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Bacterial Motility Patterns Reveal Importance of Exploitation over
Exploration in Marine Microhabitats. Part I: Theory
Li Xie1 and Xiao-Lun Wu1,*
1Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania
ABSTRACT Bacteria use different motility patterns to navigate and explore natural habitats. However, how these motility
patterns are selected, and what their benefits may be, are not understood. In this article, we analyze the effect of motility patterns
on a cell’s ability to migrate in a chemical gradient and to localize at the top of the gradient, the twomost important characteristics
of bacterial chemotaxis. We will focus on two motility patterns, run-tumble and run-reverse-flick, that are observed and charac-
terized in enteric bacterium Escherichia coli and marine bacterium Vibrio alginolyticus, respectively. To make an objective com-
parison, master equations are developed on the basis of microscopic motions of the bacteria. An unexpected yet significant
result is that by adopting the run-reverse-flick motility pattern, a bacterium can reduce its diffusivity without compromising its
drift in the chemical gradient. This finding is biologically important as it suggests that the motility pattern can improve a micro-
organism’s ability to sequester nutrients in a competitive environment.
INTRODUCTION
Cell motility comes with a big cost. This is the reason its
associated genes are tightly regulated (1,2). A high cost is
usually accompanied by a high benefit, suggesting that
motility is important for cell survival. The ultimate benefit
of bacterial motility is that it allows a cell to sequester essen-
tial resources more efficiently in a competitive environment.
A pelagic ocean is one of those habitats in which the average
nutrient level is very low, e.g., the concentration of amino
acids is in the range of ~10�9 M, and evidence suggests
that for small bacteria, the availability of metabolizable
carbons is the limiting factor for how fast these bacteria
can swim (3). Moreover, in oceans, nutrients appear and
disappear in a sporadic fashion, demanding a swift chemical
response, a fast swimming speed, and being able to localize
near a nutrient patch once it is found. This raises an
intriguing question about what motility pattern is better
suited for such an environment.

The best studied and characterized bacterial motion is that
of the enteric bacterium Escherichia coli, which we will call
a two-step swimmer. In a homogeneous environment, the
cell incorporates a run-tumble swimming pattern to navi-
gate. In an inhomogeneous environment, the cell extends
(shortens) its run intervals when it moves up (down) a che-
moattractant gradient, leaving the tumbling interval that ran-
domizes the swimming direction relatively unchanged (4).
By modulating the run intervals based on chemical cues,
the bacterium executes a biased random walk, allowing it
to home in on the source of beneficial chemicals and away
from harmful ones. However, as far as we know, marine bac-
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teria do not use run-tumble to navigate. Instead, they use the
forward-reverse pattern, which has been the most docu-
mented in works by Taylor and Koshland (5) and Luchsinger
et al. (6). In a study in 2011 (7), we found that marine bacte-
ria Vibrio alginolyticus, and possibly others, swims using a
cyclic three-step motility pattern, forward-reverse-flick.
Specifically, the bacterium swims forward for an interval
DCCW propelled by a CCW-rotating left-handed polar flagel-
lum, and then swims backward for an intervalDCW pulled by
the CW-rotating flagellum. Upon another motor reversal,
which causes the bacterium to swim forward again, the polar
flagellum deflects, causing the cell body to reorient in a new
random direction. Compared to DCCW or DCW, which is
~0.5 s, the flick is very brief, lasting ~0.05 s.

Despite the different motility pattern of the marine bacte-
rium, which we will call a three-step swimmer, its trajectory
is still a random walk but with a reduced net displacement
within a swimming cycle (DCCWþDCW) because of the
backtracking (7). This raises an interesting question about
the benefit for a microorganism to adopt the three-step
run-reverse-flick motility pattern instead of the two-step
run-tumble pattern. In a more general sense, one may ask
whether certain motility patterns are better suited for a given
environment than others. These important questions are
difficult to address by laboratory experiments because
different microorganisms have different swimming speeds,
chemical sensitivities, and intrinsic switching rates. Indeed,
our previous experiment showed that V. alginolyticus can
migrate in an attractant gradient much faster than E. coli,
which may be expected because its swimming speed is
2–3 times greater (7). However, the marine bacteria also
form a tighter aggregate at the top of a gradient, which is
not evident and appears at odds with its high swimming
http://dx.doi.org/10.1016/j.bpj.2014.07.058
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speed. Hence, unless the problem can be analyzed in an
objective manner, there will be no satisfactory answer to
these questions.

To overcome this impasse, we resort to mathematical
modeling using master equations. A swimming bacterium
is represented by a random walker obeying specific local dy-
namics in a chemical gradient. The two-step and three-step
swimmers are identical in all aspects except their motility
patterns. We found that for a microorganism executing the
run-tumble cycles, the master equation is the standard con-
vection-diffusion equation, or, in the biological context,
known as the Keller-Segal (KS) equation (8). On the other
hand, for a microorganism executing the run-reverse-flick
cycles, the master equation is not of the standard form. It
contains an extra flux term, which we show to be negligible.
A simple but surprising physical picture emerging from our
calculation is that a microorganism can alter its microscopic
motility pattern to significantly reduce its diffusivity without
compromising the drift velocity in a chemical gradient. This
suggests that in oceans, the motility pattern such as run-
reverse-flick or, for that matter run-reverse, is selected for
its localization or exploitative behavior rather than its explo-
ration potential.

This article is organized in the following fashion: To
begin, the two-step and three-step motility patterns, which
may be viewed as the chemotactic strategies, are imple-
mented at a microscopic level in one spatial dimension.
This results in differential equations similar to diffusion
equations of the telegraph model (9). By specifying the
switching rate k(x) as a function of local chemical concen-
tration c(x), we show that the master equation is equivalent
to the KS equation that contains two phenomenological
constants, the bacterial diffusivityD and the chemotactic co-
efficient c ¼ vd/Vc, where vd is the drift velocity and Vc is
the chemical gradient. The KS equation is thus a general
description of bacterial chemotaxis, and different motility
patterns result in different D and c. Analytic solutions are
then obtained approximately for the one-dimensional case
and compared with numerical solutions without approxima-
tions. Finally, the one-dimensional calculation is general-
ized to higher spatial dimension d, and we show that our
central finding is independent of the spatial dimension.
RESULTS AND DISCUSSIONS

The theoretical models in one dimension

The movement of a bacterium is akin to that of a random
walker. The cell swims with a constant velocity for a time
D and turns to a new random direction, where D is exponen-
tially distributed. A model describing a diffusing particle
with a finite mass is thus appropriate for mimicking chemo-
tactic behavior of a bacterium. Here, we are only interested
in the long-time diffusive regime of particle dynamics. We
define the probability density functions (PDFs) of particles
moving in the bx and �bx directions as Pðbx; x; tÞ and
Pð�bx; x; tÞ, respectively (9). These particles are subject to
random collisions or directional randomization that occur
at rates kþ(x) and k�(x) when moving in the bx and �bx
directions, respectively. After a collision, the particles
have an even chance of continuing in the same or opposite
direction. The PDFs are then given by

vPðbx; x; tÞ
vt

¼ �v
vPðbx; x; tÞ

vx
� kþðxÞ

2
Pðbx; x; tÞ

þ k�ðxÞ
2

Pð�bx; x; tÞ; (1)

vPð�bx; x; tÞ vPð�bx; x; tÞ kþðxÞ

vt

¼ v
vx

þ
2

Pðbx; x; tÞ
� k�ðxÞ

2
Pð�bx; x; tÞ: (2)

In a homogeneous medium, the collision rates are expected
to be constant, k5(x) ¼ k0, independent of x. However, for
chemotaxis, a bacterium follows chemical cues by modu-
lating k5(x): if the bacterium swims up an attractant
gradient, it lowers the switching rate, and if it swims
down the gradient, it increases the switching rate. This
assumption is valid in the case of V. alginolyticus (10).

Previous experiments have shown that a bacterium per-
forms chemosensing by temporal comparison. In E. coli,
for example, the chemoreceptors average the receptor occu-
pancy by chemoeffectors in the present one-second and
compare it with that of the previous three seconds (11).
The result of the comparison is used to alter the phosphory-
lation level of the regulator protein CheY that determines
the flagellar motor switching probability. In 2011, we found
that marine bacteria V. alginolyticus also perform temporal
comparison, but the response time is shorter (10). Hence,
even though bacterial chemotaxis is modeled as a random
walk, the actual process is non-Markovian because k5(x)
is determined by the history of a particular trajectory
(12,13). Because of this memory effect, a rigorous treatment
requires averaging over all possible trajectories, which is
beyond the scope of this work. The bacterial sensory
response can be significantly simplified if the chemo-
effector, say an attractant, c(x), has a shallow gradient
that does not change much during a swimming interval,
vjv2c/vx2j � k0 jvc/vxj. In this case, the switching rate is
a linear function of the chemical gradient k5(x) z k0 H
Dk(x) (9) with Dk(x) ¼ gvvc(x)/vx and g being a gain factor.
In an early work by Mesibov et al. (14), it was shown that
instead of linear sensing, bacteria actually use logarithmic
sensing to respond to a chemical cue. In this case,
Dk(x) ¼ (g0/c(x))vvc(x)/vx, where g0 is a constant. Work in
2009 showed that c(x) in g h g0/c(x) can be replaced by c,
the average concentration experienced by the bacterium in
an attractant profile if vcðxÞ=vx � k0cðxÞ=v (15).
Biophysical Journal 107(7) 1712–1720
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The master equation for two-step swimmers

For the run-tumble motility pattern in a shallow gradient,
Eqs. 1 and 2 can be used directly by replacing k5 with
k0 H Dk. This yields

vPðbx; x; tÞ
vt

¼ �v
vPðbx; x; tÞ

vx
� k0 � DkðxÞ

2
Pðbx; x; tÞ

þ k0 þ DkðxÞ
2

Pð�bx; x; tÞ; (3)

vPð�bx; x; tÞ vPð�bx; x; tÞ k0 � DkðxÞ

vt

¼ v
vx

þ
2

Pðbx; x; tÞ
� k0 þ DkðxÞ

2
Pð�bx; x; tÞ: (4)

Adding and subtracting Eqs. 3 and 4, we obtain
vPðx; tÞ
vt

¼ �vJðx; tÞ
vx

; (5)

vJðx; tÞ ¼ �v2
vPðx; tÞ � k Jðx; tÞ þ vDkðxÞPðx; tÞ; (6)
vt vx
0

where

Pðx; tÞ ¼ Pðbx; x; tÞ þ Pð�bx; x; tÞ
is the total probability and

Jðx; tÞ ¼ vðPðbx; x; tÞ � Pð�bx; x; tÞÞ
is the flux. Taking the time derivative of Eq. 5 and replacing
vJ/vt by Eq. 6 gives

v2Pðx; tÞ
vt2

¼ � v

vx

�
�v2

vPðx; tÞ
vx

� k0Jðx; tÞþvDkðxÞPðx; tÞ
�
:

(7)

Because only the long-time behavior (k0t [ 1) of the bac-
2
terial population is of interest, it is justifiable to set v P(x,t)/

vt2 ¼ 0. This yields

vJðx; tÞ
vx

¼ �v2

k0

v2Pðx; tÞ
vx2

þ v
k0

vðDkðxÞPðx; tÞÞ
vx

: (8)

Inserting this equation into Eq. 5, we arrive at the master

equation for the two-step swimmer,

vPEðx; tÞ
vt

þ vðvEðxÞPEðx; tÞÞ
vx

¼ DE

v2PEðx; tÞ
vx2

; (9)

where the subscript E stands for E. coli, vE(x) ¼ vDk(x)/k0
2
is the drift velocity, and DE ¼ v /k0 is the diffusivity.

We observed that for the two-step swimmer, the master
(or KS) equation can be derived with the single assumption
Biophysical Journal 107(7) 1712–1720
k0t [ 1. As we shall see, this is insufficient for the three-
step swimmer.
The master equation for three-step swimmers

The major difference between a two-step and a three-step
swimmer is that the latter has motility even when the
flagellar motor rotates in the CW direction, backtracking
its forward path. For the three-step swimmer, therefore,
there are four possibilities depending on the swimming di-
rection and the state of motor rotation: ðbx;CCWÞ,
ð�bx;CCWÞ, ðbx;CWÞ, and ð�bx;CWÞ. The corresponding
PDFs evolve in time according to

vPCCWðbx; x; tÞ
vt

¼ �v
vPCCWðbx; x; tÞ

vx

� ðk0 � DkÞPCCWðbx; x; tÞ
þ k0 � Dk

2
PCWðbx; x; tÞ

þ k0 þ Dk

2
PCWð�bx; x; tÞ; (10)

vPCCWð�bx; x; tÞ ¼ v
vPCCWð�bx; x; tÞ
vt vx

� ðk0 þ DkÞPCCWð�bx; x; tÞ
þ k0 � Dk

2
PCWðbx; x; tÞ

þ k0 þ Dk

2
PCWð�bx; x; tÞ; (11)

vPCWðbx; x; tÞ ¼ �v
vPCWðbx; x; tÞ � ðk � DkÞP ðbx; x; tÞ
vt vx
0 CW

þ ðk0 þ DkÞPCCWð�bx; x; tÞ;
(12)

vPCWð�bx; x; tÞ ¼ v
vPCWð�bx; x; tÞ
vt vx

� ðk0 þ DkÞPCWð�bx; x; tÞ
þ ðk0 � DkÞPCCWðbx; x; tÞ: (13)

In the above, the cyclic run-reverse-flick motility pattern is

explicitly implemented, i.e., when a bacterium swims in a
CCW state, a motor reversal simply makes the cell swim
in the opposite direction, but when a bacterium swims in a
CW state, a motor reversal causes the cell to flick and
swim either in its current or opposite direction with equal
probability.

Similar to the two-step case, we define the total
probability

Pðx; tÞ ¼ PCCWðbx; x; tÞ þ PCCWð�bx; x; tÞ þ PCWðbx; x; tÞ
þ PCWð�bx; x; tÞ
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and the flux

J ¼ vðPCCWðbx; x; tÞ þ PCWðbx; x; tÞ � PCCWð�bx; x; tÞ
� PCWð�bx; x; tÞÞ

for the three-step swimmer. Summing up Eqs. 10–13 yields

the equation of conservation of total number of bacteria,

vPðx; tÞ
vt

¼ �vJðx; tÞ
vx

; (14)

which is expected. However, the flux equation is more

complicated with the result

vJðx; tÞ
vt

¼ �v2
vPðx; tÞ

vx
� 2k0Jðx; tÞ þ 2vDkðxÞPðx; tÞ

þ k0dJCWðx; tÞ;
(15)

where
dJCWðx; tÞhvðPCWðbx; x; tÞ � PCWð�bx; x; tÞÞ
�vDkðxÞ

k0
ðPCWðbx; x; tÞ þ PCWð�bx; x; tÞÞ

is the extra flux term, which makes this equation different
from Eq. 6. Following the same procedure as above, i.e.,

taking the time derivative of Eq. 14 and replacing vJ/vt
using Eq. 15, we found in the long-time limit,

vPðx; tÞ
vt

¼ v2

2k0

v2Pðx; tÞ
vx2

� v

k0

vðDkðxÞPðx; tÞÞ
vx

� 1

2

vdJCWðx; tÞ
vx

: (16)

In the Supporting Material, it is shown that dJCW ~ o(Dk)

and can be neglected when Dk/k0 � 1. This is also
confirmed by numerical calculations in which all terms
are included. Dropping the last term in Eq. 16, we finally
obtained the master equation for the three-step swimmer,

vPVðx; tÞ
vt

þ vðvVðxÞPVðx; tÞÞ
vx

¼ DV

v2PVðx; tÞ
vx2

; (17)

where the subscript V stands for V. alginolyticus, vV(x) ¼
2
vDk(x)/k0, and DV ¼ v /2k0. We note that by dropping the

vdJCW/vx term, the master equation for the three-step swim-
mer is mathematically identical to that of the two-step
swimmer. Importantly, we found that the bacterial diffu-
sivity of the three-step swimmer is a factor of two smaller
than that of the two-step swimmer, DV ¼ DE/2, but the drift
velocity is the same for both vV ¼ vE ¼ vd(h vDk/k0); the
latter is unexpected because, due to backtracking, one antic-
ipates vV < vE. The result is in contrast with inanimate par-
ticles. For example, for a colloidal particle in an external
field, diffusion and drift are related; when one increases,
the other must increase, inasmuch as both share the same
frictional factor.
The above finding has important biological implications
because it shows that by altering the motility pattern, a
microorganism can reduce its diffusivity without compro-
mising its drift velocity, a niche that can be exploited by
the microorganism. Indeed, Eqs. 9 and 17 provide clues
about how well a two-step and three-step swimmer can
perform chemotaxis in a chemical gradient. It shows that
for everything being equal, such as the swimming speed v,
the switching rate k0, and the gain factor g (or g0), the
three-step swimmer can aggregate around a source of an
attractant more tightly than its two-step counterpart, allow-
ing a higher exposure to nutrients. Such a trait is very signif-
icant for competitive foraging in habitats where nutrients are
scarce and localized. The high ability for the cell to localize
evidently comes with a cost. It reduces the chance for the
three-step swimmer to explore habitats efficiently. However,
it may be argued that, in vast oceans, searching is unproduc-
tive unless a chemical signal is present. In this case, it is
more important to follow closely and rapidly an existing
chemical cue. This exploitative behavior appears to be
encoded in the swimming pattern of V. alginolyticus.
Analytical and numerical solutions of the master
equations

It is difficult to obtain analytical solutions to the master
equation with an arbitrary drift velocity vd(x). However,
when the chemical gradient is linear, Dk and vd become con-
stant and the problem is simplified. Below we attempt to
find analytical solutions in the domain [�L, L] with different
initial conditions when an chemoattractant concentration
increases linearly along x. Using the method of separation
of variables, we found that the solution to the master equa-
tion is given by

Pðx; tÞ ¼ q0

sinhð2q0LÞ exp
�
2q

0
x
�þ exp

�
q

0
x
�

�
" X

n¼ 1;2;::

AnjnðxÞexpð�lntÞ

þ
X

m¼ 0;1;2;::

BmfmðxÞexpð�lmtÞ
#
;

(18)

where q0 ¼ vd/2D is the wavenumber characterizing the
steady-state profile, jn(x) and fm(x) are the eigenfunctions,
and ln and lm are the corresponding decay rates. In terms of
wavenumbers

qn ¼ pn

L
and qm ¼ pð2mþ 1Þ

2L
;

they are given by
Biophysical Journal 107(7) 1712–1720



1716 Xie and Wu
(
jnðxÞ ¼ j0nðqn cosðqnxÞ þ q0 sinðqnxÞÞ
fmðxÞ ¼ f0mðq0 cosðqmxÞ � qm sinðqmxÞÞ ; (19)

8>>>>>><>>>>>>:
ln ¼ l0

"
1þ

�
qn
q0

�2
#
;

lm ¼ l0

"
1þ

�
qm
q0

�2
#
;

(20)

where

l0 ¼ v2d
4D

;

j0n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
�
q02 þ q2n

�q ; and
FIGURE 1 Evolution of P(x,t) starting from the d-distribution P(x,0) ¼ d(x). T

swimmers, calculated based on Eq. 18 at reduced times t/tv ¼ 0.01, 0.2, 0.4, 0.6,

concentration increases linearly along x, tv (h L/vd) 10
4Dt, and Dt ¼ 1 is the co

t/tvx 2. (Green squares and red circles) Numerical solutions for Eqs. 3 and 4, an

colored symbol and line designations are the same as above. Beneath each PDF,

the last term 1=2ðv=vxÞdJcw (magenta lines) on the right-hand side of Eq. 16 a

significant only for late times. However, the analytic calculation without this term

To see this figure in color, go online.
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f0m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
�
q02 þ q2m

�q ;
and m and n are positive integers.
Consider the situation when the bacteria are released at
x ¼ 0, and we watch how they spread in space and time.
The initial condition in this case is P(x,0) ¼ d(x), and it
yields the Fourier amplitudes An ¼ jn(0) and Bm ¼
fm(0). Fig. 1 displays our analytical solutions of P(x,t)
for the two-step (blue lines) and three-step (purple lines)
swimmers, and the results are compared with the numerical
solutions (green squares and red circles, respectively) using
the full equations, Eqs. 3 and 4 and Eqs. 10–13. Because of
the approximations made in deriving Eqs. 9 and 17, specif-
ically v2P/vt2 x 0 and dJCW x 0, the numerical method
provides a quantitative means to check their validity. In
all numerical calculations, we set Dx ¼ 0.1 and Dt ¼ 1
so that the bacterial swimming speed is v ¼ Dx/Dt ¼ 0.1,
the switching rate is k0 ¼ 0.l/Dt (or the mean swimming
he bacterial profiles of the two-step (blue line) and three-step (purple line)

0.8, and 2, are plotted in panels A–F, respectively. Here the chemoattractant

mputation step. As seen, the steady-state exponential profiles are formed at

d 10–13, respectively. (F, inset) Close-up for the steady-state profiles, where

the first two terms ðv2=2k0Þðv2P=vx2Þ � vðDk=k0ÞðvP=vxÞ (black lines) and
re plotted based on the numerical solutions. As seen, the extra flux term is

still yields a quantitatively good result, as demonstrated in panel F (inset).
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interval k0
�1 ¼ 10Dt), and the change in switching rate is

Dk ¼ k0/10.
One observes that for the two-step swimmer, the analyt-

ical and numerical solutions are nearly identical, indicating
that the short-time, ballistic-like motion of bacteria does not
contribute significantly to the evolution of the bacterial pro-
file. For the three-step swimmer, on the other hand, small
discrepancies can be seen at the peak of bacterial profiles,
indicating that in this region the extra flux term, vdJCW/
vx, in Eq. 16 has a small but discernible contribution. How-
ever, the overall good agreement between the analytic and
the numerical solutions demonstrates that 1), our derivation
of the master equations is sound, and 2), the approximations
are reasonable.

It is noteworthy that the numerical solutions support our
analysis that the microscopic motility patterns do not affect
the drift velocity vd. They only modify the bacterial diffu-
sivity D. This is illustrated by Fig. 1, which shows that the
two bacteria migrate up the chemical gradient with identical
speed, but the bacterial pack for the three-step swimmer is
narrower than its two-step counterpart. Our calculations
also show that because of the spatial separation between
the chemical source (x¼ L) and the initial bacterial position
(x¼ 0), a waiting time of tv ~ L/vd is required for the bacteria
to aggregate around the top of the attractant concentration.
As delineated by Fig. 1 F, the steady state is reached
when t/tv x 2.

For a better comparison with experimental measure-
ments, we also calculated evolution of bacterial profiles
starting from a uniform distribution, P(x,0) ¼ 1/2L. The
result of this calculation and the accompanied discussion
are included in the Supporting Material.
Comparison of nutrient exposure to two-step and
three-step swimmers

Biologically it is useful to quantify nutrient exposure due to
different motility patterns because this quantity is closely
related to the fitness of the bacteria (16). In the steady state,
the nutrient exposure can be calculated by the overlapping
integral between the bacterial distribution P(x) and the
attractant distribution c(x). For simplicity, we assumed
that the nutrient is confined in the domain [�L, L] and has
an exponential profile

cðxÞ ¼ cðLÞexpððx � LÞ=lÞ;

where c(L) is the attractant concentration at x ¼ L and l is
FIGURE 2 The ratio of nutrient exposure CV/CE versus l/L and gc(L).

Here CV (CE) is the average nutrient exposure when the three-step (two-

step) swimmers are exposed to exponentially distributed chemoattractant

in a box of size 2L. The advantage of three-step over two-step swimming

becomes more significant when the scale of the chemical distribution, l,

is small compared to the size of the box L and the bacteria have a large

gain factor g. To see this figure in color, go online.
the decay length. The linear gradient is the special case
when l [ L. In the steady state, the bacterial profile P(x)
satisfies the equation

D
vPðxÞ
vx

� vdðxÞPðxÞ ¼ 0; (21)

where
vdðxÞ ¼ gv2

k0

vc

vx

and the gain factor g is assumed to be a constant. Solving
Eq. 21 and using the general expressionD¼ v2/εk0, we found

PðxÞ ¼ PðLÞexp
�
egcðLÞ

�
exp

�
x � L

l

�
� 1

��
;

where ε ¼ 1 and 2 correspond to two-step and three-step

swimmers, respectively. It follows that the average nutrient
exposure per bacterium is given by

C ¼
Z L

�L

PðxÞcðxÞdx=
Z L

�L

PðxÞdx:

This allows us to compute the ratio of the nutrient exposure

CV/CE of the two bacteria,

CV

CE

¼
R 0

�2L
exp½2gcðLÞðexpðx=lÞ � 1Þ�expðx=lÞdxR 0

�2L
exp½gcðLÞðexpðx=lÞ � 1Þ�expðx=lÞdx

�
R 0

�2L
exp½gcðLÞðexpðx=lÞ � 1Þ�dxR 0

�2L
exp½2gcðLÞðexpðx=lÞ � 1Þ�dx

:

The above expression was numerically integrated, and the

result is presented in Fig. 2. As can be seen, the advantage
of the three-step motility pattern over the two-step pattern
Biophysical Journal 107(7) 1712–1720
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is significant only when gc(L) is large and l/L is small. For a
shallow gradient l/L [ 1, the improvement

DC=CE

�
h

CV � CE

CE

�
is only a few percent in the best case. This result suggests

that the three-step motility pattern is better suited for a local-
ized source, and to benefit from such a strategy, the cell must
have a large gain g.
Master equations in high spatial dimensions

It is possible to generalize the one-dimensional calculations
to higher spatial dimensions d (9). Let bu be a unit vector
specifying the swimming direction of a bacterium. We
define two subpopulations PCCWðbu; x; tÞ and PCWðbu; x; tÞ
based on their motor directions. These two populations
evolve according to

vPCCWðbu; x; tÞ
vt

¼ �vV
/

, ðbuPCCWðbu; x; tÞÞ
� kðx; buÞPCCWðbu; x; tÞ
þ
Z

k
�
x; bu 0�

PCW

�bu 0
; x; t

�
W
�bu; bu 0�

dUbu 0 ;
(22)

vPCWðbu; x; tÞ /
vt
¼ �vV , ðbuPCWðbu; x; tÞÞ

� kðx; buÞPCWðbu; x; tÞ
þ
Z

k
�
x; bu 0�

PCCW

�bu 0
; x; t

�
W 0�bu; bu 0�

dUbu 0 ;
(23)

where kðx; buÞ is the switching rate, which is assumed to be
identical for both CCW and CW intervals; Wðbu; bu 0 Þ

ðW 0 ðbu; bu 0 ÞÞ is the probability that upon a motor reversal
from CW (CCW) to CCW (CW), the bacterium changes
swimming direction from bu 0

to bu; and dUbu 0 indicates
integration over the solid angle spanned by bu 0

. For a
bacterium that executes a run-reverse-flick motility

pattern, W
0 ðbu; bu 0 Þ ¼ dbu;�bu 0 so that W

0 ðbu; bu 0 Þ ¼ 1 if bu ¼
�bu 0

and otherwise W 0ðbu; bu 0 Þ ¼ 0. Moreover, if bu and bu 0
are

uncorrelated, i.e., when a flick completely randomizes the
swimming direction which is approximately valid for

V. alginolyticus (7), Wðbu; bu 0 Þ ¼ U�1
d , where

Ud

�
h

Z
dUbu 0

�
¼ 2p

for d ¼ 2 and Ud ¼ 4p for d ¼ 3.

Following the one-dimensional derivation, we define
Biophysical Journal 107(7) 1712–1720
PCCWðx; tÞh
Z

PCCWðbu; x; tÞdUbu ;
PCWðx; tÞh

Z
PCWðbu; x; tÞdU ;
bu

~J ðx; tÞhv

Z
P ðbu; x; tÞbudU ; and
CCW CCW bu

~JCWðx; tÞhv

Z
PCWðbu; x; tÞbudU :
bu

The total probability density function P(x,t) and the

total current~Jðx; tÞ are then given by P(x,t) h PCCW(x,t) þ
PCW(x,t) and ~Jðx; tÞh~JCCWðx; tÞ þ~JCWðx; tÞ. By adding
Eqs. 22 and 23 and integrating both sides over all possible
directions bu, we find

vPðx; tÞ
vt

¼ �V
/

,~Jðx; tÞ: (24)

To compute~JCCWðx; tÞ, multiply both sides of Eqs. 22 by vbu,

and integrate over bu. BecauseZ

W
�bu; bu 0�budUbu ¼ 0;

we have
v~JCCWðx; tÞ
vt

¼ �v2
Z buV/ , ðbuPCCWðbu; x; tÞÞdUbu

� v

Z bukðx; buÞPCCWðbu; x; tÞdUbu : (25)

Likewise, using Eq. 23, we obtain

v~JCWðx; tÞ
vt

¼ �v2
Z buV/ , ðbuPCWðbu; x; tÞÞdUbu

� v

Z bukðx; buÞðPCWðbu; x; tÞ
þPCCWðbu; x; tÞÞdUbu : (26)

Adding Eqs. 25 and 26 results in

v~Jðx; tÞ
vt

¼ �v2
Z buV/ , ðbuPðbu; x; tÞÞdUbu

�2v

Z bukðx; buÞPðbu; x; tÞdUbu
þ v

Z bukðx; buÞPCWðbu; x; tÞdUbu :
(27)

For shallow chemoattractant gradients, the switching rate is
expanded about the steady-state value k0, resulting in
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kðx; buÞzk0 � Dkðx; buÞ
where Dkðx; buÞ ¼ gvbu,V/cðxÞ. The equation of motion for

the current becomes

v~Jðx; tÞ
vt

¼ �v2
Z buV/ , ðbuPðbu; x; tÞÞdUbu � 2k0~Jðx; tÞ

þ 2v

Z buDkðx; buÞPðbu; x; tÞdUbu þ k0d~JCWðx; tÞ;
(28)

where the extra flux term is given byZ

d~JCWðx; tÞ ¼ ~JCWðx; tÞ � v

k0
buDkðx; buÞPCWðbu; x; tÞdUbu :

This term originates from the flicking step in the CW inter-
val (see the last term on the right-hand-side of Eq. 22), and

directional randomization accounts for its smallness
compared to the flux term in the CCW interval. Taking an
additional time derivative on both sides of Eq. 24, plugging
in Eq. 28, and dropping both v2P/vt2 and d~Jðx; tÞ terms, we
arrive at the master equation for d dimensions:

vPVðx; tÞ
vt

¼ v2

2k0
V
/

,

� Z buV/ , ðbuPVðbu; x; tÞÞdUbu�
� v

k0
V
/

,

� Z buDkðx; buÞPVðbu; x; tÞdUbu�:
(29)

Equation 29 should be compared with the master equation
for the two-step swimmers, which has been derived in the

work by Schnitzer (9) as

vPEðx; tÞ
vt

¼ v2

k0
V
/

,

� Z buV/ , ðbuPEðbu; x; tÞÞdUbu�
� v

k0
V
/

,

� Z buDkðx; buÞPEðbu; x; tÞdUbu�:
(30)

Using the near-equilibrium assumption of Schnitzer (9),
which amounts to 		~Jðx; tÞ		 � vPðx; tÞ;
the distribution Pðbu; x; tÞ is nearly independent of the swim-
ming direction bu, Pðbu; x; tÞzPðx; tÞ=Ud, so that Eqs. 29 and

30 can be written as

vPVðx; tÞ
vt

¼ v2

2dk0
V2PV � v2g

dk0
V
/

,
�
V
/

cðxÞPV

�
; (31)

and

2 2
vPEðx; tÞ
vt

¼ v

dk0
V2PE � v g

dk0
V
/

,
�
V
/

cðxÞPE

�
; (32)

where we have used the mathematical identity
Z buibujdUbu ¼ dijUd



d:

These equations define the bacterial drift velocity and diffu-
sivity with the results

~vdhv2gV
/

c

ðdk0Þ and

D ¼ v2

ðedk0Þ;
where ε ¼ 1 for a two-step swimmer and e ¼ 2 for a three-

step swimmer. It is seen, therefore, that the central result
obtained in one dimension remains valid in higher spatial
dimensions d.
CONCLUSION

The main point of this article is the demonstration that a
microorganism can modify its motility pattern at micro-
scopic scales to significantly reduce its diffusivity without
compromising its drift velocity in a chemical gradient.
This counterintuitive effect results from the fact that, for a
two-step swimmer, it ‘‘hedges its bet’’ for each swimming
cycle, and on average it moves up the chemical gradient
by a distance

1

2

�
v

k0 � Dk
� v

k0 þ Dk

�
xvDk=k20

during the time k0
�1, resulting in the drifting velocity vE ¼

vDk/k0. Despite the fact that a three-step swimmer also
hedges its bet for each swimming cycle, the forward and
backward intervals are compensatory. The cell migrates up
the gradient by a distance

v

k0 � Dk
� v

k0 þ Dk
x2vDk=k20

during the time 2k0
�1, yielding the same drifting velocity

vV ¼ vDk/k0. In this regard, the three-step motility pattern
can be exploited by microorganisms to improve their
fitness in an environment where nutrients exist in small
and sparse patches. Earlier observations that marine bacteria
V. alginolyticus (7), and possibly Pseudoalteromonas halo-
planktis as well (16), can form a tighter cluster around a
small chemical source more rapidly than their E. coli coun-
terpart is consistent with such a scenario.

The study of chemotaxis ability of a bacterium cannot be
disconnected from its natural habitat, which is characterized
by its chemical compositions, concentrations, and distri-
butions of individual components. Bacteria developed
different niches to explore and exploit these features. Our
model makes specific predictions about how macroscopic
chemotaxis behaviors of a microorganism depend on niches
such as microscopic motility pattern, swimming speed, and
Biophysical Journal 107(7) 1712–1720
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chemical sensitivity, which are characterized by ε, v, and Dk/
k0, respectively. This permits a quantitative and objective
comparison of chemotaxis abilities of different microorgan-
isms. Issues that are of biological and ecological signifi-
cance, and can be quantified based on our calculation,
include the following:

1. Dynamic evolution of bacterial profiles in the presence of
different chemical distributions,

2. The ability to localize or disperse near a small source of
attractant or repellent, and

3. The dynamic range and sensitivity in sensing a chemical.

The comparative study can give us a glimpse of the charac-
teristics of the environment that the microorganism inhabits.

Finally, it should be pointed out that the minimal model
presented here has not addressed the issues of memory
and nonexponential run-time distribution in bacterial
chemotaxis; the latter was observed in V. alginolyticus
(7,17). Physically, bacterial memory is a result of signal
transduction in the chemotaxis network and causes a delay
in sensing the chemical gradient. Such a delay in general re-
duces the drift velocity of the cell, inasmuch as after a swim-
ming direction reversal the memory inherited from the
previous swimming interval is always in conflict with the
gradient experienced by the cell at the presented interval
(18). This increases the chance of the bacterium to move
in a wrong direction, resulting in a reduced drift velocity.
To minimize such an effect, it is necessary to diminish the
delay in sensing the chemical gradient. In our minimal
model, it is assumed that the cell modulates its switching
rate according to the local chemical gradient, which corre-
sponds to the limiting case where there is no delay in
computing dc/dt or dc/dx.

As shown in the Supporting Material using the formula
developed by de Gennes (17), when the signal processing
time is much shorter than the intrinsic run time k0

�1 of
the microorganism so that the delay in computing dc/dt
can be ignored, the drift velocity of the two-step swimmer
is the same as that of the three-step swimmer, consistent
with the outcome of the minimal model. In contrast, if the
delay time is comparable to k0

�1, the drift velocity of
the three-step swimmer is cut by half compared to that of
the two-step swimmer, as shown in Taktikos et al. (19).
At present we do not know the significance of the memory
effect and nonexponential run-time distribution in real
microorganisms, but these effects can be assessed by
comparing experiments with the minimal model. Thus,
high-quality measurements specifically designed to test
our model is urgently called for.
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Supporting Material

Long-Time Bacterial Diffusivity of a 3-Step Swimmer

Here we provide an alternative derivation of bacterial diffusivity for 3-step swimmers. Let the

bacterium displacement per swimming cycle (∆CCW+∆CW ) be ~ri. The total displacement

after N cycles is simply ~RN = ∑
~ri. If there is no directional correlation between ~ri’s, the

mean square displacement is given by 〈~RN · ~RN〉 = Na2, where a2 ≡ 〈~|ri|2〉. This is a general

result applicable to 2-step as well as 3-step swimmers. For the 2-step swimmer, the motility

is produced only during the CCW intervals and hence a2 = v2〈∆2
CCW 〉 = 2v2τ 2

CCW , where

τCCW = 〈∆CCW 〉 and the PDF P (∆CCW ) is exponential. For the 3-step swimmer, both

forward and backward intervals produce motility and hence the mean square displacement

during one cycle is given by a2 = v2〈δ2〉, where δ = |∆CCW − ∆CW |. If both ∆CCW and

∆CW are exponentially distributed, 〈∆CCW 〉 = τCCW and 〈∆CW 〉 = τCW , and if there is no

correlation between ∆CCW and ∆CW in a swimming cycle, the PDF of δ is

P (δ) = 1
τCCW + τCW

[
exp

(
− δ

τCCW

)
+ exp

(
− δ

τCW

)]
. (S1)

Below we make the simplifying assumption τCCW ≈ τCW , which yields a2 = 2v2τ 2
CCW . To

complete the calculation, we notices that N ≈ t/〈∆CCW 〉 = t/τCCW for 2-step swimmers

and N = t/ (〈∆CCW 〉+ 〈∆CW 〉) = t/(2τCCW ) for 3-step swimmers, where t is the swimming
1



2

time. In d-dimensional space, the bacterial diffusivity D is defined as,

〈~RN · ~RN〉 = 2dDt, (S2)

which gives rise to D = v2τCCW/d for the 2-step swimmers and D = v2τCCW/(2d) for the

3-step swimmers. In one dimension, d = 1, the result is consistent with what we derived for

the master equations using δJCW = 0. However, if we use the alternative sorting, assuming

δJCCW = 0, the bacterial diffusivity D is inconsistent with the above calculation.

Conditions of Detailed Balance in the Moving Frame of

Swimming Bacteria

In the moving frame of bacteria, the steady state condition requires d
dt
... ≡ ( ∂

∂t
±v · ∂

∂x
)... = 0.

It follows from Eqs. 10-13 in the main text that the following conditions must be satisfied:

PCW (x̂, x, t) = PCCW (x̂, x, t), PCCW (−x̂, x, t) = k0−∆k
k0+∆kPCCW (x̂, x, t), and PCW (−x̂, x, t) =

k0−∆k
k0+∆kPCCW (x̂, x, t). This yields PCW (x, t) (≡ PCW (x̂, x, t) + PCW (−x̂, x, t)) = 2k0

k0+∆kPCCW (x̂, x, t)

and ∆PCW (x, t) (≡ PCW (x̂, x, t)− PCW (−x̂, x, t)) = 2∆k
k0+∆kPCCW (+x̂, x, t). The above rela-

tions show (i) JCW (≡ v∆PCW ) ∝ ∆k and (ii) δJCW = JCW − v∆k
k0
PCW vanishes faster

than ∆k. Physically, δJCW is a measure of the deviation from detail balance, and when

∆k/k0 � 1, it can be ignored.

The Discretized Versions of the Master Equations and

Their Numerical Solutions

Discretized versions of of the master equations for the 2-step and 3-step swimmer are devel-

oped below, and they are used for the numerical calculations. In the continuum limit these

equations are consistent with those in the main text, Eqs. 3-4 and Eqs. 10-13. All of our
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computations were done with Matlab (The MathWorks).

We divided space into segments of equal size ∆x located at {xi}, and divided time into

equal intervals ∆t at {ti}. For the 2-step case, the conservation of probability demands,

P (x̂, xi, ti) =P (x̂, xi−1, ti−1)− 1
2 (k0 −∆k(xi)) ∆tP (x̂, xi−1, ti−1)

+ 1
2 (k0 + ∆k(xi)) ∆tP (−x̂, xi+1, ti−1)

, (S3)

P (−x̂, xi, ti) =P (−x̂, xi+1, ti−1)− 1
2 (k0 + ∆k(xi)) ∆tP (−x̂, xi+1, ti−1)

+ 1
2 (k0 −∆k(xi)) ∆tP (x̂, xi−1, ti−1)

. (S4)

Physically, P (x̂, xi, ti) (or P (−x̂, xi, ti)) is the probability of finding a cell swimming in x̂ (or

−x̂) direction at xi and ti. If a cell reaches xi at time ti, it must be either at xi−1 swimming

along the x̂ direction or at xi+1 swimming along the −x̂ direction at time ti−1. Among

cells arriving from xi−1, which is P (x̂, xi−1, ti−1), 1− (k0 −∆k(xi))∆t of them will continue

in the current swimming direction x̂, and (k0 − ∆k(xi))∆t of them will randomize their

swimming direction. Upon direction randomization, 50% of the this sub-population swims

in x̂ and the other 50% in −x̂ direction. Together, 1− 1
2(k0 −∆k(xi))∆t of P (x̂, xi−1, ti−1)

contributes to P (x̂, xi, ti), which corresponds to the first two terms in Eq. S3. Likewise,

the same argument shows that 1
2(k0 + ∆k(xi))∆t of P (−x̂, xi+1, ti−1) also contributes to

P (x̂, xi, ti), which corresponds to the last term in Eq. S3. Similar conservation equations

can be derived for the sub-population P (−x̂, xi, ti), yielding Eq. S4. Expanding terms in

the above equations around xi and ti, we recovered the continuous master equations, Eqs.

3-4, in the limits ∆x→ 0, ∆t→ 0, and ∆x/∆t→ v.

The derivation for the 3-step case is more tedious, but the idea is the same. The four
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equations are given by,

PCCW (x̂, xi, ti) = [1− (k0 −∆k(xi)) ∆t]PCCW (x̂, xi−1, ti−1)

+ 1
2 (k0 −∆k(xi)) ∆tPCW (x̂, xi−1, ti−1)

+ 1
2 (k0 + ∆k(xi)) ∆tPCW (−x̂, xi+1, ti−1)

, (S5)

PCCW (−x̂, xi, ti) = [1− (k0 + ∆k(xi)) ∆t]PCCW (−x̂, xi+1, ti−1)

+ 1
2 (k0 + ∆k(xi)) ∆tPCW (−x̂, xi+1, ti−1)

+ 1
2 (k0 −∆k(xi)) ∆tPCW (x̂, xi−1, ti−1)

, (S6)

PCW (x̂, xi, ti) = [1− (k0 −∆k(xi)) ∆t]PCW (x̂, xi−1, ti−1)

+ (k0 + ∆k(xi)) ∆tPCCW (−x̂, xi+1, ti−1)
, (S7)

PCW (−x̂, xi, ti) = [1− (k0 + ∆k(xi)) ∆t]PCW (−x̂, xi+1, ti−1)

+ (k0 −∆k(xi)) ∆tPCCW (x̂, xi−1, ti−1).
(S8)

This set of equations is again consistent with Eqs. 10-13 in the continuum limit.

In the calculation, we assigned ∆x = 0.1, 2L = 200 or 2000∆x, ∆t = 1, and v =

∆x/∆t = 0.1. Using the computational step ∆t as the basic time unit, we defined the

transition rates, k0 = 0.1 and ∆k = 0.01, giving the drift velocity vd = v∆k/k0 = 10−2.

The equations are solved using the reflective boundary conditions at x = ±L. To generate

the numerical solutions in Fig. 1, Eqs. S3-S4 and Eqs. S5-S8 were solved using the initial

conditions P (±x̂, xi, 0) = exp(−x2
i /2σ2)/2

√
2πσ2 and PCCW (±x̂, xi, 0) = PCW (±x̂, xi, 0) =

exp(−x2
i /2σ2)/4

√
2πσ2, respectively. Here, σ = 5∆x was used. To obtain the numerical

solutions in Fig. 2, the initial conditions P (±x̂, xi, 0) = 1/(4L/∆x) and PCCW (±x̂, xi, 0) =

PCW (±x̂, xi, 0) = 1/(8L/∆x) were used for the 2-step and 3-step swimmers, respectively.
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Calculations For an Initially Uniform Bacterial Distri-

bution

In most of laboratory experiments the initial bacterial concentration is uniform and the

profile evolves under the influence of an imposed chemical gradient. We therefore extend our

calculation in the main text to this useful situation. In one dimension, the bacterial profile

at t = 0 is given by P (x, 0) = 1/2L, and the Fourier coefficients are given by,


An = 2q′qnψ3

0n sinh(q′L) cos(qnL),

Bm = 2q′qmφ3
0m cosh(q′L) sin(qmL).

(S9)

The analytical and numerical results are plotted in Fig. S1, where the designations of colored

symbols and lines are identical to that of Fig. 1. We noticed that in this case the bacterial

profiles develop near the boundaries first and then spread into the interior of the sample.

The problem in hand involves multiple length scales, L, q′−1, and q−1
m,n, and it is useful to

know their corresponding time scales in an experiment. Eq. 20 makes it clear that the

relaxation rate for the attainment of a quasi-steady state is given by λ0 = Dq′2 = v2
d/4D.

Since vd = v(∆k/k0) and D = v2/(εk0), we found λ0 = εk0
4

(
∆k
k0

)2
, where ε = 1 for E.

coli and ε = 2 for V. alginolyticus. This indicates that the profile formation time λ−1
0 is

essentially independent of the bacterial swimming speed v but depends on the switching

rate k0, the sensitivity characterized by ∆k/k0, and the motility pattern specified by ε. Due

to the relatively large system size in a typical experiment or in a natural habitat, L� q′−1,

the drift time L/vd on the scale of the system size, or for that matter the diffusion time

L2/D, is irrelevant. For a large system, therefore, it is expected that a quasi-steady state

with a defined profile develops near the peak of the chemical profile over the time scale λ−1
0 .

For longer times, λ−1
0 < t < L/vd, the profile increases in amplitude with its exponential

form ∼ exp(2q′x) more-or-less preserved. Our calculation displayed in Fig. S1 is consistent
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Figure S1: Evolution of P (x, t) starting from the flat distribution P (x, 0) = 1/2L in the
presence of a linear chemoattractant gradient in the +x̂ direction. The bacterial profiles of
the 2-step (blue lines) and 3-step (purple lines) swimmers, calculated based on Eq. 18 at
reduced times t/tv = 0.01, 0.2, 0.4, 0.6, 0.8, and 2, are plotted in (A-F) respectively. The
numerical results based on Eqs. 3-4 and 10-13 are plotted using green squares and red circles
for the 2-step and 3-step swimmers. The inset in (F) is the close-up view of the same figure.
Note that the shapes of the bacterial profiles near the peak of the chemical concentration
x = L form at early t where t/tv � 1. Afterward, the peak grows in height but the shapes
of the profiles remain more-or-less the same.

with this picture, where λ−1
0 = 4000∆t and 2000∆t for the 2-step and 3-step swimmer,

respectively.

The Memory Effect

Bacteria detect chemical gradients by temporal comparison. Processing of the chemical

signals typically introduces a time delay in response. Such a delay in general reduces the

drift velocity of the cell. This is because if a cell’s swimming direction is reversed at a certain

moment, immediately after the reversal, the gradient “computed” by the cell is opposite to

the gradient currently experienced by the cell due to the delay (1). For example, if the

cell swims up an attractant gradient before it goes down the gradient due to a direction
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randomization, within the memory time right after the reversal, dc/dt computed by the cell

is still positive. As a result, instead of increasing the switching rate, the cell reduces the

switching rate and its average displacement down the gradient is extended. Similarly, right

after a cell switches from going down to going up the gradient, its average displacement up

the gradient is decreased. The memory effect can be taken into consideration systematically

as demonstrated by de Gennes (2). Based on the molecular and functional aspects of E. coli

chemotaxis (3, 4) and using a linear response, the change in the switching rate ∆k depends

on the history of chemical exposure and can be mathematically expressed as,

∆k(t)
k0

=
ˆ t

−∞
R(t− t′)c(t′)dt′. (S10)

In the above, c(t) is the chemical concentration sensed by the bacterium at time t, and R(t)

is the response function given by

R(t) = R0
τZτm
τm − τZ

( 1
τZ

exp(−t/τZ)− 1
τm

exp(−t/τm)
)
, (S11)

where τZ and τm are respectively the dephosphorylation and methylation times, and R0 is

the amplitude of the response.

For the 2- and 3-step swimmers having the same swimming speed v and the same response

R(t), it can be shown using the results in Refs. (1, 2) that the ratio of the drifting velocities

for the two bacteria is given by,

vV
vE

= 1
2

( 1
1 + k0τZ

+ 1
1 + k0τm

)
. (S12)

The effect of memory on bacterial chemotaxis and in particular on the drift velocity have

also been considered by Taktikos et. al (5). It was assumed that the chemotactic response

function has a typical time scale k−1
0 (see Eq. 26 of Ref. (5)). With such an assumption, Eq.

S12 yields vV ≈ 1
2vE for k0τZ ≈ 1 and k0τm ≈ 1, which is consistent with Eq. 28 of Ref. (5).

Thus, bacterial memory generally makes 3-step swimmers drift slower in a linear chemical
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gradient than their 2-step counterparts unless the bacteria can process the chemical signal

rapidly with k0τZ � 1 and k0τm � 1. In this case the drifting velocity of a 3-step swimmer

would not be compromised by the delay, and one obtains the result vV ≈ vE.
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