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Long-Time Bacterial Diffusivity of a 3-Step Swimmer

Here we provide an alternative derivation of bacterial diffusivity for 3-step swimmers. Let the

bacterium displacement per swimming cycle (∆CCW+∆CW ) be ~ri. The total displacement

after N cycles is simply ~RN = ∑
~ri. If there is no directional correlation between ~ri’s, the

mean square displacement is given by 〈~RN · ~RN〉 = Na2, where a2 ≡ 〈~|ri|2〉. This is a general

result applicable to 2-step as well as 3-step swimmers. For the 2-step swimmer, the motility

is produced only during the CCW intervals and hence a2 = v2〈∆2
CCW 〉 = 2v2τ 2

CCW , where

τCCW = 〈∆CCW 〉 and the PDF P (∆CCW ) is exponential. For the 3-step swimmer, both

forward and backward intervals produce motility and hence the mean square displacement

during one cycle is given by a2 = v2〈δ2〉, where δ = |∆CCW − ∆CW |. If both ∆CCW and

∆CW are exponentially distributed, 〈∆CCW 〉 = τCCW and 〈∆CW 〉 = τCW , and if there is no

correlation between ∆CCW and ∆CW in a swimming cycle, the PDF of δ is

P (δ) = 1
τCCW + τCW

[
exp

(
− δ

τCCW

)
+ exp

(
− δ

τCW

)]
. (S1)

Below we make the simplifying assumption τCCW ≈ τCW , which yields a2 = 2v2τ 2
CCW . To

complete the calculation, we notices that N ≈ t/〈∆CCW 〉 = t/τCCW for 2-step swimmers

and N = t/ (〈∆CCW 〉+ 〈∆CW 〉) = t/(2τCCW ) for 3-step swimmers, where t is the swimming
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time. In d-dimensional space, the bacterial diffusivity D is defined as,

〈~RN · ~RN〉 = 2dDt, (S2)

which gives rise to D = v2τCCW/d for the 2-step swimmers and D = v2τCCW/(2d) for the

3-step swimmers. In one dimension, d = 1, the result is consistent with what we derived for

the master equations using δJCW = 0. However, if we use the alternative sorting, assuming

δJCCW = 0, the bacterial diffusivity D is inconsistent with the above calculation.

Conditions of Detailed Balance in the Moving Frame of

Swimming Bacteria

In the moving frame of bacteria, the steady state condition requires d
dt
... ≡ ( ∂

∂t
±v · ∂

∂x
)... = 0.

It follows from Eqs. 10-13 in the main text that the following conditions must be satisfied:

PCW (x̂, x, t) = PCCW (x̂, x, t), PCCW (−x̂, x, t) = k0−∆k
k0+∆kPCCW (x̂, x, t), and PCW (−x̂, x, t) =

k0−∆k
k0+∆kPCCW (x̂, x, t). This yields PCW (x, t) (≡ PCW (x̂, x, t) + PCW (−x̂, x, t)) = 2k0

k0+∆kPCCW (x̂, x, t)

and ∆PCW (x, t) (≡ PCW (x̂, x, t)− PCW (−x̂, x, t)) = 2∆k
k0+∆kPCCW (+x̂, x, t). The above rela-

tions show (i) JCW (≡ v∆PCW ) ∝ ∆k and (ii) δJCW = JCW − v∆k
k0
PCW vanishes faster

than ∆k. Physically, δJCW is a measure of the deviation from detail balance, and when

∆k/k0 � 1, it can be ignored.

The Discretized Versions of the Master Equations and

Their Numerical Solutions

Discretized versions of of the master equations for the 2-step and 3-step swimmer are devel-

oped below, and they are used for the numerical calculations. In the continuum limit these

equations are consistent with those in the main text, Eqs. 3-4 and Eqs. 10-13. All of our
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computations were done with Matlab (The MathWorks).

We divided space into segments of equal size ∆x located at {xi}, and divided time into

equal intervals ∆t at {ti}. For the 2-step case, the conservation of probability demands,

P (x̂, xi, ti) =P (x̂, xi−1, ti−1)− 1
2 (k0 −∆k(xi)) ∆tP (x̂, xi−1, ti−1)

+ 1
2 (k0 + ∆k(xi)) ∆tP (−x̂, xi+1, ti−1)

, (S3)

P (−x̂, xi, ti) =P (−x̂, xi+1, ti−1)− 1
2 (k0 + ∆k(xi)) ∆tP (−x̂, xi+1, ti−1)

+ 1
2 (k0 −∆k(xi)) ∆tP (x̂, xi−1, ti−1)

. (S4)

Physically, P (x̂, xi, ti) (or P (−x̂, xi, ti)) is the probability of finding a cell swimming in x̂ (or

−x̂) direction at xi and ti. If a cell reaches xi at time ti, it must be either at xi−1 swimming

along the x̂ direction or at xi+1 swimming along the −x̂ direction at time ti−1. Among

cells arriving from xi−1, which is P (x̂, xi−1, ti−1), 1− (k0 −∆k(xi))∆t of them will continue

in the current swimming direction x̂, and (k0 − ∆k(xi))∆t of them will randomize their

swimming direction. Upon direction randomization, 50% of the this sub-population swims

in x̂ and the other 50% in −x̂ direction. Together, 1− 1
2(k0 −∆k(xi))∆t of P (x̂, xi−1, ti−1)

contributes to P (x̂, xi, ti), which corresponds to the first two terms in Eq. S3. Likewise,

the same argument shows that 1
2(k0 + ∆k(xi))∆t of P (−x̂, xi+1, ti−1) also contributes to

P (x̂, xi, ti), which corresponds to the last term in Eq. S3. Similar conservation equations

can be derived for the sub-population P (−x̂, xi, ti), yielding Eq. S4. Expanding terms in

the above equations around xi and ti, we recovered the continuous master equations, Eqs.

3-4, in the limits ∆x→ 0, ∆t→ 0, and ∆x/∆t→ v.

The derivation for the 3-step case is more tedious, but the idea is the same. The four
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equations are given by,

PCCW (x̂, xi, ti) = [1− (k0 −∆k(xi)) ∆t]PCCW (x̂, xi−1, ti−1)

+ 1
2 (k0 −∆k(xi)) ∆tPCW (x̂, xi−1, ti−1)

+ 1
2 (k0 + ∆k(xi)) ∆tPCW (−x̂, xi+1, ti−1)

, (S5)

PCCW (−x̂, xi, ti) = [1− (k0 + ∆k(xi)) ∆t]PCCW (−x̂, xi+1, ti−1)

+ 1
2 (k0 + ∆k(xi)) ∆tPCW (−x̂, xi+1, ti−1)

+ 1
2 (k0 −∆k(xi)) ∆tPCW (x̂, xi−1, ti−1)

, (S6)

PCW (x̂, xi, ti) = [1− (k0 −∆k(xi)) ∆t]PCW (x̂, xi−1, ti−1)

+ (k0 + ∆k(xi)) ∆tPCCW (−x̂, xi+1, ti−1)
, (S7)

PCW (−x̂, xi, ti) = [1− (k0 + ∆k(xi)) ∆t]PCW (−x̂, xi+1, ti−1)

+ (k0 −∆k(xi)) ∆tPCCW (x̂, xi−1, ti−1).
(S8)

This set of equations is again consistent with Eqs. 10-13 in the continuum limit.

In the calculation, we assigned ∆x = 0.1, 2L = 200 or 2000∆x, ∆t = 1, and v =

∆x/∆t = 0.1. Using the computational step ∆t as the basic time unit, we defined the

transition rates, k0 = 0.1 and ∆k = 0.01, giving the drift velocity vd = v∆k/k0 = 10−2.

The equations are solved using the reflective boundary conditions at x = ±L. To generate

the numerical solutions in Fig. 1, Eqs. S3-S4 and Eqs. S5-S8 were solved using the initial

conditions P (±x̂, xi, 0) = exp(−x2
i /2σ2)/2

√
2πσ2 and PCCW (±x̂, xi, 0) = PCW (±x̂, xi, 0) =

exp(−x2
i /2σ2)/4

√
2πσ2, respectively. Here, σ = 5∆x was used. To obtain the numerical

solutions in Fig. 2, the initial conditions P (±x̂, xi, 0) = 1/(4L/∆x) and PCCW (±x̂, xi, 0) =

PCW (±x̂, xi, 0) = 1/(8L/∆x) were used for the 2-step and 3-step swimmers, respectively.
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Calculations For an Initially Uniform Bacterial Distri-

bution

In most of laboratory experiments the initial bacterial concentration is uniform and the

profile evolves under the influence of an imposed chemical gradient. We therefore extend our

calculation in the main text to this useful situation. In one dimension, the bacterial profile

at t = 0 is given by P (x, 0) = 1/2L, and the Fourier coefficients are given by,


An = 2q′qnψ3

0n sinh(q′L) cos(qnL),

Bm = 2q′qmφ3
0m cosh(q′L) sin(qmL).

(S9)

The analytical and numerical results are plotted in Fig. S1, where the designations of colored

symbols and lines are identical to that of Fig. 1. We noticed that in this case the bacterial

profiles develop near the boundaries first and then spread into the interior of the sample.

The problem in hand involves multiple length scales, L, q′−1, and q−1
m,n, and it is useful to

know their corresponding time scales in an experiment. Eq. 20 makes it clear that the

relaxation rate for the attainment of a quasi-steady state is given by λ0 = Dq′2 = v2
d/4D.

Since vd = v(∆k/k0) and D = v2/(εk0), we found λ0 = εk0
4

(
∆k
k0

)2
, where ε = 1 for E.

coli and ε = 2 for V. alginolyticus. This indicates that the profile formation time λ−1
0 is

essentially independent of the bacterial swimming speed v but depends on the switching

rate k0, the sensitivity characterized by ∆k/k0, and the motility pattern specified by ε. Due

to the relatively large system size in a typical experiment or in a natural habitat, L� q′−1,

the drift time L/vd on the scale of the system size, or for that matter the diffusion time

L2/D, is irrelevant. For a large system, therefore, it is expected that a quasi-steady state

with a defined profile develops near the peak of the chemical profile over the time scale λ−1
0 .

For longer times, λ−1
0 < t < L/vd, the profile increases in amplitude with its exponential

form ∼ exp(2q′x) more-or-less preserved. Our calculation displayed in Fig. S1 is consistent
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Figure S1: Evolution of P (x, t) starting from the flat distribution P (x, 0) = 1/2L in the
presence of a linear chemoattractant gradient in the +x̂ direction. The bacterial profiles of
the 2-step (blue lines) and 3-step (purple lines) swimmers, calculated based on Eq. 18 at
reduced times t/tv = 0.01, 0.2, 0.4, 0.6, 0.8, and 2, are plotted in (A-F) respectively. The
numerical results based on Eqs. 3-4 and 10-13 are plotted using green squares and red circles
for the 2-step and 3-step swimmers. The inset in (F) is the close-up view of the same figure.
Note that the shapes of the bacterial profiles near the peak of the chemical concentration
x = L form at early t where t/tv � 1. Afterward, the peak grows in height but the shapes
of the profiles remain more-or-less the same.

with this picture, where λ−1
0 = 4000∆t and 2000∆t for the 2-step and 3-step swimmer,

respectively.

The Memory Effect

Bacteria detect chemical gradients by temporal comparison. Processing of the chemical

signals typically introduces a time delay in response. Such a delay in general reduces the

drift velocity of the cell. This is because if a cell’s swimming direction is reversed at a certain

moment, immediately after the reversal, the gradient “computed” by the cell is opposite to

the gradient currently experienced by the cell due to the delay (1). For example, if the

cell swims up an attractant gradient before it goes down the gradient due to a direction
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randomization, within the memory time right after the reversal, dc/dt computed by the cell

is still positive. As a result, instead of increasing the switching rate, the cell reduces the

switching rate and its average displacement down the gradient is extended. Similarly, right

after a cell switches from going down to going up the gradient, its average displacement up

the gradient is decreased. The memory effect can be taken into consideration systematically

as demonstrated by de Gennes (2). Based on the molecular and functional aspects of E. coli

chemotaxis (3, 4) and using a linear response, the change in the switching rate ∆k depends

on the history of chemical exposure and can be mathematically expressed as,

∆k(t)
k0

=
ˆ t

−∞
R(t− t′)c(t′)dt′. (S10)

In the above, c(t) is the chemical concentration sensed by the bacterium at time t, and R(t)

is the response function given by

R(t) = R0
τZτm
τm − τZ

( 1
τZ

exp(−t/τZ)− 1
τm

exp(−t/τm)
)
, (S11)

where τZ and τm are respectively the dephosphorylation and methylation times, and R0 is

the amplitude of the response.

For the 2- and 3-step swimmers having the same swimming speed v and the same response

R(t), it can be shown using the results in Refs. (1, 2) that the ratio of the drifting velocities

for the two bacteria is given by,

vV
vE

= 1
2

( 1
1 + k0τZ

+ 1
1 + k0τm

)
. (S12)

The effect of memory on bacterial chemotaxis and in particular on the drift velocity have

also been considered by Taktikos et. al (5). It was assumed that the chemotactic response

function has a typical time scale k−1
0 (see Eq. 26 of Ref. (5)). With such an assumption, Eq.

S12 yields vV ≈ 1
2vE for k0τZ ≈ 1 and k0τm ≈ 1, which is consistent with Eq. 28 of Ref. (5).

Thus, bacterial memory generally makes 3-step swimmers drift slower in a linear chemical
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gradient than their 2-step counterparts unless the bacteria can process the chemical signal

rapidly with k0τZ � 1 and k0τm � 1. In this case the drifting velocity of a 3-step swimmer

would not be compromised by the delay, and one obtains the result vV ≈ vE.
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