df = 5.022	2	0.1611
	Lan	WT vs. 10-3	W = 16	n = 4	2	0.0530

Compound	Treatment	Comparison	Test statistic	DF or n	No. tests	Corrected P
		WT vs. 10-4	W = 9.5	n = 3 to 4	2	0.2419
		WT vs. 10-3	t = 3.946	df = 3.759	2	0.0380
		WT vs. 10-4	t = 2.864	df = 4.487	2	0.0400

Table S2. Statistical analysis of (*E*)- β -farnesene and (*E*)- α -bergamotene emission for one line of *TPS10M* and WT plants (Fig. 1). Significant *P*-values (< 0.05) are in **bold**.

Compound	Treatment	Comparison	Test statistic	DF or n	No. tests	Р
(<i>E</i>)-β-Farnesene	Con	WT vs. M-1	W = 12	n = 3 to 4	1	0.0436
	W+W	WT vs. M-1	W = 16	n = 4	1	0.0211
	W+OS	WT vs. M-1	W = 12	n = 3 to 4	1	0.0319
	Lan	WT vs. M-1	W = 12	n = 3 to 4	1	0.0319
	Lan+MJ	WT vs. M-1	W = 6	n = 2 to 3	1	0.1066
(E)-a-Bergamotene	Con	WT vs. M-1	t = 2.087	df = 3.568	1	0.1136
	W+W	WT vs. M-1	t = 4.989	df = 4.722	1	0.0048
	W+OS	WT vs. M-1	t = 4.276	df = 4.751	1	0.0088
	Lan	WT vs. M-1	W = 12	n = 4	1	0.0436
	Lan+MJ	WT vs. M-1	t = 0.0744	df = 2.852	1	0.9456

Table S3. HGL-DTGS in two lines of *TPS10* and WT (mean \pm SEM, n = 4). Values are peak areas in counts*s normalized to mg fresh mass relative to an internal standard. Corrected **P* < 0.05, ***P* < 0.01 versus WT within the same treatment in Welch's t-tests after a Bonferroni correction for multiple comparisons (individual HGL-DTGs and total HGL-DTGs were tested, and WT was tested against each line; total HGL-DTGs are shown in Figure 4).

Compound	Line	Con	W+W	W+OS	Lan	Lan+MJ
Lyciumoside I	WT	3.43 ± 1.16	2.43 ± 0.51	2.08 ± 0.35	2.42 ± 0.17	4.78 ± 0.67
	10-3	1.95 ± 0.25	1.23 ± 0.11	1.53 ± 0.05	2.16 ± 0.30	3.51 ± 0.80
	10-4	2.25 ± 0.37	0.81 ± 0.20	1.49 ± 0.44	1.79 ± 0.54	4.08 ± 0.37
Lyciumoside II	WT	2.39 ± 0.38	3.65 ± 1.17	4.22 ± 0.51	1.64 ± 0.11	3.66 ± 0.60
	10-3	2.58 ± 0.25	3.21 ± 0.40	3.98 ± 0.75	2.43 ± 0.37	3.02 ± 0.55
	10-4	2.71 ± 0.19	2.56 ± 0.27	3.17 ± 0.32	4.31 ± 2.02	2.78 ± 0.33
Lyciumoside IV	WT	339.31 ± 39.83	604.60 ± 257.82	388.82 ± 50.61	329.36 ± 17.80	751.60 ± 99.53
	10-3	371.79 ± 12.54	418.69 ± 41.93	399.94 ± 55.69	403.76 ± 59.68	686.03 ± 62.16
	10-4	434.44 ± 24.38	335.42 ± 41.74	348.47 ± 47.93	740.98 ± 302.79	631.12 ± 73.05
Nicotianoside I	WT	268.78 ± 29.05	377.25 ± 85.33	306.27 ± 22.64	286.18 ± 7.78	520.05 ± 56.29
	10-3	283.22 ± 14.43	310.94 ± 13.69	290.43 ± 22.06	303.10 ± 28.15	476.38 ± 26.44
	10-4	299.43 ± 21.02	212.98 ± 11.58	271.78 ± 32.91	** 353.27 ± 10.51	462.49 ± 26.00
Nicotianoside II	WT	434.22 ± 124.93	345.57 ± 55.88	228.99 ± 20.05	172.63 ± 7.95	372.10 ± 53.58
	10-3	409.25 ± 92.68	382.82 ± 65.24	203.65 ± 22.71	146.57 ± 13.81	340.91 ± 18.38
	10-4	388.45 ± 113.38	179.92 ± 47.49	155.28 ± 25.98	161.73 ± 49.68	281.71 ± 25.75
Nicotianoside III	WT	10.81 ± 1.37	15.80 ± 4.00	11.95 ± 0.95	9.73 ± 0.70	21.77 ± 3.08

Compound	Line	Con	W+W	W+OS	Lan	Lan+MJ
	10-3	11.45 ± 0.62	13.42 ± 0.26	11.12 ± 0.95	10.82 ± 1.00	20.61 ± 1.81
	10-4	11.65 ± 0.86	8.89 ± 0.45	9.71 ± 1.32	17.16 ± 3.52	17.74 ± 1.51
Nicotianoside IV	WT	93.72 ± 22.08	119.91 ± 19.92	91.18 ± 7.12	67.86 ± 5.63	160.11 ± 26.77
	10-3	91.50 ± 9.48	122.43 ± 10.08	84.53 ± 5.48	73.25 ± 7.38	162.90 ± 12.29
	10-4	90.92 ± 11.71	61.71 ± 8.35	71.55 ± 9.15	103.67 ± 13.20	126.18 ± 8.10
Nicotianoside V	WT	122.78 ± 31.82	139.85 ± 13.95	134.13 ± 11.10	81.17 ± 9.66	234.02 ± 40.51
	10-3	110.59 ± 16.94	160.79 ± 16.94	114.20 ± 11.39	65.48 ± 6.89	234.94 ± 14.75
	10-4	88.10 ± 23.63	* 65.83 ± 9.89	88.83 ± 16.06	85.95 ± 27.06	164.50 ± 9.50
Attenoside	WT	2.14 ± 0.38	6.52 ± 2.40	7.12 ± 0.57	1.62 ± 0.28	3.30 ± 0.70
	10-3	2.30 ± 0.26	5.50 ± 0.54	6.53 ± 1.48	2.17 ± 0.25	2.93 ± 0.65
	10-4	2.29 ± 0.17	2.99 ± 0.36	4.81 ± 0.79	6.05 ± 2.51	1.68 ± 0.30
Nicotianoside VI	WT	71.47 ± 14.94	163.87 ± 27.72	159.07 ± 18.14	40.67 ± 2.91	59.56 ± 10.43
	10-3	79.74 ± 8.00	161.91 ± 19.09	148.49 ± 27.33	47.39 ± 5.49	57.80 ± 9.26
	10-4	76.89 ± 11.57	73.35 ± 10.68	111.30 ± 11.83	77.60 ± 22.10	34.34 ± 2.16
Nicotianoside VII	WT	17.47 ± 3.70	36.69 ± 3.48	45.77 ± 7.16	12.02 ± 1.00	15.19 ± 2.87
	10-3	17.12 ± 2.45	38.44 ± 2.75	40.26 ± 9.23	10.47 ± 0.85	14.29 ± 1.88
	10-4	13.61 ± 2.78	* 14.99 ± 1.84	28.82 ± 3.87	15.84 ± 6.37	8.07 ± 0.93

Table S4. HGL-DTGS in one line of *TPS10M* and WT (mean \pm SEM, n = 4). Values are peak areas in counts*s normalized to mg fresh mass relative to an internal standard. There were no significant differences (corrected P > 0.05) in Welch's t-tests or Wilcoxon rank-sum tests between line M-1 and WT within each treatment after Bonferroni corrections for multiple comparisons (individual HGL-DTGs and total HGL-DTGs were tested, total HGL-DTGs are shown in Figure 4).

Compound	Line	Con	W+W	W+OS	Lan	Lan+MJ
Lyciumoside I	WT	2.76 ± 0.19	1.47 ± 0.25	2.62 ± 0.82	2.54 ± 0.37	17.72 ± 4.19
	M-1	2.53 ± 0.51	2.07 ± 0.33	2.27 ± 0.32	2.24 ± 0.93	12.83 ± 3.14
Lyciumoside II	WT	14.28 ± 8.08	15.86 ± 5.01	6.57 ± 0.80	34.63 ± 3.06	9.66 ± 2.00
	M-1	24.55 ± 3.57	24.05 ± 3.76	18.90 ± 8.52	19.58 ± 5.95	6.62 ± 1.05
Lyciumoside IV	WT	976.42 ± 160.26	1063.14 ± 136.72	455.57 ± 5.59	1602.69 ± 177.44	1352.12 ± 343.99
	M-1	1273.83 ± 216.23	1412.91 ± 140.18	646.58 ± 83.34	1159.98 ± 342.72	1249.35 ± 214.24
Nicotianoside I	WT	143.42 ± 69.75	144.33 ± 44.34	236.96 ± 22.44	15.19 ± 1.71	666.60 ± 126.48
	M-1	25.74 ± 20.88	93.25 ± 39.06	161.16 ± 52.98	13.62 ± 2.06	698.44 ± 105.94
Nicotianoside II	WT	59.52 ± 30.22	23.09 ± 14.62	106.98 ± 18.41	0.04 ± 0.01	317.89 ± 51.95
	M-1	1.01 ± 0.79	7.84 ± 4.82	42.43 ± 21.53	0.07 ± 0.04	310.25 ± 39.75
Nicotianoside III	WT	12.56 ± 2.36	13.95 ± 0.90	11.19 ± 0.57	14.16 ± 2.50	27.75 ± 5.21
	M-1	8.71 ± 2.61	14.15 ± 1.84	9.41 ± 1.99	8.31 ± 2.46	28.44 ± 3.99
Nicotianoside IV	WT	38.92 ± 15.88	51.49 ± 10.07	48.59 ± 5.43	10.91 ± 1.70	146.51 ± 23.42
	M-1	15.52 ± 10.85	41.94 ± 13.82	37.98 ± 11.21	$\textbf{7.88}~\pm~0.94$	160.12 ± 18.18
Nicotianoside V	WT	16.73 ± 8.90	12.16 ± 7.42	55.56 ± 11.82	0.01 ± 0.01	157.35 ± 23.05
	M-1	0.43 ± 0.40	3.74 ± 2.15	21.84 ± 11.57	0.10 ± 0.06	172.57 ± 16.79

Compound	Line	Con	W+W	W+OS	Lan	Lan+MJ
Attenoside	WT	4.16 ± 1.96	13.44 ± 5.15	4.69 ± 0.35	15.50 ± 0.77	2.85 ± 0.62
	M-1	7.11 ± 1.14	16.04 ± 2.21	14.23 ± 6.02	10.15 ± 2.41	2.45 ± 0.30
Nicotianoside VI	WT	37.90 ± 15.40	88.61 ± 7.31	107.33 ± 6.03	11.79 ± 1.07	49.70 ± 6.20
	M-1	12.64 ± 5.94	71.84 ± 20.69	124.51 ± 12.50	11.68 ± 0.63	44.17 ± 5.00
Nicotianoside VII	WT	3.50 ± 1.75	6.95 ± 2.44	28.66 ± 3.02	0.16 ± 0.03	8.64 ± 0.58
	M-1	0.29 ± 0.22	3.08 ± 1.41	16.94 ± 5.80	0.18 ± 0.05	7.19 ± 0.70

Table S5. Statistical analysis of growth for two lines of *TPS10* and WT plants grown alone or in competition (Fig. 8), after applying the Bonferroni correction for the number of tests listed (No. tests). Significant *P*-values (<0.05) are in **bold**.

Measurement	Day	Individual/Competing	Effect	Test	Test statistic	DF	No. tests	Corrected P
Rosette diameter	27	Individual	Line	Kruskal-Wallis	$\chi^2 = 5.053$	2	2	0.1599
Rosette diameter	27	Individual v. competing	Competition	Wilcoxon rank-sum	W = 217		3	0.1068
Rosette diameter	27	Individual v. competing	Competition	Wilcoxon rank-sum	W = 181		3	0.9840
Rosette diameter	27	Individual v. competing	Competition	Wilcoxon rank-sum	W = 129		3	1.0000
Rosette diameter	27	Competing	Line	Kruskal-Wallis	$\chi^2 = 7.0211$	2	3	0.0896
Rosette diameter	27	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 1.8998$	2	3	1.0000
Rosette diameter	30	Individual	Line	Kruskal-Wallis	$\chi^2 = 3.8116$	2	2	0.2974
Rosette diameter	30	Individual v. competing	Competition	Wilcoxon rank-sum	W = 228		3	0.0446
Rosette diameter	30	Individual v. competing	Competition	Wilcoxon rank-sum	W = 213		3	0.1460
Rosette diameter	30	Individual v. competing	Competition	Wilcoxon rank-sum	W = 158		3	1.0000
Rosette diameter	30	Competing	Line	Kruskal-Wallis	$\chi^2 = 4.9625$	2	3	0.2509
Rosette diameter	30	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 1.1909$	2	3	1.0000
Rosette diameter	34	Individual	Line	Kruskal-Wallis	$\chi^2 = 1.7395$	2	2	0.8382
Rosette diameter	34	Individual v. competing	Competition	Wilcoxon rank-sum	W = 275		3	0.0003
Rosette diameter	34	Individual v. competing	Competition	Wilcoxon rank-sum	W = 289		3	<0.0001
Rosette diameter	34	Individual v. competing	Competition	Wilcoxon rank-sum	W = 289		3	<0.0001
Rosette diameter	34	Competing	Line	Kruskal-Wallis	$\chi^2 = 14.8551$	2	4	0.0024
Rosette diameter	34	Competing	Line	Wilcoxon rank-sum	W = 221		4	0.0028

Measurement	Day	Individual/Competing	Effect	Test	Test statistic	DF	No. tests	Corrected P
Rosette diameter	34	Competing	Line	Wilcoxon rank-sum	W = 669		4	0.0045
Rosette diameter	34	Competing	Line	Wilcoxon rank-sum	W = 439		4	1.0000
Rosette diameter	34	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.1589$	2	4	1.0000
Rosette diameter	41	Individual	Line	Kruskal-Wallis	$\chi^2 = 0.7884$	2	2	1.0000
Rosette diameter	41	Individual v. competing	Competition	Wilcoxon rank-sum	W = 290		3	<0.0001
Rosette diameter	41	Individual v. competing	Competition	Wilcoxon rank-sum	W = 282		3	<0.0001
Rosette diameter	41	Individual v. competing	Competition	Wilcoxon rank-sum	W = 281		3	0.0001
Rosette diameter	41	Competing	Line	Kruskal-Wallis	$\chi^2 = 0.6326$	2	3	1.0000
Rosette diameter	41	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.4569$	2	3	1.0000
Rosette diameter	44	Individual	Line	Kruskal-Wallis	$\chi^2 = 0.5341$	2	2	1.0000
Rosette diameter	44	Individual v. competing	Competition	Wilcoxon rank-sum	W = 283		3	<0.0001
Rosette diameter	44	Individual v. competing	Competition	Wilcoxon rank-sum	W = 257		3	<0.0001
Rosette diameter	44	Individual v. competing	Competition	Wilcoxon rank-sum	W = 258		3	0.0003
Rosette diameter	44	Competing	Line	Kruskal-Wallis	$\chi^2 = 0.6977$	2	3	1.0000
Rosette diameter	44	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.9869$	2	3	1.0000
Rosette diameter	48	Individual	Line	Kruskal-Wallis	$\chi^2 = 1.1015$	2	2	1.0000
Rosette diameter	48	Individual v. competing	Competition	Wilcoxon rank-sum	W = 272		3	<0.0001
Rosette diameter	48	Individual v. competing	Competition	Wilcoxon rank-sum	W = 248		3	0.0001
Rosette diameter	48	Individual v. competing	Competition	Wilcoxon rank-sum	W = 266		3	0.0001
Rosette diameter	48	Competing	Line	Kruskal-Wallis	$\chi^2 = 0.2088$	2	3	1.0000

Measurement	Day	Individual/Competing	Effect	Test	Test statistic	DF	No. tests	Corrected P
Rosette diameter	48	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 1.4376$	2	3	1.0000
Stalk length	34	Individual	Line	Kruskal-Wallis	$\chi^2 = 1.123$	2	2	1.0000
Stalk length	34	Individual v. competing	Competition	Wilcoxon rank-sum	W = 108		3	0.5934
Stalk length	34	Individual v. competing	Competition	Wilcoxon rank-sum	W = 167		3	1.0000
Stalk length	34	Individual v. competing	Competition	Wilcoxon rank-sum	W = 162		3	1.0000
Stalk length	34	Competing	Line	Kruskal-Wallis	$\chi^2 = 5.3606$	2	3	0.2056
Stalk length	34	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.7864$	2	3	1.0000
Stalk length	41	Individual	Line	Kruskal-Wallis	$\chi^2 = 1.9655$	2	2	0.7486
Stalk length	41	Individual v. competing	Competition	Wilcoxon rank-sum	W = 122		3	1.0000
Stalk length	41	Individual v. competing	Competition	Wilcoxon rank-sum	W = 213		3	0.1517
Stalk length	41	Individual v. competing	Competition	Wilcoxon rank-sum	W = 175		3	1.0000
Stalk length	41	Competing	Line	Kruskal-Wallis	$\chi^2 = 4.9075$	2	3	0.2579
Stalk length	41	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.4133$	2	3	1.0000
Stalk length	44	Individual	Line	Kruskal-Wallis	$\chi^2 = 0.2858$	2	2	1.0000
Stalk length	44	Individual v. competing	Competition	Wilcoxon rank-sum	W = 186		3	0.3807
Stalk length	44	Individual v. competing	Competition	Wilcoxon rank-sum	W = 254		3	0.0014
Stalk length	44	Individual v. competing	Competition	Wilcoxon rank-sum	W = 225		3	0.0025
Stalk length	44	Competing	Line	Kruskal-Wallis	$\chi^2 = 4.3566$	2	3	0.3396
Stalk length	44	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.2875$	2	3	1.0000
Stalk length	48	Individual	Line	Kruskal-Wallis	$\chi^2 = 0.893$	2	2	1.0000

Measurement	Day	Individual/Competing	Effect	Test	Test statistic	DF	No. tests	Corrected P
Stalk length	48	Individual v. competing	Competition	Wilcoxon rank-sum	W = 228		3	0.0105
Stalk length	48	Individual v. competing	Competition	Wilcoxon rank-sum	W = 269		3	0.0001
Stalk length	48	Individual v. competing	Competition	Wilcoxon rank-sum	W = 258		3	<0.0001
Stalk length	48	Competing	Line	Kruskal-Wallis	$\chi^2 = 4.8246$	2	3	0.2688
Stalk length	48	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.506$	2	3	1.0000
Stalk length	51	Individual	Line	Kruskal-Wallis	$\chi^2 = 1.3134$	2	2	1.0000
Stalk length	51	Individual v. competing	Competition	Wilcoxon rank-sum	W = 229		3	0.0041
Stalk length	51	Individual v. competing	Competition	Wilcoxon rank-sum	W = 267		3	0.0001
Stalk length	51	Individual v. competing	Competition	Wilcoxon rank-sum	W = 246		3	<0.0001
Stalk length	51	Competing	Line	Kruskal-Wallis	$\chi^2 = 2.5033$	2	3	0.8580
Stalk length	51	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.1037$	2	3	1.0000
Stalk length	55	Individual	Line	Kruskal-Wallis	$\chi^2 = 0.4196$	2	2	1.0000
Stalk length	55	Individual v. competing	Competition	Wilcoxon rank-sum	W = 223		3	0.0032
Stalk length	55	Individual v. competing	Competition	Wilcoxon rank-sum	W = 267		3	0.0001
Stalk length	55	Individual v. competing	Competition	Wilcoxon rank-sum	W = 221		3	0.0001
Stalk length	55	Competing	Line	Kruskal-Wallis	$\chi^2 = 1.1865$	2	3	1.0000
Stalk length	55	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.1494$	2	3	1.0000
Stalk length	59	Individual	Line	Kruskal-Wallis	$\chi^2 = 0.6218$	2	2	1.0000
Stalk length	59	Individual v. competing	Competition	Wilcoxon rank-sum	W = 217		3	0.0023
Stalk length	59	Individual v. competing	Competition	Wilcoxon rank-sum	W = 265		3	0.0001

Measurement	Day	Individual/Competing	Effect	Test	Test statistic	DF	No. tests	Corrected P
Stalk length	59	Individual v. competing	Competition	Wilcoxon rank-sum	W = 242		3	0.0001
Stalk length	59	Competing	Line	Kruskal-Wallis	$\chi^2 = 1.0272$	2	3	1.0000
Stalk length	59	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.2844$	2	3	1.0000
Stalk length	62	Individual	Line	Kruskal-Wallis	$\chi^2 = 1.5353$	2	2	0.9282
Stalk length	62	Individual v. competing	Competition	Wilcoxon rank-sum	W = 216		3	0.0028
Stalk length	62	Individual v. competing	Competition	Wilcoxon rank-sum	W = 262		3	0.0002
Stalk length	62	Individual v. competing	Competition	Wilcoxon rank-sum	W = 244		3	<0.0001
Stalk length	62	Competing	Line	Kruskal-Wallis	$\chi^2 = 0.5701$	2	3	1.0000
Stalk length	62	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.5951$	2	3	1.0000
Stalk length	66	Individual	Line	Kruskal-Wallis	$\chi^2 = 3.0814$	2	2	0.4284
Stalk length	66	Individual v. competing	Competition	Wilcoxon rank-sum	W = 215		3	0.0030
Stalk length	66	Individual v. competing	Competition	Wilcoxon rank-sum	W = 258		3	0.0003
Stalk length	66	Individual v. competing	Competition	Wilcoxon rank-sum	W = 234		3	<0.0001
Stalk length	66	Competing	Line	Kruskal-Wallis	$\chi^2 = 1.2635$	2	3	1.0000
Stalk length	66	Competing	Neighbor	Kruskal-Wallis	$\chi^2 = 0.2061$	2	3	1.0000

Table S6. Statistical analysis of reproduction for two lines of <i>TPS10</i> and WT plants grown alone or in competition (Fig. 9), after applying the
Bonferroni correction for the number of tests listed (No. tests). Significant corrected <i>P</i> -values (<0.05) are in bold .

Measurement	Individual/Competing	Effect	Test	Test statistic	DF	No. tests	Corrected P
Buds	Individual	Line	ANOVA	F = 2.681	2, 26	2	0.1748
Buds	Competing	Line	ANOVA minimal model	F = 2.373	2, 72	2	0.2000
Buds	Individual v. competing, WT	Competition	Welch's t-test	t = 3.7759	16.184	2	0.0033
Buds	Individual v. competing, 10-3	Competition	Welch's t-test	t = 4.6398	15.109	2	0.0006
Buds	Individual v. competing, 10-4	Competition	Welch's t-test	t = 6.2095	13.691	2	0.0001
Flowers	Individual	Line	ANOVA	F = 4.191	2, 26	2	0.0528
Flowers	Competing	Line	ANOVA minimal model	F = 1.307	2, 72	2	0.5540
Flowers	Individual v. competing, WT	Competition	Welch's t-test	t = 2.7779	14.608	2	0.0287
Flowers	Individual v. competing, 10-3	Competition	Welch's t-test	t = 1.9182	13.492	2	0.1530
Flowers	Individual v. competing, 10-4	Competition	Welch's t-test	t = 6.4014	16.048	2	<0.0001
Unripe capsules	Individual	Line	ANOVA	F = 2.997	2, 26	2	0.1348
Unripe capsules	Competing	Line	ANOVA minimal model	F = 6.481	2, 72	2	0.0052
Unripe capsules	Competing: 10-3 v. 10-4	Line	Tukey			2	0.0060
Unripe capsules	Competing: WT v. 10-3	Line	Tukey			2	0.0638
Unripe capsules	Competing: WT v. 10-4	Line	Tukey			2	1.0000
Unripe capsules	Individual v. competing, WT	Competition	Welch's t-test	t = 8.0416	14.095	2	<0.0001
Unripe capsules	Individual v. competing, 10-3	Competition	Welch's t-test	t = 7.0834	22.344	2	<0.0001
Unripe capsules	Individual v. competing, 10-4	Competition	Welch's t-test	t = 5.0078	13.499	2	0.0004

Measurement	Individual/Competing	Effect	Test	Test statistic	DF	No. tests	Corrected P
Ripe capsules	Individual	Line	ANOVA	F = 1.807	2, 26	2	0.3680
Ripe capsules	Competing	Line	ANOVA minimal model	F = 5.15	2, 72	2	0.0162
Ripe capsules	Competing: 10-3 v. 10-4	Line	Tukey			2	0.0299
Ripe capsules	Competing: WT v. 10-3	Line	Tukey			2	1.0000
Ripe capsules	Competing: WT v. 10-4	Line	Tukey			2	0.0449
Ripe capsules	Individual v. competing, WT	Competition	Welch's t-test	t = 3.2678	9.621	2	0.0178
Ripe capsules	Individual v. competing, 10-3	Competition	Welch's t-test	t = 5.5625	20.767	2	<0.0001
Ripe capsules	Individual v. competing, 10-4	Competition	Welch's t-test	t = 4.9421	19.738	2	0.0002

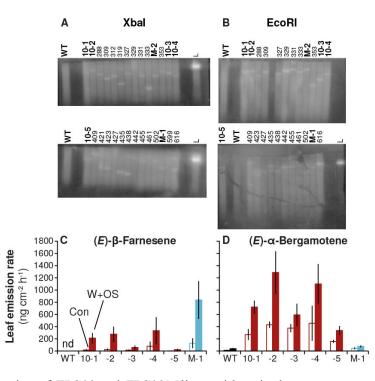
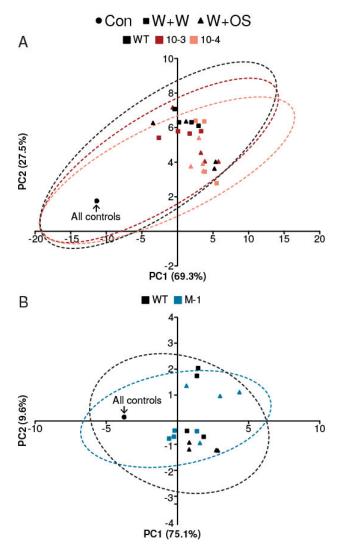
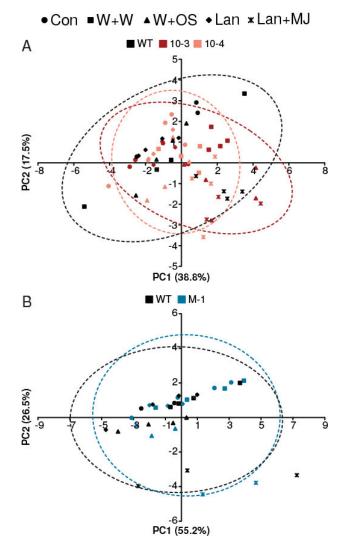
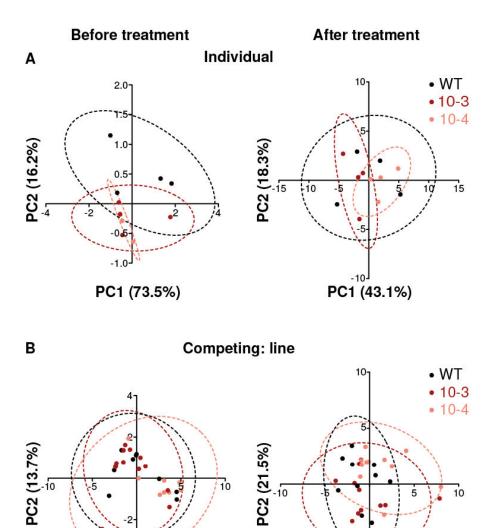
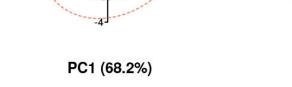




Figure S1. Selection of TPS10 and TPS10M lines with a single transgene copy and enhanced emission of the target volatiles (*E*)- β -farnesene and (*E*)- α -bergamotene (mean \pm SEM, n = 4). (A, B) Images of Southern blots hybridized with a probe for the hygromycin resistance marker gene HPTII for independent lines of TPS10 and TPS10M following digestion of DNA with XbaI (A) or EcoRI (B). Lanes are labeled with line numbers, WT (wild-type) or L (ladder positive Con: contains the target HPTII sequence). TPS10 and TPS10M lines selected for further experiments are indicated by line numbers in bold (TPS10: 10-#, TPS10M: M-#). Full line numbers are A-09-# (e.g. A-09-409); full line numbers for selected lines are A-09-279 (10-1), A-09-287 (10-2), A-09-389 (10-3), A-09-391 (10-4), A-09-396 (10-5), A-09-596 (M-1), and A-09-334 (M-2). Each line number represents a transformation event; homozygous lines from this event were used for experiments. (C) (E)- β -Farnesene is present in the leaf headspace of TPS10 (10-#, red) and TPS10M (M-1, blue), but not WT, constitutively and 24-32 h after W+OS treatment; emission from a line of TPS10M is greatest. Differences in (E)- β -farnesene abundance among lines were not significant in Con measurements (P = 0.3821) but became significant after W+OS treatment (P = 0.0211), and the effect of W+OS treatment on (E)- β -farnesene abundance was also significant ($P \le 0.001$). (D) (E)- α -Bergamotene is detectable in the leaf headspace of TPS10 and TPS10M lines and of WT constitutively, but increased 24-32 h after W+OS treatment (P = 0.0167); the effect of line was significant both in Con measurements (P = 0.0034) and after W+OS treatment (P = 0.0011). P-values result from Bonferroni correction of Kruskal-Wallis tests used to


compare lines within treatments, and Wilcoxon rank-sum tests used to compare Con and W+OS treatments for each volatile.



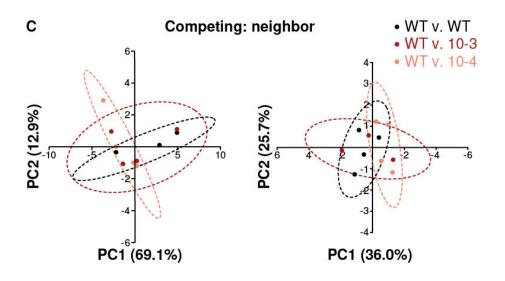

Figure S2. Green leaf volatiles (GLVs) are similar to WT in *TPS10* and *TPS10M* lines (n = 4 samples per line per treatment, n = 12 per line). A PCA with 95% confident intervals for each line is shown for all GLVs detected in the headspace of the +2 leaf in a comparison of WT and *TPS10* (A) or WT and *TPS10M* plants (B) for the first 3 h (during which the greatest amount of GLVs are released after damage) after no treatment (Con, circles) or treatment with W+W (squares) or W+OS (triangles).

Figure S3. Plant volatiles (PVs) other than (*E*)- β -farnesene and (*E*)- α -bergamotene are similar to WT in *TPS10* and *TPS10M* (n=4 samples per line per treatment, n = 12 per genotype). A PCA with 95% confident intervals for each line is shown for all other PVs detected in the headspace of the +2 leaf in a comparison of WT and *TPS10* (A) or WT and *TPS10M* plants (B) for 24-32 h following treatment (during which the greatest amount of terpenoids are released after damage) from untreated leaves (Con, circles) or leaves treated with W+W (squares), W+OS (triangles), Lan (diamonds) or Lan+MJ (x's).

PC1 (28.2%)

Figure S4. Plant volatiles other than (*E*)- β -farnesene and (*E*)- α -bergamotene are similar to WT in *TPS10* and are not affected by competition. A PCA with 95% confident intervals for each line is shown for all other volatiles detected in the headspace of the +2 leaf in a comparison of WT and *TPS10* planted alone (A, n = 4 per line) or in competition (B, n = 12 per line), and for WT plants competing with neighbors of different genotypes (C, n = 4 per neighbor type), for 6 h before treatment (left panels) or for 0-6 h following the last of three elicitations with W+OS over 18 h across 2 d (right panels).