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1 Derivation of DDE and SIMPLE algorithms

Mechanical characterization of inhomogeneous and/or geometrically complex biological tissues requires
precise and accurate determination of strain fields. Digital image correlation is a well-established technique
for determining strain fields on the surfaces of deforming materials[1]. The technique involves matching
patterns between pairs of images to estimate the displacement of certain regions or features on a sample[1, 2].
A central limitation of estimating strain fields using existing digital image correlation methods is the need to
take numerical derivatives after estimating displacements. Additionally, errors arise from sample rotation,
image noise, local strain discontinuities, and large deformation. The novel warping technique proposed in
this paper reduces both error and computational cost compared to existing image correlation approaches.
Traditionally, strain calculations are performed after digital image correlation by binding the midpoints of
matched regions to form quadrilateral elements. Then, the initial and displaced positions of the points are
used to estimate the deformation gradient tensor, F, that relates a material vector dX in the undeformed
reference configuration to the corresponding spatial vector dx in the deformed configuration using a least
squares fit (LSF)[1]:

dx = FdX (1.1)

The Green-Lagrange strain tensor, E, can then be then calculated as:

E = 0.5(FTF− I) (1.2)

where I is the second order identity tensor. These methods are all based on displacement fields.
Both rigid and non-rigid methods exist to register undeformed to deformed regions of an image and

thereby estimate displacement fields (Figure 1). Rigid registration uses standard cross correlation of unde-
formed and deformed regions to estimate the displacements of the midpoints. F is calculated from an LSF
of the displacements. Non-rigid approaches involve optimization to minimize an energy function iteratively:∑

x

[I(W(x; p))− T (x)]2 (1.3)

where T (x) is a template image, and I(W(x; p)) is an image, I , warped by a defined warping function
W(x; p) whose warping parameter p can be modulated. The Lucas-Kanade (LK) inverse compositional
algorithm[3] iterates using the following increments for p:

∆p = H−1
∑
x

[
∇I ∂W

∂p

]T
[T (x)− I(W(x; p))] (1.4)

until the norm ‖∆p‖ drops below a defined threshold, where H is the Gauss-Newton approximation to the
Hessian matrix:

H =

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
(1.5)

We refer to this method as the LK method, where strains are calculated from Eq. (1.1) performed on a
least squares fit to estimates of the displacement field. We present here a novel technique to circumvent the
LSF deformation gradient tensor calculation based on the midpoints in Eq. (1.1). The new method allows
the intrinsic calculation of F during digital image correlation by carefully choosing the warping function
during the LK correlation. By removing the calculation in Eq. (1.1), this new method is more precise,
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less susceptible to noise, and more computationally efficient (Figure 3). For the specific comparison cases
presented here, the warping function W(x; p) in Eq. 1.3, is chosen to be a first order an affine warp with a
linear translation:

W(x; p) =

 1 + p1 p3 p5

p2 1 + p4 p6

0 0 1

 x
y
1

 (1.6)

where p5 and p6 are the translations in the x and y coordinates, respectively. Other techniques have demon-
strated that displacement tracking can be improved by incorporating a higher order warping function[4].
However, we deliberately choose our warp to be of the first order. By restricting the warp to be of the
first order, we mimic the definition of the deformation gradient tensor. The deformation gradient tensor
considers only the deformation of an infinitesimal neighborhood about a point and thereby assumes the de-
formation can be approximated by a linear, first order, transformation. This is similar to Taylor’s Theorem
in elementary calculus, which states that the approximation dy = f ′(x)dx can be made if dx and dy are
infinitesimally small[5]. Therefore, by choosing a first order warp, the deformation gradient tensor has a
one to one correspondence with our chosen warping function. The deformation gradient tensor can be then
directly extracted from the first four components of the warp:

F =

[
1 + p1 p3

p2 1 + p4

]
(1.7)

thereby circumventing any least squares fit of the displacement field required in all prior methods (DDE
method, Fig. 1).

The SIMPLE method for determining strain field inhomogeneity and strain concentrations was then
developed by considering the difference between the DDE and LK solutions. Both the DDE and LK methods
assume deformation is linear and homogeneous: they both compute a linear finite deformation gradient
tensor. However, DDE calculates the deformation of a single region, while LK calculates the deformation
between several regions. Therefore, any difference between the LK and DDE solutions represents a high-
order, non-linear deformation and provides a robust detection criteria for inhomogeneity within a strain
field. Furthermore, if the difference between the LK and DDE solutions is locally high, the strain field
must be locally inhomogeneous and a locally inhomogeneous strain field indicates the emergence of a strain
concentration. To calculate SIMPLE, a elementary difference approach is employed (Fig 3. A, B):

∆ = EDDE −ELK (1.8)

This method is analogous to a spatial high pass filter of the strain field. To construct the high pass filter, con-
sider subtracting the calculated strain for a particular correlated element from the average strain calculated
over some small region Ω:

1

Ω

∫
Ω
εxxdΩ− εxx = δxx (1.9)

where δxx is the strain concentration in the xx direction and εxx is the strain in the xx direction. We can then
define the average strain over the region Ω as ε∗xx:

1

Ω

∫
Ω
εxxdΩ = ε∗xx (1.10)

Then by assuming small strain:
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λxx = εxx + 1 (1.11)

λ∗xx = ε∗xx + 1 (1.12)

Combining Eq. 1.9-1.12:

λ∗xx − λxx = δxx (1.13)

Which is analogous to the tensor equation:

F∗ − F = ∆ (1.14)

Where F∗ is FDDE and F is FLK and ∆ is a strain concentration matrix.

2 A note on the compatibility of strain fields averaged over finite regions

The DDE method is more accurate than the Lucas Kanade displacement-based or standard cross-correlation
methods for estimating average strains over discrete regions of finite size. This accuracy is attained by
estimating deformation gradient tensors without first calculating displacement fields of the centroids of
these regions. We emphasize here that displacement fields can be calculated uniquely from DDE estimates of
strain fields only in special cases, and that if a displacement field is required the Lucas Kanade displacement-
based approach is a better choice.

The reason for this relates to the problem of “strain compatibility” that is well known in mechanics:
unique components of a displacement field can be determined from the more numerous components of
a strain field only if the spatial variations of these strain fields satisfy certain conditions. For example,
for linearized strains in two dimensions, the components of the strain tensor ε(x, y) in a Cartesian (x, y)
coordinate frame must satisfy (e.g., [6]):

∂2εxx(x, y)

∂y2
− 2

∂2εxy(x, y)

∂x∂y
+
∂2εyy(x, y)

∂x2
= 0. (2.1)

However, rather than reporting a continuous strain field εαβ(x, y) that must satisfy the compatibility
relations, the DDE method reports components of strain ε̄(i)(j)αβ averaged over a region of dimensions L× L
at each position {i, j}, usually on a regular grid (e.g., Figure S1):

ε̄
(i)(j)
αβ =

1

L2

∫ iL

(i−1)L

∫ jL

(j−1)L
εαβ(x, y)dxdy (2.2)

As shown below, a compatible strain field averaged over an array of finite, discrete regions, does not in
general satisfy the compatibility relations. On the one hand, this means that finding a unique displacement
field that satisfies a DDE-estimated strain field is usually not possible. On the other, this means that DDE is
never constrained by specific models or interpolations of strain fields.

The reason for this relates to computation of the second derivatives in Equation 2.1: the finite difference

approximation to ∂2ε̄
(i)(j)
yy

∂x2
equals the continuous value of ∂2εyy

∂x2
(x0, y0) at the center (x0, y0) of region (i, j)

only under special conditions. The finite difference approximation of this term for the DDE-estimated
average strain fields is:
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Figure S1: The DDE method is often implemented on a regular grid within a strained body.

∂2ε̄
(i)(j)
yy

∂x2
=

ε̄
(i)(j+1)
yy − 2ε̄

(i)(j)
yy + ε̄

(i)(j−1)
yy

L2
(2.3)

and, for x0 = L(j + 1
2) and y0 = L(i+ 1

2), and L sufficiently small, the finite difference approximation is:

∂2εyy
∂x2

(x0, y0) ≈ εyy(x0 + L, y0)− 2εyy(x0, y0) + εyy(x0 − L, y0)

L2
(2.4)

The approximation in Equation 2.4 will, for a sufficiently smooth function, equal the exact second
derivative in the limit of L approaching zero. The approximation in Equation 2.3 to approach this same
value for all choices of x0 and y0 (i and j) if the average value of εyy(x, y) in a region happens to equal the
value at the center of the region (that is, ε̄(i)(j)yy = εyy(x0, y0)), or if the difference between the two varies in
specific ways, such as:

ε̄(i)(j)yy = εyy(x0, y0) + f1(y0) + x0f2(y0) + C1 (2.5)

where C1 is an arbitrary constant and f1 and f2 are functions of y0 only. Similar relations can be derived
for the other terms in Equation 2.1. The consequence is that, no matter how fine the discretization, discrete
derivatives of DDE-estimated strain fields should never be forced to meet the compatibility equations.

As a simple example, consider the following strain field that satisfies Equation 2.1:

εαβ =

[
0 2Ax3y

2Ax3y Ax4

]
(2.6)

In the absence of any experimental or measurement error, the averaged strains that the DDE algorithm
should report are the following:
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ε̄(i)(j)xy =
1

L2

∫ iL

(i−1)L

∫ jL

(j−1)L
2Ax3ydxdy

= 2AL4

(
(j − 1

2
)3 +

1

4
(j − 1

2
)

)
(i− 1

2
)

ε̄(i)(j)xx = 0 (2.7)

ε̄(i)(j)yy =
1

L2

∫ iL

(i−1)L

∫ jL

(j−1)L
Ax4dxdy

= AL4

(
(j − 1

2
)4 +

1

2
(j − 1

2
)2 +

1

80
)

)
(2.8)

Note that these can be written in terms of x0 and y0 as:

ε̄(i)(j)xy = 2A

(
x3

0 +
x0L

2

4

)
y0 = εxy(x0, y0) + 2Ax0y0

(
L

2

)2

ε̄(i)(j)yy = Ax4
0 +AL2

(
x2

0

2
+
L2

80

)
= εyy(x0, y0) +AL2

(
x2

0

2
+
L2

80

)
(2.9)

Finite difference approximations to the derivatives in the compatibility equation are:

∂2ε̄
(i)(j)
xy

∂x∂y
≈ 1

4L2

(
ε̄(i+1)(j+1)
xy + ε̄(i−1)(j−1)

xy − ε̄(i−1)(j+1)
xy + ε̄(i+1)(j−1)

xy

)
= 6AL2(j2 − j +

2

3
) = 6Ax2

0 +
5

2
AL2 (2.10)

∂2ε̄
(i)(j)
yy

∂x2
=

ε̄
(i)(j+1)
yy − 2ε̄

(i)(j)
yy + ε̄

(i)(j−1)
yy

L2

= 12AL2(j2 − j +
1

2
) = 12Ax2

0 + 3AL2 (2.11)

Substituting into the compatibility relation Equation 2.1 yields:

∂2εxx(x, y)

∂y2
− 2

∂2εxy(x, y)

∂x∂y
+
∂2εyy(x, y)

∂x2
= −2

(
6Ax2

0 +
5

2
AL2

)
+ 12Ax2

0 + 3AL2

= −2AL2

6= 0 (2.12)

In this example, and in general, forcing strain compatibility into the direct estimation of strain fields
would be incorrect.

From the above example it is clear that forcing strain compatibility is not always appropriate and may
result in the incorrect calculations of strains. Strain compatibility was originally introduced into digital im-
age correlation to ensure that strain fields were continuous and that minor mis-tracking would not introduce
errors into the strain field [6]. With the improved accuracy and precision of DDE coupled with the direct
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calculation of strain by neglecting displacements, strain compatibility can be relaxed, allowing incompati-
ble, non-continuous, strain fields. Detecting when strain fields become incompatible is the motivation for
the derivation of the SIMPLE method. The SIMPLE method, in essence, looks at the difference between
strain fields in which compatibility is not enforced (DDE) and strain fields in which compatibility is en-
forced (LK). By comparing the two, the SIMPLE method is able to detect precisely when and where strain
fields become incompatible and non-smooth. In the example considered above, SIMPLE would calculate
the non-zero difference between the two results (Eq.2.12).

3 Experimental methods

3.1 Fabrication and testing of PDMS scaffolds with gradients in stiffness

PDMS sheets (N=3) with gradients in stiffness were fabricated according to published methods[7]. Briefly,
Sylgard 184 PDMS was mixed at two base:curing agent ratios: 10:1 and 20:1. Silanized glass slides and a
Teflon spacer were used to create a mold. The two PDMS mixtures were then poured into the mold such that
the 10:1 mixture was on the bottom and the 20:1 mixture was on the top. Filled molds were placed on top of
a hot plate at 120 C for 90 min so that a temperature gradient developed vertically along the mold, creating a
gradient in cross linker activation and a subsequent gradient in stiffness. Polymerized PDMS scaffolds were
rinsed in hexane to swell the scaffold and remove residual crosslinkers, preventing further polymerization.
Scaffolds were then sprayed lightly with black latex spray paint to produce a random surface speckle texture,
and placed in a custom designed cyclic tensile machine. Scaffolds were pulled in tension to 10% grip-to-grip
strain at a rate of 0.1 Hz. Videos of the test were captured using an Illunis VMV-8M camera for subsequent
strain analysis.

3.2 Fabrication and testing of collagen scaffolds with gradients in stiffness

Collagen scaffolds with gradients in stiffness were created using reconstituted collagen and simulated body
fluid-induced mineralization according to a published procedures (N=4)[8]. Briefly, lyophilized collagen
(Elastin Products Company, product no. C857) was dissolved in a dilute solution of hydrochloric acid,
homogenized, degassed, and pumped into cylindrical casts (4 mm). Collagen casts were polymerized in
TES buffer (135 mM Ntris(hydroxymethyl)-methyl-2-aminoethane sulfonic acid, 30 mM NaCl, and 30 mM
Na2PO4 in distilled water; pH 7.5) at 37 C for 1 hr and then allowed to soak at room temperature overnight
in de-ionized water [8]. Following soaking, collagen scaffolds were dehydrated in 95% ethanol and then
allowed to air dry overnight. Scaffolds were placed in 10X simulated body fluid solution with 5 mg/ml fetuin
at a pH of 7.4 for mineralization[8]. Scaffolds were slowly drawn out of the solution to create a gradient in
mineralization[9]. Following mineralization, scaffolds were dehydrated a second time in 95% ethanol and
allowed to air dry overnight. Scaffolds were then sprayed lightly with Verhoffs stain to produce a random
surface speckle texture. For mechanical testing, scaffolds were loaded in tension in a PBS bath (37◦C) at a
strain rate of 0.1 %/s using a materials testing frame (Instron Electropuls E1000). Videos of the test were
captured using an Illunis VMV-8M camera for subsequent strain analysis.

3.3 Fabrication and testing of vinylidene chloride sheets

Commercially available vinylidene chloride sheets (Saran Premium Wrap, SC Johnson) were coated in white
latex paint and allowed to dry overnight (N=2). After drying, the sheets were cut into 20 x 5 mm2 sheets
and sprayed lightly with black latex spray paint to produce a random surface speckle texture. Sheets were
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gripped using spring clamps and loaded in tension at a strain rate of 0.1 %/s using a materials testing frame
(Instron Electropuls E1000). Videos of the test were captured using an Illunis VMV-8M camera for analysis.

3.4 Embryonic injury models

Videos for elliptical incision and circular punched embryonic injury models were obtained from a previously
described experiment[10]. All wounds were made at early embryonic time points where cells do not reside
on a substrate (Hamburger-Hamilton 5-6). Linear ablated wounds were created using the Gastromaster
microsurgery device (Xenotek Engineering) with white tips, which lyses cells with no direct mechanical
contact[11].

4 Collagen scaffold results

DDE accurately detected a gradient in strain between the top and the bottom of the scaffold, demonstrating
a mineral-induced gradient in stiffness along the length of the scaffold (Supplemental Figure 1A,B, Supple-
mental Video 2). In contrast, XCOR demonstrated unrealistically high strains, likely due to errors resulting
from slight rotation of the sample during testing (Supplemental Figure 1C,D). These errors were exacerbated
at high grip-to-grip strains with the XCOR technique (Supplemental Figure 1G,H), whereas DDE tracked a
local strains as high as 0.18 (Supplemental Figure 1E,F).
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Figure S2: Small and large grip-to-grip strains of collagen scaffolds with spatial gradients in mineral con-
tent, tested in tension. (A, B, E, F) DDE revealed a gradient in material strain for low and high grip-to-grip
strains. (C, D) At low grip-to-grip strains, XCOR revealed similar trends to DDE. However, the values of
strains measured were unrealistically high and are likely due to noise. (G, H) At high grip-to-grip strains,
XCOR reported strains over 2. This was clearly erroneous based on visual inspection of the specimen,
demonstrating the limitations of the XCOR technique for large strains in inhomogeneous samples.
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Figure S3: Embryonic wounds were created using three methods: circular wounds created with a punch
(top row), elliptical wounds created by ablation (middle row), and elliptical wounds created by incision
with a micro-scalpel (bottom row). Strains were analyzed to delineate how three mechanisms combine
to change the wound: (D,E,F) localized isotropic contraction around the wound, (G,H,I) passive elastic
recovery of tissue distal to the wound, and (J,K,L) stretching introduced during wound creation. (A, B, C)
Injuries induced by circular punching and elliptical ablation do not introduce additional deformations into
the wound healing system. However, the elliptical incision method adds tension in the wake of the blade
and compression ahead of the blade. (A, B, C) Localized isotropic contraction of wounds is expected at
the border of the wound for all wound scenarios. (E, E, F) In response to localized isotropic contraction
near the wound, regions distal to the wound are expected to be in tension, as cells near the wound pull
inward to close the injury. (J, L, K) Since no additional deformations were introduced during wounding
for circular punched and elliptical ablated injuries, no response to the wounding is expected in these cases.
For elliptical incision injuries, however, the tissue is expected to respond to the incision deformations (C)
by returning to its original state. (M, N, O) Strain concentrations are expected to arise at the wound border
due to the localized isotropic contraction in all wound scenarios. For elliptical incision injuries, however,
strains introduced during wounding combined with the localized isotropic contraction should result in strain
concentrations primarily along the flanks of the elliptical wound.
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5 Supplemental video legends

Supplemental Video 1: PDMS sheets with spatial gradients in stiffness were cyclically stretched. DDE
was able to detect smooth gradients in local strain at low and high grip-to-grip strains. In contrast, XCOR
failed to detect gradients at low grip-to-grip strains and detected irregular gradients in local strain at high
grip-to-grip strains.

Supplemental Video 2: Tensile tests-to-failure of collagen scaffolds with gradients in mineral content were
performed. DDE revealed gradients of strain along the length of the scaffolds throughout the test whereas
XCOR failed to accurately determine local strain patterns.

Supplemental Video 3: Vinylidene chloride sheets were tested in tension to failure. The SIMPLE method
accurately detected strain concentrations predictive of crack initiation formation and was able to track crack
propagation. XCOR only tracked the strain concentration for limited time, missing the initiation of the strain
localization and failing to track the crack after it formed.

Supplemental Videos 4, 5, and 6: Embryonic wounds were created using three methods: circular wounds
created with a punch (Supplemental Video 4), elliptical wounds created by ablation (Supplemental Video 5),
and elliptical wounds created by cutting with a micro-scalpel (Supplemental Video 6). The DDE and SIM-
PLE algorithms described the spatial and temporal patterns of embryonic wound closure, while the XCOR
algorithm revealed only noise.
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