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1 Notation

To begin, we review the essential notation:

1: subject

J: treatment (j = 0,1)

T;: death time

C1;: independent censoring time

Cs;: dependent censoring time

A;: treatment group, subject i

A;; = I(A; = j): treatment group j indicator

U; =T; N\ Cy; N\ Cy; = observation time

Ay; = I(T; < Cy; A Cy;): observed death indicator

Ay = I(Cy < T; AN CY;): dependent censoring indicator

Aij () = Xoj(t) exp(0] Z;): assumed model, death time

AG(t) = AG;(t) exp{07 X;(t)}: assumed model, dependent censoring time
N;(t) = I(U; < t,Ay; = 1): observed death counting process
NE(t) = I(U; < t,Ay; = 1): dependent censoring counting process

Yi(t) = I(U; > t): at-risk process



N;;(t) = A;jN;(t): group j death counting process

NG (t) = AiyNF(t): group j dependent censoring process

Yi;(t) = A;;Yi(t): group j at-risk process

dM;;(t) = A {dN;(t) — ef@J'TZiY;(t))\oj (t)dt}: zero-mean process for death, group j

dMS (t) = A {dNF (t) — eeﬂ'TX"(t)Yi(t))\OCj(t)dt}: zero-mean process for dependent censoring,
group j

Si;(t) = P(T; > t|Z;, A; = j): survival function, conditional, group j

i (t) = f(f Sij(u)du: restricted mean lifetime, conditional, group j

prij = pij (L)

pi = Ez,(pij)

0 = p1 — po: difference in restricted mean lifetime (parameter of interest)

2 Consistency of B'j and /A\O

2.1 Fundamental Identity

We first prove Fundamental Identity (10) of Robins (1993), which will be used below in

proving consistency and is also used in proof of Lemma A.1 (Robins and Finkelstein, 2000):
t
Yy ()M = AT, > 1) {1 - /0 NG aME (u)}. (1)

Proof: we consider the four possible cases involving the only random variables in (1).
Case 1: A;; = 0. LHS=0 and RHS=0, where LHS denotes for “left hand side” of equation
(1) and RHS for right hand side.

Case 2: A;; =1 and T; < ¢t. LHS=0 and RHS=0.



Case 3: Ajj = 1,T; > t, and C; > t. LHS = 5@, and
t
c u
RHS = 1— [ 90 (NG () = Yiy(uaAS ()}
t
c u
= 1+/0 i )dAg-(u)

t
= 1 +/ d{eM5™} = A0 = LHS.
0
Case 4: A;; =1,T; > t, and C; = s < t. LHS=0, and

t
Cu
RHS — 1- /0 MO {ANG (u) — Yy (w)dAG (u))}

= 1-—€M0 +/ GAE(“)dAg-(u)
0

— 1M LA 1 — 0= LHS.

Therefore, the fundamental identity is proved.

2.2 Consistency

Since the estimation of ; and A, through equations (12) and (13) is equivalent to the
simultaneous solution of (10) and (11), consistency requires that equations (10) and (11) be

unbiased at their true values, 5; and Ay;; i.e., that

{ [ wowanw} - o )
E{ /O Wy)Z dMZ-j(t)} _ (3)

with W;; and M;; evaluated at the truth. If we can show that (2) holds, then (3) must also
hold. First, note Y;(t)dM;;(t) = Yi;(t)dM(t), where dMY(t) = Ay{dI(T; < t) — I(T; >

t)dA;(t), and I(T; > t)dM(t) = dM](t). Tt follows that



¢ t
/ Wi (u)dM;(u) = / N5 s Zi, A2)Yiy () dM ()
0 0

t u

= /O[(Tizu)n(u;Zi,Ai){l—/o eAg(s)dMg(s)}deg(u) (Fundamental Identity)
t

- /O b(u: Ze, A;)AME () (4)

t ot
— /O//{(u;Zi,Ai)dMi?(u)eAicd(s)dMg(s). (5)

It is clear that (4) has mean zero due to the zero-mean property of Martingale integrals,
while (5) also has mean zero due to the “no unmeasured confounders” assumption (specified
by (9) in the main manuscript) along with the fact that (5) is a Martingale. Therefore,
expression (2) is true. Expression (3) can be shown in a very similar fashion. Combining
these two results, the estimating equation in (12) in the main manuscript is also an unbiased

estimating equation.

3 Outline of Derivation

In this section, we outline the main steps of the derivation of the influence function of 5. That
is, we represent n%(g— ) as a summation of independent and identically distributed (iid)
terms plus a term that converges in probability to zero. The derivation provided pertains
to the case where one uses unstabilized inverse weighting; i.e., Wz(t) = eKiCj(t); the proof
for stabilized inverse weighting would be similar and is therefore omitted. The derivation is

broken into several intermediate results, with each result involving the expression of a key

quantity as a summation of iid terms:



10. n2(f; — p5), where p; = Ez, (;5)

11. %(5 d), where 0 = 1 — f1p.

4 Derivation

In this section, we derive a a sequence of results which lead up to the derivation of the

influence function for §.

n2(6; — 6;) = Q5 (6;) " _72 i)+ op(L).

where the quantities

_ /T{Xi(t) — Tt 0)}AME (1)



are zero-mean and iid, with

r(#0) = B[Yy)X: ()% 0]k =0,1,2
76 (1:0)

T rate) ,
aC(e) = E[/O {é?(—ize)—xj(t;m }ng(t)].

The quantity Mg (t;00) is a Martingale with respect to the filtration,

F(t) = of{N§(u),Yij(u), X(s);u € [0,¢]}. Result 4.1 is based on standard Martingale
theory, such as that described in Andersen and Gill (1982), Fleming and Harrington (1991)

and Andersen et al (1993); see also closely related work by Tsiatis (1981).

LIAC C
4.2 n2{Ag;(t) — Ag; ()}
We can decompose the above-listed quantity as follows:
n2{AG(1) = AG®)} = n2{AG(5:6;) — A (t:6,)} (6)
1o~
+n2{AG;(1;6;) — AG; (1)} (7)
We define the following quantities:

Re)(:0) = n~t Y Yy(t) Xa(t) e X0
=1
_ RU(t:6)
RCj (t§ 9)

n t t
hej(ti0) = —n""> " / RE)(5:0)7'X(s;0)dNS (s) = — / X (5;0)dAS(s:0)
i=1 70 0
t
hes (:0) = — / 7, (5: 6)dAS(s).
0

By the Weak Law of Large Numbers (WLLN), Rgcj) (t;0) converges in probability to rg? (t;0)

and, through the Continuous Mapping Theorem, X ;(t;6) NN Z;(t;0). In addition, using



the uniform convergence in probability of Kgf; (t) to Af;(t) (e.g., Andersen and Gill, 1982)
and continuity, it follows that ﬁcj(t; 6) 2 hei(t; 0). Returning to the quantity of interest,

we can write (6) as

n

t
= 0ty [(RGs8) - RY(s:6) NG (o)
=1

0

Through a Taylor expansion,
(6) = hE;(t;6;,)05(6; 1—*2 )+ 0,(1)
= hey(t0,)95(0;) 'n e Z ) + 0,(1),
with the last equality holding asymptotically using Slutsky’s Theorem. We can write (7) as
UIERED S W R RYAE
i=1 70
— n2 2”: /Ot frg)}(s; Hj)’ldMg(s) + 0,(1).
i=1

with the last equality following from standard Martingale results. Combining the re-expressions

of (6) and (7), we have

n2 {AG (1) — AS: ()} = n 22@0 (;6;) + 0,(1),
where
t t
B (1:0) = W, (+:0)95 (6) " US(6) + /0 rO(5:0)~ dME (s) = / e
and

A0S (s:0) = 77 (5;0)dAS ()05 (0)1US (0) + 1) (5:0) " dME (s).

Result 4.2 is available through well-established Martingale results. We provided the details

above since several key quantities needed to be introduced for later use anyway.



4.3 nz{AG(t) — AL(t)}
We decompose the above quantity as
1o~ 1 Yoo x(s ~ b -~
g0 -a50) = ni{ [ SOV @aRGe - [ FOvmage)  ©
1 t t T
et { [ ROV iR () - [ ROV (a0 ©)
0 0

Considering the first term,

[N

t
n /{Gé}rXi(s)_eefrxi(s)}nj(s)dAUCj(s)'
0

By a Taylor expansion, we obtain

~

= XT(5)e% Xinz(0; — 6,) + 0,(1)

= XT(s)e% X)) j 6;) n2ZU£] )+ o,(1

{engXi(S) _ 69]-TX¢(8)}

N|=

n

by Result 4.1. Since /AXOC;( ) 2 AS.(t) for t € [0,7] (Andersen and Gill, 1982), we obtain

0j

/XT dAC ] Ch n?ZUEJ )+ o0p(1

The second term in the above decomposition can be written as
1 ! (s) C
0) = nb / DY, ()a{RG (5) — AG(5))
0
t
_ / o Xl nzzd%se
0

where the second equality holds by Result 4.2. Combining the above re-expressions for (8)

and (9) leads to
nHRS(1) - AS()} = / [Xi(s) — 5 (s: 0,) YT dAS ()25 (6;) " "ZU@
+n 2 Z/ o] Xilo)y; ;(3; Qj)_ldMg(s)

= DT( N1 _7ZU@ )+n" ZZ



where we define

4.4 ni{Wy(t) — Wi(t)}

n3{Wis(t) — Wi ()} = Wy(t)n2 {AS(8) — AS(£)} + 0,(1)

z] n 2 Z{D 1U€] (9)

where the final equality follows from Result 4.3.

4.5 0 (3 — )

By a Taylor expansion, we obtain

M\»—‘

where we define

Vo (5, W) = / (20— (0 5. W) YW (0N, (1)

R (t;8,W) = n—IZWU (1) Zke 2
(1)

- w, W)

Zi(t: 8, W) = —e———
“”( t 6, W)

nE (B =0 = Q)Y V(B W)+ o(1),

Tl (1)} + 0p(1),



In addition, we define the following notation:

PPt 8,W) = E{Wu() S(t)ZEke %Y
Tj (;ﬁa W)

j y M

The term n~2 327, Vi;(3;, W) can be decomposed as follows,
) = w3 [ 2 TN a0
I é /0 (2= Tt B, W)W (£)d M (1) (10)
_ n_ég/(:{?j(t;ﬂj,W) L, 8, W, ()M () (11)
+n Zz:; /OT{Zz' — Z;(t; B, W) H Wiy (t) — Wi (6) }d My (t). (12)

Through techniques from empirical processes (e.g., Bilias, Gu and Ying, 1998; Lin, Wei, Yang
and Ying, 2000), it can be shown that (10) = n~2 A Zi =zt 85, W) Wi () d M5 (),
asymptotically. Through the Functional Delta Method, combined with a lot of tedious

algebra, (11) can be shown to converge in probability to 0. Additionally, using Result 4.4,
= w3 [ 2 W00 S D005 0) U 0013

—|—nzz/{Z 7,(t: B, W) Wi (1) —12 (M (8) + 0,(1).  (14)

Switching the order of summation, we have
19) = Y / (2= Z5(8 By, W)Wy (6) D ()M (0905 (6) ZU@
= HJ( j 1 2 ZU@

= H;(t) )7 772[]4; ) +op(1

10



where we define
i%@—w*ﬁf/%&—meaWHW%wDaww@@>
= B[ [ 12— 568, W)W DG (0 0]
Switching the order of summation and integration,
(14) = n 2:/ —szx Vi) [ (2= (6 5 WIW )0 (0] 85, 05) MG o)
= nz Z/O Gi(s,m)r8)(s,0;) " dME (s)
=1
> / Gy (5,7 (5,,) 7 MG ),
=1 0

where we set

n

Gy(tst) = YR, / (20— Z5(0: 85, W)W (M ()
Gytnt) = B[P 0) [ 20— 20, W)W, ) 0]

Combining the re-expressions of (10), (11) and (12), we have

[\J\H

(ﬁ Bi) = B) " QZUZ] (85) + 0p(1),

where we set

/ (20— 2,1 5. W) YWy () dM, ()

H;(4)95(0;)7" U5 (6;)

+ / G (1, 7)r)(t: 0, dME (1)

11



4.6 n2{Ag;(t) — Ag;(t)}
We work with the following decomposition,
n2{Ro;(t) — Ag; (1)} = n2[Ro;{t; W, R(B;, W)} — Ao {t; W, R(53;, W)}]
+n2 Ry {t; W, R(B;, W)} — Koy {t; W, R(5;, W)}]
+n2 Aoy {t; W, R(B;, W)} — Koy {t: W, R(53;, W)}]

We reorganize (15) as

n

t
g /0 (B (530, W)™ = B (1.6, W)~ Wiy ()dNGy (s).
i=1

Further reorganization, followed by a Taylor expansion yields

(15 = - / T (523, W)dRoy(s)nd (B, — B;) + 0,(1)
= Wt (B; — B;) + op(1),

where the last equality follows from the WLLN and Slutsky’s Theorem, with

h](t) = —Azj(s;ﬂj,W)dAoj(S>.

Expression (16) can be re-written as

Applying Result 4.4, it follows that

= an/ O ﬂja )" Wis(s) D (s)05 (0;) 772(]@ )dNi; (s

+”_1Z / RO (51 8;, W) ' Wi(s)n™2 > G (s)ANy;(s) + 0,(1).

12



Switching the order of summation, we can re-write

(20) = BI(0)0 ~1f2

where we define

B ! . ! Wi;(s) D
dN;;
Zlﬂ%@ )
t Wii(s)D;;(s
dN
/ ](O)<S7ﬁ] )]

Switching the orders of summation and integration, term (21) can be written as
(21) = n2 Z /0 t K(s,t)r8)(s;0;) 7 dMS (s) + 0,(1)
i=1
= n2 zn:/t Kj(s,t)rg?(s;éj)_ldMg(s) +0,(1),
i=1 70
where we define

f?j(tl,tg) = n_l ierXi(n)Y;j(tl) /t2 (O)VVUACZNU(S)
— n R7(s; 8, W)

to W
Kj(tl,tg) = E{eeyrxi(tl)}/;j(tl)/ © ( )

TR

Combining (20) and (21),

(16) = B (t)Q5(8;) 'n 22 )+n” 22/[( St?“c«]89> YAME (s) + 0p(1).

We can re-write expression (17) as follows,

:n*EAmmmﬂmﬁW%W%@mﬂwww

13



Using the Functional Delta Method,

n2{R (s; B;, W)™ — RV (s: ;, W)™}
— —RO(s;8;, W) 0" Z N Yy (s)n 3 {TWai(s) — Wai(s)} + op(1)

— _Rgo)(s;ﬁj, Zef 'Yoi(8)Wes(s)n ZZ{D@
= R (s;8, W) F/ ()05 (6;)'n QZU@
R (s:3;,W) *n"z Z/ Qj(u, 5)res) (u 0;) " dME (u) + 0,(1)
= 105, W) (5)95'(0) ' 22%
4105y, 1) 20 QZ/ Q; (1, 3)r&) (u; 0,) 7 dME (u) + 0,(1),
where we define the following quantities:

Fys) = —n Zeﬂ 2Y,(5) Wiy () Dy (5),

Q\j(tl,tQ) _ _n—lZBQJTXi(tl)eﬁ;rZi}/;j(tQ)Wij(t2>’

=1

with their respective limiting values given by

i) = —B{e7 Y, ()W ()Dig(s) }.

Qilti,ta) = —B{ X2y (1) Wiy (ta) }.

Substituting (22) into (17), we obtain

= nlz/ Wz] S ﬁ]? ) ZF]T( ] j n QZUEJ
0 Z/sz 0 ﬁ]) HQZ/QJUSTC]

14

i) UG (0) + Jig ()} + 0p(1)

VAN, (s

0;) My, (u)dNy(s).



Switching the order of summation for the first term, and the orders of summation and

integration in the second term, we then have

(17) = EJT( ) ﬁZU@ ) +n" 22/ utra7 w; 6;)” 1olMg(u)

1 1 _1 _
= EJT(t)QJC(GJ) In 2ZU§(6’j)+n 22/0 Pj(u,t)r(coj?(u;Qj) 1dMg(u)—i—op(l),
=1 =1

where we define

5 ) Wi (s
12/0 0 REIOLON sz‘j(S)

(si ﬂj,
_ 2 Wz S Q tla
Pi(ty,ts) = n~! Z/t (0] : )dNij(S)

1

( ;61'7 )
Finally, we can express the last term from the original decomposition as
e (! W,
(18) = n2 Z/ i(5) My(s)

i=1 ( ﬁjv )

R Wi‘( )
= ) g dMi(s) = 0,(1)
=1 ’I” ( ﬁ]’ )
Combining the re-expressions of (15), (16), (17) and (18), we have

n2{Ao;(t) — Aoj(1)} = n QZ/ d®i;(u) =n ;Z% ),

where we set

Dy(t) = hj()(0) " Uy(6))
+ {B,(t) + E;()}7Q5 (6;)"'US (6;)

/ {K; (s r,( 3 + P)(s N gric o)

Wii(s)
/ (0) Jﬂj dMi;(s)

— /Oc@w( ).

15




4.7 n2{A;(t) — Ay ()}
We start with the decomposition,

1

n#{Ry(t) — Ay()} = Ag(tnz{eh % — 5%y (22)

+ % A {Ro;(t) — Ao (1)}, (23)

which is similar in spirit to that employed for Result 4.3; simpler in the sense that covariates
are time-constant, but more complicated in the sense that a weight function is involved.

Reorganizing the first term of the decomposition,
(22) = Ag(0)e” %22 (B; — B;) + 0,(1).

Substituting Result 4.5 into (22) and Result 4.6 into (23), then combining yields

l\)\)—l

n2{A;(t) — Ay(t)} = Ay(DZTQ (B2 Y Uy(B) + e 4n™2 Y Byi(t) + 0,(1).
/=1 =1

=

4.8 n2{S;(t) — S;;(t)}

Using the Functional Delta Method,

n2{S;;(t) — Sy(t)} = —Sy(tn2{Ay(t) — Ay ()} + 0,(1).

l\.’)\»—A

1
4.9  n2(fij — pij)

Recall that f1;;(t) = fot Si;j(s)ds, with p;; = py;(L). By continuity,

l\.’)\»—‘
k\)\»—t

/ [8(6) — Sy(t)}t.

(NU ,ul i) =

Using Result 4.8,

M\H

nd (i — i) = — / Siy (10t (Rig(6) — Ay (1)}t + 0,(1).

16



Then, incorporating Result 4.7, we obtain

L n
(Hij — i) = —/0 S Ay () Z]dt Q71 (8;) ™2 Y " Uyi(By)
/=1

L n t
_ / Sy(t)e Zn 33 / 4, (s) dt.
0 =1 0

For the second term, switching the order of integration,

n L L
@) = =t 3 [ [ st Har amy(
=170 s

_ _né; / T2 {133 (L) — 1 ()} 4Dy (1),

N

n

Combining the re-expressions of (24) and (25),

L n
n2{ji; — pis} = —/0 Sy () Ay (1)dt ZF Q7 (B)n™2 Y Usi(8;)
/=1

-ty | 0 = s 0),

410 n}(f, - )

Recalling that fi; =n~' Y7 | fi;; and pj = Ez {u;;}, we can write

n

PPN _1 ~
n2 (i — ;) = n72 Y (T — pij)
=1
_1 -
+n72 > (g — ).
=1

Using Result 4.10, we can re-write the first line as

(26) = —”_IZ/ Sii(OAG(t)dt ZFQ7 (Bn™2 > Uy (8))
i=1 70 =1

n n L
_ Ty 1
—n! Zeﬂj Dz Z/ {15 (L) — iz (t) ydPe; (t).
i=1 =170
Switching the order of summation in the second line yields

(26) = —n~! Z/ S (DA (t)dt ZFQ7 (B)n™2 > Uy (8))
i=1 70 =1
—n Z/ n= > el A (L) — g (1) }dDy (8).
=170 i=1

17
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(28)

(29)



Now, regarding term (28), integration by parts gives

[ ssonsa = [ s, [ anseor

= / / L (t)dtdA;(s)

_ / (i (L) — pij(s) }dAy; (s).

Incorporating this simplification into (26), we have

(26) = —n! Z/ {15 (L) — pig (1) }dA; (0 Z7 Q5 (B~ Y Ugi(8y)

=1
—n Z/ ; e 7 i (L) — pig (1) }dy(2).

Through the WLLN, continuity and Slutsky’s Theorem,
L n
_ _1
(26) = _E[ZiT/ {ni; (L) — Mz‘j(f)}d/\ij(t)} QB2 > Uii(B)
i=1

—WZ [ [ n) = w30+ 0,1,

Combining the re-expression of (26) with (27) gives

1 o _1 -
n2{fi; —p;} =n"2 Y ¢i; +0p(1),

i=1

where we define

Pij = _E[ZzT/OL{NzJ(L) ﬂw( )}dAij(t)} (ﬁ]) U(ﬁ])

- B[ (L) — s (0] 405(0) + Gy — ).

4.11 n2(6—96)

Applying Result 4.10 to j = 1 and j = 0, then subtracting,

n n

n2(6—06) =n"2Y (6 — i) +0,(1) =172 Y (0;) + 0,(1),

=1 i=1

where ¢(0;) = (¢ — ¢io) is referred to as the influence function of 9.

18
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5 Estimating the Variance of 5

The asymptotic variance of n'/2(§ — §) is equal to E{¢*(O;)}, which suggests the empiri-
cal variance estimator, i.e., n=!>" $Q(Oi), where 5(01) is calculated by substituting the
sample analogs for the terms in (30). However, the expression for ¢(0;) in (30) is very
complicated and it would be difficult to evaluate it numerically. Moreover, if one uses other
weight function instead of the simple inverse weight (e.g., the stabilized weight function)),
the expression is going to be even more involved and difficult to implement. Therefore, a
practical strategy in estimating the variance of 5 would be to treat the weight function as
fixed as opposed to estimated and use the corresponding influence function to estimate the
variance as described above. This strategy has been used in similar problems, for example,
in Hernédn et al. (2000 and 2001) and Lu and Tsiatis (2008).

We list the main results involved in deriving the influence function of § when treating the

weight function as fixed. Results in this section hold for the general weight function with

Wij(t) = exp{ AL (t) }s(t; Zi, A;).

5.1 ni(f;— )

In the development of Results 4.5, if W\zj is replace by W;; (implying that é\] and /A\OCJ are

replaced by 6; and Agj, respectively), then we arrive at

l\.’)\»—t

(6 B)) = (B 'n QZ (87) + 0p(1),

n

where we introduce

Ul(B) = /OT{Zi—%(t;ﬁ)}Wz‘j(t)dMij(t)-

19



5.2 n2{Ag(t) — Ag;(t)}

Using a decomposition analogous to that for Result 4.6, then incorporating Result 4.1 gives

n%{//ioj() AO] = n 2 Zq) +Op

where we introduce

of(t) = hl(t )~1UL(8)) Wyls dMijs op(1).
L) (19,8, UL(3)) / ﬁ () + 0,(1)

5.3 nz{A;(t) — Ay(t)}

Through a decomposition which parallels that in Result 4.7, then using Results 5.1 and 5.2,

we obtain

n

n#{A;(t) — Ay(t)} = Ay()Z7Qy(8) 'n 2 UL(B)) + e % > (1) + op(1).
P =1

[PN
5.4 n2{S;(t) — S5i;(1)}
Applying the Functional Delta Method to Result 5.3,

1

n2{S;;(t) — S;(£)} = —Sy(tn {Ay(t) — Ay (D)} + 0,(1).

5.5 nz(fij — pij)

Using Result 5.4, then integrating,

l\J\»—\

n2 (fij — pij) = _/ Si(t) i (t)dt ZTQ i (85)” n~z Ugj(ﬁj)

upon reorganizing along the lines of Result 4.9.

20



5.6 n(,u ;)

Analogous to the derivation of Result 4.10, we obtain

1
n? (flyg — puj) = n 22625 +0,(1

where we define

L

ol = —E[ZZT i {:uij(L)_Nij(t)}dAij(t)}Qj(ﬁj)_lU;’(ﬁj)

- / B[ g (1) g (04 0) + G ).

5.7 n:(d—6)

Finally, applying Result 5.6 twice (j=0, j=1) then subtracting, we obtain
%(5 J) = nz S 1{¢ ¢IO}+OP(1), such that the asymptotic variance of is approximated
by n=t " 1( qﬁTZO) where ¢T is calculated as by substituting the sample averages in

place of limiting values in gbij.

Additional References

Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1993). Statistical Models Based

on Counting Processes. Springer Verlag, New York.

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a

large sample study. Annals of Statistics 10,, 1100-1120.

Bilias, Y., Gu, M. and Ying, Z. (1997). Towards a general asymptotic theory for the Cox

model with staggered entry. Annals of Statistics 25, 662—682.

Fleming, T. R. and Harrington D. P. (1991). Counting Processes and Survival Analysis.

New York: John Wiley and Sons.

21



Herndn, M. A., Brumback, B., and Robins, J. M. (2000). Marginal structural models
to estimate the causal effect on the survival of HIV-positive men. FEpidemiology 11,

561-570.

Herndn M. A., Brumback, B., and Robins, J. M. (2001). Marginal structural models to
estimate the joint causal effect of nonrandomized treatments. Journal of the American

Statistical Association — Applications and Case Studies 96, 440-448.

Lin, D. Y., Wei, L. J., Yang, 1., Ying, Z. (2000). Semiparametric regression for the mean
and rate functions of recurrent events. Journal of the Royal Statistical Society (Series

B) 62, 711-730.

Lu, X., Tsiatis, A. A. (2008). Improving the efficiency of the log-rank test using auxiliary

covariates. Biometrika 95, 679-694.

Robins, J. M. (1993). Information recovery and bias adjustment in proportional hazards
regression analysis of randomized trials using surrogate markers. Proceedings of the
Biopharmaceutical Section, American Statistical Assocation, 24-23. Alexander, Vir-

ginia: American Statistical Association.

Robins, J. M. and Finkelstein, D. (2000). Correcting for Non-compliance and Dependent
Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted

(IPCW) Log-rank Tests. Biometrics 56, 779-788.

Tsiatis, A. A. (1981). A large-sample study of Cox’s regression model. annals of Statistics

9, 93-108.

22



