Electronic Supplementary Material

DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match

(A) Example metabarcoding studies using COI and alternative markers

Recent examples in which COI is used or promoted as an animal metabarcoding marker:

- Geller J., Meyer C., Parker M., Hawk H. 2013 Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. *Mol Ecol Resour* **13**(5), 851-861. (doi:10.1111/1755-0998.12138). (COI metabarcoding)
- Gibson J., Shokralla S., Porter T.M., King I., van Konynenburg S., Janzen D.H., Hallwachs W., Hajibabaei M. 2014 Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. *Proc Natl Acad Sci USA* 111(22), 8007-8012. (doi:10.1073/pnas.1406468111). (COI metabarcoding; also bacterial 16S and protozoa 18S rRNA)
- Hajibabaei M., Spall J.L., Shokralla S., van Konynenburg S. 2012 Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. *BMC Ecol* **12**. (doi:10.1186/1472-6785-12-28). (COI metabarcoding)
- Ji Y., Ashton L., Pedley S.M., Edwards D.P., Tang Y., Nakamura A., Kitching R., Dolman P.M., Woodcock P., Edwards F.A., et al. 2013 Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. *Ecol Lett* **16**(10), 1245-1257. (doi:10.1111/ele.12162). (COI metabarcoding)
- Leray M., Yang J.Y., Meyer C.P., Mills S.C., Agudelo N., Ranwez V., Boehm J.T., Machida R.J. 2013 A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. *Front Zool* **10**, e34. (doi:10.1186/1742-9994-10-34). (COI metabarcoding)
- Liu S., Li Y., Lu J., Su X., Tang M., Zhang R., Zhou L., Zhou C., Yang Q., Ji Y., et al. 2013 SOAPBarcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. *Methods Ecol Evol* **4**(12), 1142-1150. (doi:10.1111/2041-210X.12120). (COI metabarcoding)
- Meusnier I., Singer G.A.C., Landry J.F., Hickey D.A., Hebert P.D.N., Hajibabaei M. 2008 A universal DNA mini-barcode for biodiversity analysis. *BMC Genomics* **9**. (doi:10.1186/1471-2164-9-214). (COI metabarcoding)
- Tang C.Q., Leasi F., Obertegger U., Kieneke A., Barraclough T.G., Fontaneto D. 2012 The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. *Proc Natl Acad Sci USA* **109**(40), 16208-16212. (doi:10.1073/pnas.1209160109). (COI metabarcoding)
- Yu D.W., Ji Y., Emerson B.C., Wang X., Ye C., Yang C., Ding Z. 2012 Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. *Methods Ecol Evol* 3(4), 613-623. (doi:10.1111/j.2041-210X.2012.00198.x). (COI metabarcoding)

Diet metabarcoding studies using the COI primers from Zeale *et al*. [1]. These primers (highlighted in Figure 1) were widely adopted after initial results suggested "this primer set is capable of detecting the complete range of arthropod prey in diets"

Zeale M.R.K., Butlin R.K., Barker G.L.A., Lees D.C., Jones G. 2011 Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. *Mol Ecol Resour* **11**(2), 236-244. (doi:10.1111/j.1755-0998.2010.02920.x). (COI primers – development of Zeale *et al.* primers)

- Alberdi A., Garin I., Aizpurua O., Aihartza J. 2012 The Foraging Ecology of the Mountain Long-Eared Bat *Plecotus macrobullaris* Revealed with DNA Mini-Barcodes. *PLoS One* **7**(4), e35692. (doi:10.1371/journal.pone.0035692). (COI - Zeale *et al.* primers)
- Bohmann K., Monadjem A., Noer C.L., Rasmussen M., Zeale M.R.K., Clare E., Jones G., Willerslev E., Gilbert M.T.P. 2011 Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. *PLoS One* 6(6), e21441. (doi:10.1371/journal.pone.0021441). (COI Zeale *et al.* primers)
- Burgar J.M., Murray D.C., Craig M.D., Haile J., Houston J., Stokes V., Bunce M. 2013 Who's for dinner? High-throughput sequencing reveals bat dietary differentiation in a biodiversity hotspot where prey taxonomy is largely undescribed. *Mol Ecol* 23(15), 3605–3617. (doi:10.1111/mec.12531). (COI - Zeale *et al.* primers)
- Clare E.L., Symondson W.O.C., Fenton M.B. 2013 An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (*Eptesicus fuscus*). *Mol Ecol* 23(15), 3633–3647. (COI - Zeale *et al.* primers)
- Clare E.L., Symondson W.O.C., Broders H., Fabianek F., Fraser E.E., MacKenzie A., Boughen A., Hamilton R., Willis C.K.R., Martinez-Nuñez F., et al. 2013 The diet of *Myotis lucifugus* across Canada: assessing foraging quality and diet variability. *Mol Ecol* **23**(15), 3618–3632. (doi:10.1111/mec.12542). (COI - Zeale *et al.* primers)
- Emrich M.A., Clare E.L., Symondson W.O.C., Koenig S.E., Fenton M.B. 2013 Resource partitioning by insectivorous bats in Jamaica. *Mol Ecol* **23**(15), 3648–3656. (doi:10.1111/mec.12504). (COI Zeale *et al.* primers)
- Goerlitz H.R., ter Hofstede H.M., Zeale M.R.K., Jones G., Holderied M.W. 2010 An aerial-hawking bat uses stealth echolocation to counter moth hearing. *Curr Biol* **20**(17), 1568-1572. (doi:10.1016/j.cub.2010.07.046). (COI - Zeale *et al.* primers)
- Gonsalves L., Bicknell B., Law B., Webb C., Monamy V. 2013 Mosquito consumption by insectivorous bats: does size matter? *PLoS One* **8**(10), e77183. (doi:10.1371/journal.pone.0077183). (COI Zeale *et al.* primers)
- Hamad I., Delaporte E., Raoult D., Bittar F. 2014 detection of termites and other insects consumed by african great apes using molecular fecal analysis. *Sci Rep* **4**, 4478. (doi:10.1038/srep04478). (COI Zeale *et al.* primers)
- Hope P., Bohmann K., Gilbert M.T., Zepeda-Mendoza M., Razgour O., Jones G. 2014 Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by *Myotis nattereri* (Chiroptera, Vespertilionidae) in winter. *Front Zool* 11(1), 39. (COI Zeale *et al.* primers)
- Krüger F., Clare E.L., Greif S., Siemers B.M., Symondson W.O.C., Sommer R.S. 2013 An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species *Myotis dasycneme* and *Myotis daubentonii*. *Mol Ecol* **23**(15), 3657–3671. (doi:10.1111/mec.12512). (COI - Zeale *et al.* primers)
- Piñol J., San Andrés V., Clare E.L., Mir G., Symondson W.O.C. 2014 A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes. *Mol Ecol Resour* 14(1), 18-26. (doi:10.1111/1755-0998.12156). (COI - Zeale *et al.* primers)
- Razgour O., Clare E.L., Zeale M.R.K., Hanmer J., Schnell I.B., Rasmussen M., Gilbert T.P., Jones G.
 2011 High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. *Ecol Evol* 1(4). (doi:10.1002/ece3.49). (COI Zeale *et al.* primers)
- Rolfe A.K., Kurta A., Clemans D.L. 2014 Species-level analysis of diets of two mormoopid bats from Puerto Rico. *J Mammal* **95**(3), 587-596. (doi:10.1644/13-mamm-a-190). (COI Zeale *et al.* primers)
- Sedlock J.L., Krüger F., Clare E.L. 2014 Island Bat Diets: Does it Matter More Who You Are or Where You Live? *Mol Ecol* **23**(15), 3684–3694. (doi:10.1111/mec.12732). (COI - Zeale *et al.* primers)
- Vesterinen E.J., Lilley T., Laine V.N., Wahlberg N. 2013 Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton's bat

(*Myotis daubentonii*) in southwestern Finland. *PLoS One* **8**(11), e82168. (doi:10.1371/journal.pone.0082168). (COI - Zeale *et al.* primers)

Recent examples where rRNA markers are used or promoted as animal metabarcoding markers:

- Andersen K., Bird K.L., Rasmussen M., Haile J., Breuning-Madsen H., KjÆR K.H., Orlando L., Gilbert M.T.P., Willerslev E. 2012 Meta-barcoding of 'dirt' DNA from soil reflects vertebrate biodiversity. *Mol Ecol* **21**(8), 1966-1979. (doi:10.1111/j.1365-294X.2011.05261.x). (MtDNA 16S metabarcoding)
- Bienert F., De Danieli S., Miquel C., Coissac E., Poillot C., Brun J.-J., Taberlet P. 2012 Tracking earthworm communities from soil DNA. *Mol Ecol* **21**(8), 2017-2030. (doi:10.1111/j.1365-294X.2011.05407.x). (MtDNA 16S metabarcoding)
- Bik H.M., Porazinska D.L., Creer S., Caporaso J.G., Knight R., Thomas W.K. 2012 Sequencing our way towards understanding global eukaryotic biodiversity. *Trends Ecol Evol* 27(4), 233-243. (doi:10.1016/j.tree.2011.11.010). (Nuclear 18S metabarcoding)
- Chariton A.A., Court L.N., Hartley D.M., Colloff M.J., Hardy C.M. 2010 Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. *Front Ecol Environ* **8**(5), 233-238. (doi:10.1890/090115). (Nuclear 18S metabarcoding)
- Clarke L.J., Soubrier J., Weyrich L.S., Cooper A. 2014 Environmental metabarcodes for insects: *in silico* PCR reveals potential for taxonomic bias. *Mol Ecol Resour, In press*. (doi:10.1111/1755-0998.12265). (Comparison of mtDNA 16S and COI)
- Coissac E., Riaz T., Puillandre N. 2012 Bioinformatic challenges for DNA metabarcoding of plants and animals. *Mol Ecol* **21**(8), 1834-1847. (doi:10.1111/j.1365-294X.2012.05550.x). (Comparison of various markers)
- Creer S., Fonseca V.G., Porazinska D.L., Giblin-Davis R.M., Sung W., Power D.M., Packer M., Carvalho G.R., Blaxter M.L., Lambshead P.J.D., et al. 2010 Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. *Mol Ecol* **19**, 4-20. (doi:10.1111/j.1365-294X.2009.04473.x). (Nuclear 18S metabarcoding)
- De Barba M., Miquel C., Boyer F., Mercier C., Rioux D., Coissac E., Taberlet P. 2014 DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. *Mol Ecol Resour* **14**(2), 306-323. (doi:10.1111/1755-0998.12188). (MtDNA 16S, 12S and plant metabarcoding)
- Deagle B.E., Kirkwood R., Jarman S.N. 2009 Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. *Mol Ecol* **18**(9), 2022-2038. (doi:10.1111/j.1365-294X.2009.04158.x). (MtDNA 16S and nuclear 18S, 28S)
- Fonseca V.G., Carvalho G.R., Sung W., Johnson H.F., Power D.M., Neill S.P., Packer M., Blaxter M.L., Lambshead P.J.D., Thomas W.K., et al. 2010 Second-generation environmental sequencing unmasks marine metazoan biodiversity. *Nat Commun* 1, e98. (doi:10.1038/ncomms1095). (Nuclear 18S metabarcoding)
- Hirai J., Kuriyama M., Ichikawa T., Hidaka K., Tsuda A. 2014 A metagenetic approach for revealing community structure of marine planktonic copepods. *Mol Ecol Resour*, In press. (doi:10.1111/1755-0998.12294). (Nuclear 28S metabarcoding)
- Jarman S.N., McInnes J.C., Faux C., Polanowski A.M., Marthick J., Deagle B.E., Southwell C., Emmerson L. 2013 Adélie penguin population diet monitoring by analysis of food DNA in scats. *PLoS One* **8**(12), e82227. (doi:10.1371/journal.pone.0082227). (Nuclear 18S metabarcoding)
- Murray D.C., Haile J., Dortch J., White N.E., Haouchar D., Bellgard M.I., Allcock R.J., Prideaux G.J., Bunce M. 2013 Scrapheap Challenge: A novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. *Sci Rep* **3**, 3371. (doi:10.1038/srep03371). (MtDNA 16S, 12S metabarcoding)

- Porazinska D.L., Giblin-Davis R.M., Faller L., Farmerie W., Kanzaki N., Morris K., Powers T.O., Tucker A.E., Sung W., Thomas W.K. 2009 Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. *Mol Ecol Resour* **9**(6), 1439 - 1450. (doi:10.1111/j.1755-0998.2009.02611.x). (Nuclear 18S metabarcoding)
- Shehzad W., Riaz T., Nawaz M.A., Miquel C., Poillot C., Shah S.A., Pompanon F., Coissac E., Taberlet P. 2012 Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (*Prionailurus bengalensis*) in Pakistan. *Mol Ecol* 21(8), 1951-1965. (doi:10.1111/j.1365-294X.2011.05424.x). (MtDNA 12S metabarcoding)
- Zhan A., Bailey S.A., Heath D.D., Macisaac H.J. 2014 Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities. *Mol Ecol Resour, In press.* (doi:10.1111/1755-0998.12254). (Comparison of nuclear 18S, mtDNA 16S and COI)

(B) <u>Comments on the use of variable primers in metabarcoding</u>

To encompass variation observed in primer binding regions primer cocktails (a mixture of several distinct primer variants) and/or degenerate primers (those synthesised with some positions having several possible bases) are often used. This is expected to enable the primers to bind to a wider range of templates and allow their amplification. It has been shown to improve the range of species recovered when amplifying DNA from single species templates [e.g. 2, 3]. However, in metabarcoding studies primer mixes have not allowed recovery of all expected species. For example, when Yu et al. [4] tested fully degenerate primers for bulk sequencing of COI from mixed arthropod DNA they found between 24% (>2 read threshold) and 36% (>5 read threshold) of the species known to be in their mixtures were not recovered. There are likely a few reasons why using variable primers can be less than ideal. First, the number of primers required to account for variability increases exponentially as the number of variable sites goes up. Geller et al. [2] calculated that >3 billion primer sequence permutations would result if they created a fully degenerated consensus of one binding site they targeted in marine invertebrates. This is an extreme case, but the number of primers created when incorporating degenerate sites commonly found in COI alignments quickly climbs into 100's or 1000's of sequences. Even if you incorporate all variation in binding sites, some oligonucleotide primers will be better at annealing to priming sites than others, some will self anneal (i.e. form secondary structure which prevents PCR priming) or will bind with other primers in the mixture. The incorporation of inosine (an artificial base that can bind to all natural DNA bases) has been suggested [2], but we are not aware of this being tested in metabarcoding analysis. The success rate of the [2] marine invertebrate primers using inosine was ~75% in single template PCR and is likely to be lower in a competitive PCR amplification. Inosine also has different thermal stability when bounded to the four natural DNA bases [5] and may not provide unbiased recovery. In summary, there are several potential difficulties in the recovery of all DNA sequences present in mixtures and this includes variation in primer binding between species. For the most robust protocols, we feel that the preferred option is to target markers with less variation in the primer binding sites rather than trying to incorporate variation into primers.

(C) Additional Details for Figure 1

This figure shows a comparison of sequence variability of four markers in representative insects and highlights the variation in associated primers (primers in Table S1a). Variation in the three mitochondrial markers are shown for 40 insects (representing 25 orders) extracted from complete mtDNA sequences present in GenBank; comparable nuclear 18S rRNA (SSU) sequences were also examined (species listed in Table S2 and S3 respectively; sequences available as Electronic Supplementary Data). To visualize information content, and presence/absence of conserved regions, entropy values were calculated for positions across the sequences (calculated in Bioedit [6] using aligned sequences with gaps removed). Schematic of representative primers designed to amplify DNA from a broad range of insects highlight variability in potential primer binding sites. The forward 18S rRNA primer is near the start of most sequences in GenBank and a few base pairs of sequence are missing the 5' regions of some primers (positions coloured white).

The COI primers were developed as arthropod mini-barcodes for use in a bat diet metabarcoding study [1]. Despite considerable variability in targeted taxa they have been used as the single primer set to recover arthropod markers in over a dozen published papers including diet studies on primates, spiders and bats (see list of references above in Electronic Supplementary Material A). The mitochondrial 16S and 12S rRNA genes have been targeted in various metabarcoding studies (see list of references above in Electronic Supplementary Material A) although we are not aware if these specific primers have been used. The primers for nuclear 18S small subunit (nSSU) have been applied in several metabarcoding studies [e.g. 7, 8].

(D) Additional Details for Figure 2

Sequences of PCR primers that amplify regions of two mitochondrial genes were extracted from complete mtDNA sequences from vertebrates (listed in Table S1b; Sequences available as Electronic Supplementary Data). The summary shown in the figure is based on pairwise distances at primer binding sites between taxa for various taxonomic ranks. For example, Family level comparisons include pairwise distances between taxa in different families but in the same Order. Comparisons below class level are based on fish sequences (Actinopterygii; n=135 sequences; Table S4; variability in these primers is shown in Figure S1). Representative Vertebrata were considered between class comparisons (n=20 sequences; Table S5).

Table S1: Primers considered in the current paper

(a) Primer sets shown in Figure 1. This includes three mtDNA markers and one from the nuclear genome. In the paper's colour schematic, reverse complement of reverse primers is shown.

Gene	Name	Sequence (5' - 3')	Reference
COI	ZBJ-ArtF1c	AGATATTGGAACWTTATATTTTATTTTGG	[1]
	ZBJ-ArtR2c	WACTAATCAATTWCCAAATCCTCC	[1]
16s rRNA	LR-J-13017*	TTACGCTGTTATCCCTAA	[9]
	LR-N-13398* (16Sar-5')†	CACCTGTTTAACAAAAACAT	[9] and [10]
12s rRNA	SR-J-14199*	TACTATGTTACGACTTAT	[9]
	SR-N-14594*	AAACTAGGATTAGATACCC	[9] and [10]
18s rRNA	SSU_FO4	GCTTGTCTCAAAGATTAAGCC	[8]
	SSU_R22	GCCTGCTGCCTTCCTTGGA	[8]

(b) Primer sets analysed in Figure 2 of paper.

Gene	Name	Sequence (5' - 3')	Reference
COI	LCO1490	GGTCAACAAATCATAAAGATATTGG	[11]
	mlCOlintF	GGWACWGGWTGAACWGTWTAYCCYCC	[3]
	HCO2198	TAAACTTCAGGGTGACCAAAAAATCA	[11]
16s rRNA	16Sar-5'* (LR-N-13398)†	CGCCTGTTTATCAAAAACAT	[12] and [10]
	Chord_16S_F*	CGAGAAGACCCTRTGGAGCT	[13]
	16Sbr-3'* (LR-J-12887)†	CCGGTCTGAACTCAGATCACGT	[12] and [10]

*Note that the standard sequence direction provided in GenBank for insect mitochondrial rRNA genes is the reverse complement of that for vertebrates. This is because the mtDNA strand which serves as template for transcription of these genes varies between animal groups. It can be confusing when aligning sequences across groups, and also means the "reverse" primer in insects can becomes a "forward" primer in vertebrates (e.g. LR-N-13398 in figures 1 and 2).

⁺These are alternative names for primers binding to the same site.

Figure S1: Differences in primer binding regions across 135 fish sequences in two mtDNA markers (primers are those used in construction of Figure 2).

Table S2: List of insects and associated mtDNA sequence reference used for construction of figure 1.Sequences from each of the three regions (COI, 16S and 12S) are available as ElectronicSupplementary Data.

Order	Species	Common name	Accession #
Odonata	Pseudolestes mirabilis	Damselfly	gi 470229443
	Davidius lunatus	Dragonfly	gb EU591677.1
Orthoptera	Locusta migratoria	Locus	gb JN858206.1
	Teleogryllus emma	Field cricket	gi 219524229
Hemiptera	Lycorma delicatula	Plant hopper	gb EU909203.1
	Acyrthosiphon pisum	Aphid	gi 213948225
	Nezara viridula	Stink bug	gb EF208087.1
Plecoptera	Dinocras cephalotes	Stonefly	gb KF484757.1
	Pteronarcys princeps	Stonefly	gb AY687866.1
Hymenoptera	Apis florea	Honey bee	gb JX982136.1
	Pristomyrmex punctatus	Ant	gi 322422364
	Cephus cinctus	Sawfly	gb FJ478173.1
Coleoptera	Trachypachus holmbergi	Carabid beetle	gi 208433759
	Rhagophthalmus lufengensis	Firefly	gi 190349565
	Tribolium castaneum	Flour beetle	gi 133755325
Mecoptera	Neopanorpa pulchra	Scorpion fly	gi 256985280
Diptera	Anopheles oryzalimnetes	Mosquito	gb HQ335345.1
	Chironomus tepperi	Crane fly	gb JN861749.1
	Drosophila melanogaster	Fruit fly	gb JQ686694.1
Lepidoptera	Biston panterinaria	Moth	gi 435855846
	Papilio machaon	Swallowtail Butterfly	gi 391224048
	Bombyx mori	Silkmoth	gb GU966630.1
Siphonaptera	Jellisonia amadoi	Flea	gi 556506033
Ephemeroptera	Ephemera orientalis	Oriental mayfly	gi 229324789
	Baetis sp.	Mayfly	gb GU936204.1
Blattaria	Periplaneta Americana	Cockroach	gi 378829200
	Cryptocercus relictus	Relic cockroach	gi 394831453
Isoptera	Reticulitermes flavipes	Termite	gb EF206317.1
Mantodea	Tamolanica tamolana	Mantid	gi 84488776
Dermaptera	Challia fletcheri	Earwig	gi 403531341
Phasmatodea	Phraortes illepidus	Walking stick	gi 313199763
Thysanoptera	Thrips imaginis	Thrip	gi 25057389
Phthiraptera	Psococerastis albimaculata	Lice	gi 511347991
Megaloptera	Corydalus cornutus	Dobson fly	gb FJ171323.1
Neuroptera	Chrysopa pallens	Lace wing	gi 426406212
Raphidioptera	Mongoloraphidia harmandi	Snakeflies	gi 258649574
Psocoptera	Psococerastis albimaculata	Barklice	gi 511347991
Strepsiptera	Mengenilla moldrzyki	Twisted wing	gi 403531501
Mantophasmatodea	Sclerophasma paresisense	Gladiator	gi 84488734
Thysanura	Thermobia domestica	Silverfish	gb AY639935.1

Order	Species	Accession #
Odonata	Pseudolestes_mirabilis	gi 158264680
	Davidius_fruhstorferi	gi 260207002
Orthoptera	Locusta_migratoria	gi 15986534
	Gryllus_assimilis	gi 46405911
Hemiptera	Fulgoridae_sp.	gi 449084459
	Acyrthosiphon_pisum	gi 886117
	Rhaphigaster_nebulosa	gi 1150554
Plecoptera	Dinocras_cephalotes	gi 157417136
	Pteronarcys_sachalina	gi 157417155
Hymenoptera	Apis_mellifera	gi 51873301
	Proceratium_stictum	gi 51873307
	Cephus_pygmaeus	gi 300391083
Coleoptera	Trachypachus_holmbergi	gi 6578779
	Rhagophthalmus_sp.	gi 68301644
	Tribolium_castaneum	gi 299152224
Mecoptera	Neopanorpa_sp.	gi 64483043
Diptera	Anopheles_gambiae	gi 103421630
	Acricotopus_lucens	gi 38422424
	Drosophila_melanogaster	gi 425869670
Lepidoptera	Aglaope_infausta	gi 110289912
	Papilio_troilus	gi 11095947
	Bombyx_mori	gi 84310305
Siphonaptera	Monopsyllus_anisus	gi 83282942
Ephemeroptera	Ephemera_simulans	gi 239736518
	Baetis_sp.	gi 34223577
Blattaria	Blattidae_sp.	gi 46405869
	Pelmatosilpha_guyanae	gi 163017888
Isoptera	Reticulitermes_flavipes	gi 126678839
Mantodea	Mantis_religiosa	gi 126678840
Dermaptera	Tagalina_sp.	gi 46405880
Phasmatodea	Carausius_morosus	gi 1149618
Thysanoptera	Sericothrips_staphylinus	gi 449084537
Phthiraptera	Pedicinus_badii	gi 219881925
Megaloptera	Sialis_hamata	gi 46405906
Neuroptera	uroptera Kempynus_kimminsi	
Raphidioptera	Mongoloraphidia_martynovae	gi 219398632
Psocoptera	tera Cerastipsocinae_sp.	
Mantophasmatodea	Sclerophasma_paresisense	gi 46405904
Thysanura	Thermobia_domestica	gi 15986531

Table S3: List of insects and associated nuclear 18S SSU rRNA sequence references used forconstruction of figure 1. Sequences are available as Electronic Supplementary Data.

Table S4: List of fish (Actinopterygii) and associated mtDNA sequence reference used forconstruction of figure 2 in comparisons below class level. Most sequences were taken from acollection of 100 complete mtDNA sequences [14]. Sequences from additional species with completemtDNA sequences (shown in bold) were taken from GenBank to increase the number ofcomparisons at lower taxonomic levels. Sequences from the two regions analysed (COI, 16S) areavailable as Electronic Supplementary Data.

Order	Family	Genus_species	Accession
Clupeiformes	Clupeidae	Sardinops_melanostictus	AB032554
	Clupeidae	Clupea_harengus	gi 148922530
	Clupeidae	Clupea_pallasii	gi 148922558
	Clupeidae	Sardina_pilchardus	gi 148922544
	Clupeidae	Sprattus_sprattus	gi 148922628
Cypriniformes	Cyprinidae	Cyprinus_carpio	X61010
	Cyprinidae	Danio_rerio	gi 15079186
	Cobitidae	Crossostoma_lacustre	M91245
Salmoniformes	Salmonidae	Oncorhynchus_mykiss	L29771
	Salmonidae	Oncorhynchus_nerka	gb EF055889.1
	Salmonidae	Oncorhynchus_tshawytscha	gi 14647165
	Salmonidae	Oncorhynchus_keta	gi 385843132
	Salmonidae	Oncorhynchus_masou	gi 120586724
	Salmonidae	Coregonus_lavaretus	AB034824
	Salmonidae	Salmo_salar	gb KF792729.1
	Salmonidae	Salmo_trutta	gb JQ390057.1
Stomiiformes	Gonostomatidae	Diplophos_sp	AB034825
	Gonostomatidae	Sigmops_gracile	AB016274
	Stomiidae	Chauliodus_sloani	AP002915
Ateleopodiformes	Ateleopodidae	Ateleopus_japonicus	AP002916
	Ateleopodidae	Ijimaia_dofleini	AP002917
Aulopiformes	Aulopodidae	Aulopus_japonicus	AB047821
	Chlorophthalmidae	Chlorophthalmus_agassizi	AP002918
	Synodontidae	Harpadon_microchir	AP002919
	Synodontidae	Saurida_undosquamis	AP002920
Myctophiformes	Neoscopelidae	Neoscopelus_microchir	AP002921
	Myctophidae	Myctophum_affinec	AP002922
	Myctophidae	Diaphus_splendidusc	AP002923
Lampridiformes	Lamprididae	Lampris_guttatusc	AP002924
	Trachipteridae	Trachipterus_trachypterusc	AP002925
	Trachipteridae	Zu_cristatusc	AP002926
Polymixiiformes	Polymixiidae	Polymixia_japonica	AB034826
	Polymixiidae	Polymixia_lowei	AP002927
Percopsiformes	Aphredoderidae	Aphredoderus_sayanus	AP004403
	Percopsidae	Percopsis_transmontana	AP002928
Ophidiiformes	Carapidae	Carapus_bermudensis	AP004404
	Ophidiidae	Bassozetus_zenkevitchi	AP004405
	Ophidiidae	Lamprogrammus_niger	AP004410
	Ophidiidae	Sirembo_imberbisc	AP004406

	Bythitidae	Cataetyx_rubrirostris	AP004407
	Bythitidae	Diplacanthopoma_brachysoma	AP004408
Gadiformes	Macrouridae	Caelorinchus_kishinouyei	AP002929
	Macrouridae	Squalogadus_modificatus	gi 109689665
	Macrouridae	Trachyrincus_murrayi	gi 109689637
	Moridae	Physiculus_japonicus	AP004409
	Bregmacerotidae	Bregmaceros_nectabanusc	AP004411
	Gadidae	Lota_lota	AP004412
	Gadidae	Gadus_morhua	X99772
	Gadidae	Gadus_ogac	gi 225622210
	Gadidae	Merlangius_merlangus	gb DQ020496.1
	Gadidae	Pollachius_virens	gi 322422606
	Gadidae	Pollachius_pollachius	gi 322422647
Lophiiformes	Lophiidae	Lophius_americanus	AP004413
	Lophiidae	Lophius_litulonc	AP004414
	Chaunacidae	Chaunax_abei	AP004415
	Chaunacidae	Chaunax_tosaensis	AP004416
	Caulophrynidae	Caulophryne_pelagica	AP004417
	Melanocetidae	Melanocetus_murrayi	AP004418
Mugiliformes	Mugilidae	Mugil_cephalus	AP002930
	Mugilidae	Crenimugil_crenilabisc	NC_017884
Atheriniformes	Melanotaenidae	Melanotaenia_lacustris	AP004419
	Atherinidae	Hypoatherina_tsurugae	AP004420
Beloniformes	Adrianichthyidae	Oryzias_latipes	AP004421
	Scomberesocidae	Cololabis_saira	AP002932
	Exocoetidae	Exocoetus_volitans	AP002933
Cyprinodontiformes	Poeciliidae	Gambusia_affinis	AP004422
	Poeciliidae	Xiphophorus_hellerii	gb FJ226476.1
Stephanoberyciformes	Melamphaidae	Scopelogadus_mizolepisc	AP002934
	Melamphaidae	Poromitra_oscitansc	AP002935
	Rondeletiidae	Rondeletia_loricata	AP002937
	Cetomimidae	Cetostoma_regani	AP004423
	Cetomimidae	Danacetichthys_galathenus	AP002936
	Mirapinnidae	Parataeniophorus_sp.	AP004424
Beryciformes	Anoplogastridae	Anoplogaster_cornuta	AP004425
	Diretmidae	Diretmoides_veriginaec	AP004426
	Diretmidae	Diretmus_argenteusc	AP004427
	Anomalopidae	Anomalops_katoptronc	AP004428
	Monocentridae	Monocentris_japonicus	AP004429
	Trachichthyidae	Hoplostethus_japonicus	AP002938
	Berycidae	Beryx_splendens	AP002939
	Berycidae	Beryx_decadactylus	AP004430
	Berycidae	Beryx_mollis	gi 288904147
	Holocentridae	Myripristis_berndti	AP002940
	Holocentridae	Ostichthys_japonicus	AP004431
	Holocentridae	Sargocentron_rubrum	AP004432
Zeiformes	Parazenidae	Parazen_pacificus	AP004433
	Macrurocyttidae	Zenion_japonicum	AP004434
	Zeidae	Zeus_faber	AP002941
	Zoidao	Zenonsis nehulosus	AP002942

	Oreosomatidae	Allocyttus niger	AP004435
	Oreosomatidae	Neocyttus rhomboidalis	AP004436
	Caproidae	Antigonia capros	AP002943
Gasterosteiformes	Hypoptychidae	Hypoptychus dybowskii	AP004437
	Gasterosteidae	Gasterosteus aculeatusc	AP002944
	Gasterosteidae	 Gasterosteus_wheatlandi	gi 212725466
	Gasterosteidae	_ Pungitius_kaibarae	gb EU332749.1
	Gasterosteidae	Pungitius_pungitius	gi 212725480
	Gasterosteidae	Culaea_inconstans	gi 212725564
	Gasterosteidae	Apeltes_quadracus	gi 212374495
	Indostomidae	Indostomus_paradoxusc	AP004438
Synbranchiformes	Synbranchidae	Monopterus_albus	AP002945
	Synbranchidae	Synbranchus_marmoratusc	AP004439
	Mastacembelidae	Mastacembelus_favus	AP002946
Scorpaeniformes	Dactylopteridae	Dactyloptena_tiltoni	AP004440
	Dactylopteridae	Dactyloptena_peterseni	AP002948
	Scorpaenidae	Helicolenus_hilgendorfi	AP002947
	Triglidae	Satyrichthys_amiscus	AP004441
	Cottidae	Cottus_reinii	AP004442
	Cottidae	Cottus_poecilopus	gb EU332750.1
	Cottidae	Cottus_hangiongensis	gb EU332751.1
	Cottidae	Trachidermus_fasciatus	gi 408772194
	Cottidae	Clinocottus_analis	gi 288903365
	Cyclopteridae	Aptocyclus_ventricosusc	AP004443
Perciformes	Carangidae	Carangoides_armatus	AP004444
	Carangidae	Caranx_melampygus	AP004445
	Carangidae	Caranx_ignobilis	gi 560877732
	Carangidae	Seriola_dumerili	gi 375267163
	Carangidae	Seriola_lalandi	gi 375267149
	Carangidae	Trachurus_trachurus	gi 38603494
	Emmelichthyidae	Emmelichthys_struhsakeri	AP004446
	Lutjanidae	Pterocaesio_tile	AP004447
	Zoarcidae	Lycodes_toyamensis	AP004448
	Pholidae	Enedrias_crassispina	AP004449
	Blennidae	Petroscirtes_breviceps	AP004450
	Blennidae	Salarias_fasciatus	AP004451
	Gobiesocidae	Arcos_sp.	AP004452
	Gobiesocidae	Aspasma_minimac	AP004453
	Rhyacichthyidae	Rhyacichthys_aspro	AP004454
	Eleotridae	Eleotris_acanthopoma	AP004455
Pleuronectiformes	Paralicthyidae	Paralicthys_olivaceus	AB028664
	Pleuronectidae	Platichthys_bicoloratusc	AP002951
	Pleuronectidae	Hippoglossus_hippoglossus	gi 154090893
	Pleuronectidae	Colistium_nudipinnis	gi 584593531
Tetraodontiformes	Balistidae	Sufflamen_fraenatus	AP004456
	Managanthidag	Stenhanolenis cirrhiferc	AD002052

Table S5: Representative Vertebrata species used in figure 2 for comparisons of primer divergencebetween classes. These are from complete mtDNA sequences in GenBank and two sequence regionswere analysed (COI, 16S).

Class	Genus_species	Common name	Accession
Myxini (hagfish)	Myxine_glutinosa	Hagfish	gi 12084808
Hyperoartia (lampreys)	Petromyzon_marinus	Lamprey	gb U11880.1
Sarcopterygii	Latimeria_chalumnae	Coelacanth	gi 121308881
(lobe-finned fish)	Protopterus_annectens	Lungfish	gb JX568887.1
Chondrichthyes	Squalus_acanthias	Dogfish shark	gi 5835708
(cartilaginous fishes)	Carcharodon_carcharias	Great-white shark	gi 545600999
	Neotrygon_kuhlii	Stingray	gi 525341128
Osteichthyes	Hippoglossus_hippoglossus	Halibut	gi 154090893
(bony fishes)	Culaea_inconstans	Stickleback	gi 212725564
	Salmo_trutta	Trout	gb JQ390057.1
Amphibia (amphibians)	Bombina_maxima	Toad	gi 194246883
	Ranodon_sibiricus	Salamander	gi 21450026
	Xenopus_laevis	Frog	gi 5834981
Reptilia (reptiles)	Boa_constrictor	Snake	gi 74310505
	Phoenicolacerta_kulzeri	Lizard	gi 215399126
	Crocodylus_porosus	Crocodile	gi 108802842
Aves (birds)	Accipiter_gentilis	Hawk	gi 219524160
	Alectura_lathami	Turkey	gi 71658022
	Ambystoma_californiense	Parrot	gi 62161196
Mammalia (mammals)	Rattus_rattus	Rat	gi 225622213
	Connochaetes_gnou	Wildebeest	gi 470233679
	Hydrosaurus_amboinensis	Seal	gi 296940265

Supplementary References

1. Zeale M.R.K., Butlin R.K., Barker G.L.A., Lees D.C., Jones G. 2011 Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. *Mol Ecol Resour* **11**(2), 236-244. (doi:10.1111/j.1755-0998.2010.02920.x).

2. Geller J., Meyer C., Parker M., Hawk H. 2013 Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. *Mol Ecol Resour* **13**(5), 851-861. (doi:10.1111/1755-0998.12138).

3. Leray M., Yang J.Y., Meyer C.P., Mills S.C., Agudelo N., Ranwez V., Boehm J.T., Machida R.J. 2013 A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. *Front Zool* **10**, e34. (doi:10.1186/1742-9994-10-34).

4. Yu D.W., Ji Y., Emerson B.C., Wang X., Ye C., Yang C., Ding Z. 2012 Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. *Methods Ecol Evol* **3**(4), 613-623. (doi:10.1111/j.2041-210X.2012.00198.x).

5. Martin F.H., Castro M.M., Aboul-ela F., Tinoco I. 1985 Base pairing involving deoxyinosine: implications for probe design. *Nucleic Acids Res* **13**(24), 8927-8938. (doi:10.1093/nar/13.24.8927).

6. Hall T.A. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl Acids Symp Ser* **41**, 95-98.

7. Creer S., Fonseca V.G., Porazinska D.L., Giblin-Davis R.M., Sung W., Power D.M., Packer M., Carvalho G.R., Blaxter M.L., Lambshead P.J.D., et al. 2010 Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. *Mol Ecol* **19**, 4-20. (doi:10.1111/j.1365-294X.2009.04473.x).

8. Fonseca V.G., Carvalho G.R., Sung W., Johnson H.F., Power D.M., Neill S.P., Packer M., Blaxter M.L., Lambshead P.J.D., Thomas W.K., et al. 2010 Second-generation environmental sequencing unmasks marine metazoan biodiversity. *Nat Commun* **1**. (doi:9810.1038/ncomms1095).

9. Kambhampati S., Smith P.T. 1995 PCR primers for the amplification of four insect mitochondrial gene fragments. *Insect Mol Biol* **4**(4), 233-236. (doi:10.1111/j.1365-2583.1995.tb00028.x).

10. Simon C., Frati F., Beckenback A., Crespi B., Liu H., Flook P. 1994 Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. *Annals Entomol Soc Am* **87**, 651-701.

11. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994 DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol Mar Biol Biotechnol* **3**(5), 294-299.

12. Palumbi S.R. 1996 Nucleic Acids II: The Polymerase Chain Reaction. In *Molecular Systematics* (ed. D. Hillis C.M., and B. Mable), pp. 205-247. Sunderland, Sinauer.

13. Deagle B.E., Kirkwood R., Jarman S.N. 2009 Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. *Mol Ecol* **18**(9), 2022-2038. (doi:10.1111/j.1365-294X.2009.04158.x).

14. Miya M., Takeshima H., Endo H., Ishiguro N.B., Inoue J.G., Mukai T., Satoh T.P., Yamaguchi M., Kawaguchi A., Mabuchi K., et al. 2003 Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. *Mol Phylogenet Evol* **26**(1), 121-138. (doi:10.1016/S1055-7903(02)00332-9).