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SUPPLEMENTARY INFORMATION 

Kinetic analysis 

Current recordings were fitted to a first-order ordinary differential equation system representing a 

four-state sequential model (Fig. 2A) using MatLab. The transition rates were considered to exponentially 

depend on the membrane potential. The forward (α) and backward (β) rates were defined as: 

𝛼𝑖 = 𝛼0𝑖𝑒𝑧𝛼𝑖𝑉/𝑘𝑇  (1) 

𝛽𝑖 = 𝛽0𝑖𝑒−𝑧𝜷𝑖𝑉/𝑘𝑇 (2) 

where, α0i and β0i are the rate constants at 0 mV of the i-th transition; zα and zβ are the charge (valence) 

associated with the i-th transition; V is the membrane potential; k and T are the Boltzmann constant and 

the absolute temperature. In terms of differential equations, a sequential 4-state model (below) can be 

described as follows:  

 

𝑑𝐶1
𝑑𝑡

= −𝛼1𝐶1 + 𝛽1𝐶2 

𝑑𝐶2
𝑑𝑡

= 𝛼1𝐶1 − (𝛽1 + 𝛼2)𝐶2 + 𝛽2𝐶3 

𝑑𝐶3
𝑑𝑡

= 𝛼2𝐶2 − (𝛽2 + 𝛼3)𝐶3 + 𝛽3𝑂 

𝑑𝑂
𝑑𝑡

= 𝛼3𝐶3 − 𝛽3𝑂 

Rearranging these differential equation into matrix form yields 
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𝜕
𝜕𝑡
�

𝐶1
𝐶2
𝐶3
𝑂

� = �

−𝛼1 𝛽1 0 0
𝛼1 −(𝛽1 + 𝛼2) 𝛽2 0
0 𝛼2 −(𝛽2 + 𝛼3) 𝛽3
0 0 𝛼3 −𝛽3

��

𝐶1
𝐶2
𝐶3
𝑂

� 

In general, these kinds of systems can be expressed as  

𝜕
𝜕𝑡
𝑆 = 𝑨𝑆 (3) 

𝑆 = �

𝐶1
𝐶2
𝐶3
𝑂

�  ;   𝑨 = �

−𝛼1 𝛽1 0 0
𝛼1 −(𝛽1 + 𝛼2) 𝛽2 0
0 𝛼2 −(𝛽2 + 𝛼3) 𝛽3
0 0 𝛼3 −𝛽3

� 

where, 𝑆 is a column vector (state vector) the elements of which correspond to the population fraction of 

each state and 𝑨 is the matrix (state matrix) containing the rate constants governing the reaction. The 

general solution of this system has the form 

𝑆(𝑡) = 𝜂⃗𝑒𝜆𝑡 (4) 

From this proposed solution, the derivative of the state vector is  

𝜕
𝜕𝑡
𝑆(𝑡) = 𝜆𝜂⃗𝑒𝜆𝑡     (5) 

Replacing 4 and 5 in 3 yields  

𝜆𝜂⃗𝑒𝜆𝑡 = 𝑨𝜂⃗𝑒𝜆𝑡 

Rearranging this equation yields  

𝑨𝜂⃗𝑒𝜆𝑡 − 𝜆𝜂⃗𝑒𝜆𝑡 = 0�⃗     ⟹     (𝑨 − 𝜆𝑰)𝜂⃗𝑒𝜆𝑡 = 0�⃗  (6) 

where, I is an identity matrix of the same dimension than A. Because 𝑒𝜆𝑡 > 0, equation 7 becomes  

(𝑨 − 𝜆𝑰)𝜂⃗ = 0�⃗  (7) 
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In this latter equation, the scalar 𝜆 and the vector 𝜂⃗ are known as the eigenvalue and eigenvector 

of the matrix A. In general, there are as many eigenvalue-eigenvectors pairs as elements in the state 

vector. For this particular case, there are 4 eigenvalues and eigenvectors. Finally, the general solution of 

this kind of system will be: 

𝑆(𝑡) = ∑ 𝑐𝑖𝜂⃗𝑖𝑒𝜆𝑖𝑡𝑛
𝑖=1  (8) 

where, n is the number of states and ci are integration constants. To calculate these latter values, Equation 

8 was evaluated at time zero, making the exponential equal to 1. Thus, 

𝑆(0) = ∑ 𝑐𝑖𝜂⃗𝑖𝑛
𝑖=1  (9) 

At time 0, the values for 𝑆(𝑡) correspond to those of the initial condition. Therefore, the values of 

ci can be readily calculated, since Equation 9 is an algebraic system of n equation with n unknown (ci). 

Replacing the calculated ci in equation 8 gives an expression that yields by fractional population of each 

state of the model in time.  

Finally, having found 𝑆(𝑡) and the fraction of open channels (O(t)) which is the last element of the 

vector 𝑆(𝑡), current can be calculated using the following expression: 

𝐼(𝑡) = 𝑂(𝑡)𝐺𝑀𝐴𝑋(𝑉 − 𝑉𝐻+) 

where, 𝐺𝑀𝐴𝑋 is the maximum conductance for protons, 𝑉 is the membrane potential, and 𝑉𝐻+ is the 

reversal potential for protons.  
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Table S1 

 pHI 4.5 (n=5) pHI 5.5 (n=5) pHI 6.5 (n=8) 
 mean S.D. mean S.D. mean S.D. 

α0,1 4.5940x10-4 2.9x10-4 2.1092x10-4 8.0x10-5 3.6745x10-4 2.8x10-4 
β0,1 3.7759x10-7 1.0x10-7 8.8539x10-7 2.8x10-7 3.6000x10-6 1.6x10-6 
zα1 7.4982x10-1 2.6x10-1 4.8815x10-1 7.3x10-2 1.6265x10-1 7.4x10-2 
zβ1 2.0726 5.1x10-1 2.0954 5.9x10-1 2.4175 1.6x10-1 
α0,2 1.3196x10-3 6.4x10-4 2.4286x10-4 1.6x10-4 3.943x10-5 2.8x10-5 
β0,2 4.4267x10-3 2.6x10-3 2.0368x10-2 1.1x10-2 1.1001x10-1 5.0x10-2 
zα2 1.0120 1.3x10-1 9.8428x10-1 1.5x10-1 9.2826x10-1 8.4x10-2 
zβ2 2.0705 2.8x10-1 1.8043 9.9x10-1 1.5173 2.0x10-1 
α0,3 1.5538x10-2 3.8x10-3 1.1932x10-2 6.0x10-3 6.6033x10-3 1.5x10-3 
β0,3 8.6658x10-4 6.3x10-4 1.5240x10-3 3.8x10-4 1.654x10-3 6.7x10-4 
zα,3 1.3479x10-5 1.0x10-5 1.4769x10-5 6.1x10-6 2.965x10-5 1.2x10-5 
zβ,3 1.6309x10-7 1.1x10-7 5.1742x10-7 2.2x10-7 2.7365x10-7 1.2x10-7 

 

Table S1.- Fitted average parameters for forward and backward transitions. Values for α0,1 and β0,1 are in ms-1. 
Values for z are in e-. 
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Figure S1 

  

 
Figure S1- Simultaneous fitting of activating currents to a multi-state model. (A) A four-state 
sequential model was used to fit the activation kinetics of Hv1, where the first 3 states of the 
model are non-conductive (closed, C1-C3). All forward (αi) and backward (βi) transition rates 
are considered essentially voltage-sensitive (Eqs. 1 and 2 in Materials and Methods). (B) 
Simultaneous fitting of currents traces recorded at potentials ranging from -40 to +80 mV at 
pHI 4.5 and pHO 6.5. Traces between -80 and -50 were not included in the fitting process. (C) 
There were two parameters for each transition rate, one is the rate at 0 mV (α0 or β0, 
accordingly) and the other is the apparent charge associated with the rate (zα0 and zβ0, 
accordingly). The total charge of the transitions between two states was obtained by the sum 
of the individuals charges. As shown in the graph, the gating charge associated with the first 
and second transitions, z1 and z2, respectively, displayed values of ~2.5 e- each, while the last 
transition showed about 2x10-5 e-. 

A

+80 mV

-80 mV
-60 mV

B
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Figure S2 

 

Figure S2.- Top) Calculated values of α1 (black), α2 (red) and α3 (blue) as a function of the membrane 

potential at pHI 4.5 (left), 5.5 (center) and 6.5 (right). Bottom) Plot of the membrane potential at which α2 

equals α3 as a function of pHI.  At voltages above these potentials, or isotachytial potentials (VIT; from 

the Greek words ίσος (isos) = equal and ταχύτητα (tachýti̱ta) = speed), the last transition can be 

considered to be rate-limiting. Noteworthy, a linear fit of VIT versus pHI plot yielded a slope of 38.5±0.3 

mV/ΔpHI, which matches the pHI sensitive of the overall voltage-dependence of Hv1. The VIT was 

calculated using the equation 𝑉𝐼𝑇 =
𝑘𝑇 ln�𝛼0,2

𝛼0,3� �

𝑧𝛼,3−𝑧𝛼,2
.  
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