
1

Supporting Information for: Quantifying the underlying landscape and
paths of cancer
Chunhe Li1, Jin Wang1,2,∗

1 Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, USA
2 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese
Academy of Sciences, Changchun, Jilin, China
∗ E-mail: jin.wang.1@stonybrook.edu

Supplementary Results

In order to show the landscape of the complete 32 dimensional system, we also used Langevin dynamics method to
obtain landscape (Figure S1, three attractors from left to right separately represent cancer, normal and apoptosis
state). For a 32 dimensional system, for visualization, we harnessed RMSD (root mean squared distance) as the

coordinate to reduce the dimensionality to 2 dimension (RMSD =
√∑N

i (xi − xref
i )2, N is the number of variables,

and xref
i is the reference state, here we chose two potential minima of normal attractor and cancer attractor as the

reference states). RMSD represents the distance between a state point and reference point in state space. As a result,
from 32-dimensional trajectory, we can generate two new coordinates RMSD1 and RMSD2, separately representing
the distance from a state point to the reference state 1 (the potential minimum of normal attractor) and the reference
state 2 (the potential minimum of cancer attractor). We can find that the landscapes using RMSD method based
on Langevin dynamics (Fig. S1) possess the similar dynamics as using AKT and RB as the coordinates (Figure 2 in
main text) based on the self consistent approximation. This shows that the two dimensional projection of landscape in
AKT and RB state space can reflect the major dynamics of the full 32-dimensional gene network, and the 3 attractor
landscape is not affected by choosing which gene pairs.

We’d like to emphasize that we used RMSD methods to calculate barriers and MFPTs in terms of 21 genes. We
chose RMSD1 and RMSD2 as reaction coordinates. Since these coordinates measure the relative distance with respect
to the normal and cancer states, we believe this is a reasonable choice of the reaction coordinates. We expect the
barrier to be correlated with the MFPT when the choice of the reaction coordinates is reasonable. As we know, how
to calculate the saddle point of high-dimensional system precisely is still challenging. Therefore, we believe that the
RMSD method we employed in this manuscript might provide a possible route.

We calculated the mean first passage time (MFPT) from the trajectory based on Langevin dynamics. In Figure
S1, three attractors from left to right respectively represent cancer, normal and apoptosis state, and this landscape
is obtained by collecting the statistics through histogram or distribution of the temporal trajectories for 32 variables.
Starting from a random initial state at Normal attractor, following the temporal evolution trajectory of system, we
can find the time where the system first enters into the Cancer attractor. The difference between initial time and
the final time is defined as the first passage time (FPT) for cancerization process (transition from normal to cancer).
Repeating this process and obtaining the average of the FPT is defined as the mean first passage time (MFPT) for the
cancerization process. In the same way, we can obtain the MFPT for the transition from Cancer attractor to Normal
attractor.

Our simulation results showed that the landscape is critically influenced by the activation constant a or repression
constant b. Fig. S2 show the landscape of the cancer network when activation constant a is changed, separately
corresponding to a = 0.4, a = 0.46, a = 0.48, a = 0.5, a = 0.52, and a = 0.6. Landscape comparisons illustrated that
with a gradually increasing from 0.4 to 0.6, the landscape of cancer network experiences a transition from monostable
state (apoptosis), bistable state (apoptosis and normal coexist), to tristable state (normal, cancer and apoptosis
coexist), and finally to another monostable state (cancer state). So, when a increases the cancer state will become
more dominant. Similarly, in Figure S3, we give the change of landscape when repression strength b is changed. We
can see that with b increased the landscape begins from a monostable apoptosis state, then become tristable state,
and finally, get into a monostable normal state (b = 1).

Figure S4 show barrier changes when parameters (M(j, i), i, j = 1, 2, ..., 32) are changed in terms of self consistent
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Figure S1. Landscape from Langevin dynamics method. Three attractors from left to right represent respectively
cancer state, normal state and apoptosis state. RMSD1 represent the distance of states to the normal state, and
RMSD2 represents the distance of states to the cancer state in terms of expression level of 21 major marker genes.
Parameters are set as: a=0.5, b=0.5, k=1.

approximation method. The results in (A) are for 66 activation links, and The results in (B) are for 45 activation
links. Blue stairs represent the barrier for normal state USN for different mutations, red stairs represent the barrier for
cancer state USC for different mutations. X axis in (A) represent all 66 repression links, and X axis in (B) represent all
45 activation links. Choosing the parameters affecting barrier heights most, we acquired 25 most critical parameters
or connections (15 of them are activation links and 10 of the others are repression links).

In the following, we employed the Langevin dynamics method to further obtain the change of barrier heights when
these 25 parameters are changed, because by the Langevin dynamics method the landscape of the system can be
acquired directly by the statistics of the trajectories of the system - not through approximation. The ODE governing
the dynamics of the system has the form as:

Fi = −k ∗Xi +
a ∗Xai
Sn +Xai

+
b ∗ Sn

Sn +Xbi
(1)

Here in Eq (1), i=1,2,...,32, so totally there are 32 equations. S represents the threshold (inflection point) of
the explicitly sigmoidal functions, i.e., the strength of the regulatory interaction, and n is the Hill coefficient which
determines the steepness of the sigmoidal function [1]. Here, parameters for Hill function are specified as: S = 0.5, n =
4. In addition, k is self-degradation constant, b is repression constant, and a is activation constant.

Here, Xai and Xbi represent average regulation items separately for activation and repression from other nodes
to certain node i. For every node i, Xai is defined as: ((Xn

a(1) ∗ M(a(1), i) + Xn
a(2) ∗ M(a(2), i) + ... + Xn

a(m1) ∗
M(a(m1), i))/m1, and Xbi is defined as: ((Xn

b(1) ∗M(b(1), i)+Xn
b(2) ∗M(b(2), i)+ ...+Xn

b(m2) ∗M(b(m2), i))/m2. Here

a(1), a(2), ..., a(m1) is the number list of nodes which have activation interactions to node i, and b(1), b(2), ..., b(m1)
is the number list of nodes which have repression interactions to node i. M(j, i)(i, j = 1, 2, ..., 32) is the element
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Figure S2. The change of landscape when activation strength a is changed (b is fixed at b = 0.5). The three
attractors from left to right are separately corresponding to cancer, normal and apoptosis state. With activation
strength a going up, the cancer state becomes more prominent, and the normal state and apoptosis state become less
prominent.

of interaction matrix M characterizing the interaction type and the interaction strength from node j to node i. M
is acquired by multiply interaction type matrix Mi (see Table S6) to interaction strength matrix Ms (Table S7):
M(j, i) = Mi(j, i) ∗ Ms(j), i, j = 1, 2, ..., 32. Here, we made an assumption that the regulation from one individual
gene j to other genes has the same interaction strength which is determined by Ms(j). Therefore, in Eq. (1), the first
term represents self-degradation, the second term represents activation from other nodes (m1 nodes) to node i, and
the last item denotes repression from other nodes (m2 nodes) to node i. For the nodes with only activation regulations
and without repression regulations, a is set to 2 ∗ a and b is set to 0. For the nodes with only repression regulations
and without activation regulations, b is set to 2 ∗ b and a is set to 0.

Then, we did sensitivity analysis for parameters by changing each activation or repression strength Mji (increased
by 50%).

We also quantified the effects of key parameters (15 activation parameters and 10 repression parameters) on the
MFPT from cancer state to apoptosis state (τCA) from from stochastic dynamics approach (Figure S5A and B), in
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Figure S3. The change of landscape when the repression strength b is changed (a is fixed at a = 0.5). The three
attractors from left to right are separately corresponding to cancer, normal and apoptosis state. With the repression
strength b going up, the cancer state becomes more prominent. When b is very big (b = 1), the normal state becomes
dominant.

order to uncover the key factors determining the transition from cancer attractor to apoptosis attractor (the death
of cancer cells). This should provide some insight for killing cancer cells. In Figure S5, most of the mutations make
τCA longer, which means that the cancer attractor becomes more stable and more time is needed for system to jump
out from cancer attractor to apoptosis attractor. In the mean time, we find that link R9 (PTEN ⊣ AKT ) and R10
(P53 ⊣ V EGF ) can make τCA shorter significantly, meaning that cancer attractor lose their stability or death of
cancer cells. This provides the second mechanism that AKT and VEGF serve as the valid target gene of anti-cancer,
which is inducing caner cells to death by suppressing AKT or VEGF. In Figure S5 C and D, we show the effects of
key parameters (15 activation parameters and 10 repression parameters) on the MFPT from normal state to apoptosis
state (τNA). These uncover the the key factors determining the apoptosis process of normal cells. We find that link
R9 (PTEN ⊣ AKT ) and R10 (P53 ⊣ V EGF ) can make τNA shorter significantly. This indicates that repressing
AKT and VEGF can also lead the normal cells to death.
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Figure S4. The effects of parameters (66 activation parameters and 45 repression parameters) on the barrier (USN

and USC) from self consistent approximation approach. Here, USN represents the potential difference between the
saddle point (between normal attractor and cancer attractor) and the local minimum in normal attractor. USC

represents the potential difference between the saddle point (between normal attractor and cancer attractor) and the
local minimum in cancer attractor.

Kinetic Transition Rates Between Cancer and Normal States

We also investigated the kinetics or speed of the transition between the two attractors (normal and cancer) according
to the mean first passage time (MFPT), in order to further quantify the dynamics of the system. We calculated the
mean first passage time (MFPT) from the trajectory based on Langevin dynamics. In Figure S1, left, middle and
right attractor represent cancer, normal and apoptosis state respectively. This landscape is obtained by collecting the
statistics through histogram or distribution of the temporal stochastic trajectories for 32 variables. Starting from a
random initial state at normal attractor, following the temporal stochastic evolution trajectory of system, we can find
the time where the system first enters into the cancer attractor. The time difference between initial time and the final
time is defined as the first passage time (FPT) for the transition process from normal to cancer attractor. Repeating
this process and obtaining the average of the FPT is defined as the MFPT for the transition process from normal to
cancer attractor. In the same way, we can obtain the MFPT for the transition process from cancer to normal attractor.

MFPT reflects the average transition time of the system from one state to another state in the state space of gene
networks, and thus can be used to quantify the ability of the system switching from one state to another state. The
results of MFPT are shown in Fig. S6. It can be seen that for the normal to cancer process, the MFPT (τNC , blue
line) become shorter when the activation strength a increases. This implies that when activation is larger the system
need less time to jump from the normal state to the cancer state. Cells have more chances to stay in the cancer state,
and therefore the increase of the activation is advantageous to the progress of normal to cancer transition. On the
contrary, when the activation decreases, MFPT for normal to cancer become larger and MFPT for cancer to normal
become smaller, which means that smaller activation leads to more stable normal attractor. We also explored the
influence of changing the repression strength b on the landscape topography. Figure S6(C,D) show the MFPT results
when the repression strength b is changed. It shows that when b is increased, the MFPT for normal to cancer process
(τNC) increases, and the MFPT for cancer to normal process (τCN ) declines. This demonstrates that the increase of
repression strength also makes cancer attractor more stable and normal attractor less stable.

We also show how the fluctuations measured by diffusion coefficient D influence the barriers and MFPT (Fig.
5(E,F) and Fig. S6 (E,F)). It shows that at small noise level D, barrier is large and MFPT (escape time) is slower,
which demonstrates the landscape of cancer system is stable against certain fluctuations. We can also see that when
D increases, the barriers decline and the MFPT become faster. This indicates that larger noise destroy the stability
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Figure S5. The effects of key parameters (15 activation parameters and 10 repression parameters) on the MFPT
from cancer state to apoptosis state (τCA) as well as from normal state to apoptosis state (τNA) from Langevin
dynamics approach. Y axis represents the percentage of MFPT changed. (A) and (B) are for from cancer state to
apoptosis state. (C) and (D) are for from normal state to apoptosis state.

of system (landscape becomes flat) and transitions between different attractors become easy, so barriers and escape
time between normal and cancer attractors both decline. Additionally, we also found that with noise D changing
the barriers and MFPT do not change monotonically, which means that the noise have a complicated influence to
the relative stability of normal and cancer attractor, i.e. we cannot say that the increase of noise is advantageous to
normal or cancer state.

We can find that the global barrier heights and the MFPT have the similar trend for quantifying the transition
between normal and cancer state, and both of them can serve as the quantitative measure to the global stability of
the two attractors and kinetic speeds.

Construction of the Cancer Network

Cancer is a complex and heterogeneous disease displaying the degree of complexity at physiological, tissue and cellular
levels. Recent tumor genome sequencing efforts have demonstrated that there may be thousands of cancer driver-
mutating genes. These genes are diverse and have little overlap between different tumors. Nevertheless, most cancer
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Figure S6. The change of MFPT when activation a, the repression strength b and noise level D are changed. Here,
τNC represents the MFPT (first passage time) from normal attractor to cancer attractor. τCN represents the MFPT
(first passage time) from the cancer attractor to the normal attractor).

driver-mutated genes reflect cancer hallmarks or functional modules. Each hallmark or functional module is composed
of a set of functionally linked pathways. Therefore, it is possible to map the functional modules and the mutated genes
onto a cancer network. By doing so, we can use the network to represent complexity, compute biological relationships
and seek to uncover the biological principles and insights of cancer [2].

Weinberg et al. put forward the 10 hallmarks of cancer [3–5]. These hallmarks are characterized by some key cancer
marker genes, such as EGFR for proliferative signal, VEGF for angiogenesis, HGF for metastasis, hTERT for unlimited
replication, HIF1 for glycolysis, CDK2 and CDk4 for evading growth suppressors. Starting from these cancer marker
genes and some critical tumor suppressor genes such as P53, RB, P21, and PTEN, we made an extensive literature
search [6] for the interactions among these key genes as well as the interactions among other cancer associated genes,
and constructed a cancer gene regulatory network with 32 gene nodes (Fig. 1). This cancer network includes 32 nodes
(genes) and 111 edges (66 activation interactions and 45 repression interactions). In Fig. 1, arrows represent activation
and short bars represent repression. The network mainly includes three kinds of marker genes: apoptosis marker genes
(green nodes, including BAX, BAD, BCL2, and Caspase), cancer marker genes (magenta nodes, including AKT,
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MDM2, CDK2, CDK4, CDK1, NFKB, hTERT, VEGF, HIF1, HGF, and EGFR), and tumor repressor genes (light
blue nodes, including P53, RB, P21, PTEN, ARF, and CDH1). The brown nodes represent other genes. We provide
the order numbers and names of 32 genes, as well related functions in Table S1. We also show the evidences for the
connections in constructing the network in Table S2.

In the current cancer network, some important biological pathways have been indicated. For example, CDK4-
CDK2-E2F1-RB represents the main pathway of cell cycle. CDKs (Cyclin-dependent kinases, each consisting of a
catalytic CDK subunit and an activating cyclin subunit) regulate the cell’s progression through the phases of the cell
cycle by modulating the activity of key substrates. Tumor repressor RB (pRB) gene represses cell cycle regulator
E2F1, which promotes cell proliferation by activate CDK2. In the meantime, CDK4 and CDK2 both repress pRB,
which forms a positive feedback loop.

BAD, BAX, Caspase, and BCL2 are main proteins for apoptosis. When facing DNA damage, P53 represses the
expression of BCL2, BCL2 represses Caspase, so to induce cell apoptosis.

MYC-AKT pathway represents a positive regulator of cell proliferation progress [7,8]. Activated MYC has a wide
range of effects on cell cycle by activate Cyclin E/CDK2 complex and Cyclin D/CDK4 complex, down-regulating P21
levels, and up-regulating E2F1 expression. AKT promote cell proliferation by repressing P21 tumor repressor, and
antagonize cell apoptosis by repressing BAD and activating MDM2 oncogene. Oncogene NFKB can promote cell cycle
by activating oncogene MYC and CDK4. Meanwhile, NFKB can also repress tumor repressor PTEN.

Determination of Parameters for Cancer Network

Here, we designated parameters value uniformly (Eq. (1)), i.e. all activation strength a is same, and also for the
repression strength b, because so far we have no access for the information about the regulation strength — or the
magnitude of activation and repression parameters — between different genes in the cancer network. The default
parameter values are: a = 0.5, b = 0.5, k = 1. In this way, the value of gene expression level of every gene are
restricted between 0 to 1.

About the value of parameters, we choose parameter values according to the following criteria:
1, We chose parameter values according to some previous work [1, 9, 10], and used Hill cooperative binding ex-

pressions for the regulations. In the work of Huang et al [1], they explored a two gene system, where the region for
producing bistability is given as: threshold S=0.5-1.5, Hill coefficient n=4-8. Here, we choose parameter values as:
S=0.5, n=4. For the degradation, activation and repression strength, we set them uniformly for different variables
and set them in the same magnitude, because so far for cancer network there is no such information about regulation
strength which should come from the detailed biochemistry reactions involved in cancer system.

2, We chose those parameters that can satisfy some biological constrains, including producing steady state solution
as well as producing multi-stability, since our purpose is to explore the transition between normal state, cancer state
and apoptosis state (3 key stable states).

3, About the interaction strength matrix Ms, the default value of Ms(j), j = 1, 2, ..., 32 is 1. We did an extensive
parameter search by giving Ms(j) a gaussian perturbation with 0 as the mean and 0.5 as the standard deviation,
in order to explore the solutions for the broader interaction strength parameter space. At every specific Ms(j), by
giving different initial conditions for the ODE (100000 different initial conditions), we can obtain the distribution of
the steady state solutions (monostable, bi-stable or tri-stable state). We choose the parameter for Ms(j) producing
tri-stability (Table S7), which is corresponding to normal, cancer and apoptosis state.

Analyzing the relative gene expression level for the three state (Table S3), we can find that the apoptosis attractor
state has higher expression of tumor repressor gene RB,P21,PTEN, lower expression of oncogene AKT, EGFR, VEGF,
HGF, HIF1, hTERT, MDM2, CDK2, CDK4, and higher expression level of apoptosis marker gene Caspase. The normal
attractor state has higher expression level of tumor repressor gene RB,P21,PTEN, higher expression level of oncogene
AKT, EGFR, VEGF, HGF, HIF1, hTERT, MDM2, CDK2, CDK4, and lower expression level of apoptosis marker
gene Caspase. The cancer attractor state has lower expression level of tumor repressor gene RB,P21,PTEN, much
more higher expression level of oncogene AKT, EGFR, VEGF, HGF, HIF1, hTERT, MDM2, CDK2, CDK4, and lower
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expression level of apoptosis marker gene Caspase. Biologically, this is consistent with our understanding for normal,
cancer and apoptosis state [3–5].

Additionally, in barrier height and MFPT section (changing activation strength a and repression strength b),
as well as in global sensitivity analysis section, we did the perturbation for both activation strength and repression
strength, which show the relative robustness of current parameter regions. We also provided the results of changing
individual interaction strength from any gene i to gene j in the sensitivity analysis section.

Self Consistent Mean Field Approximation

The time evolution the dynamical systems are governed by the diffusion equations. Given the system state P (X1, X2, ..., Xn, t),
where X1, X2, ..., Xn represent the concentration or populations of molecules or species, we expected to have N-coupled
differential equations, which are difficult to solve. Following a self consistent mean field approach [9, 11, 12], we split
the probability into the products of individual ones: P (X1, X2, ..., Xn, t) ∼

∏n
i P (Xi, t) and solve the probability

self-consistently. This can effectively reduce the dimensionality from MN to M ×N , and thus make the computation
of the problem tractable.

However, for the multi-dimensional system, it is still hard to solve diffusion equations directly. We start from
moment equations and simply assume specific probability distribution based on physical argument, i.e. we give some
specific connections between moments. In principle, once we know all moments, we can acquire the probability
distribution. For instance, the Poisson distribution has only one parameter, so we may calculate all other moments
from the first moment, the mean. In this work, we use gaussian distribution as approximation, which means we need
two moments, mean and variance.

When the diffusion coefficient D is small, the moment equations can be approximated to [13,14]:

˙̄x(t) = F [x̄(t)] (2)

σ̇(t) = σ(t)AT(t) +A(t)σ(t) + 2D[x̄(t)]. (3)

Here, x, σ(t) and A(t) are vectors and tensors, and AT(t) is the transpose of A(t). The matrix elements of A is

Aij = ∂Fi[X(t)]
∂xj(t)

. According to this equation, we can solve x(t) and σ(t). Here, we consider only diagonal elements of

σ(t) from mean field splitting approximation. Therefore, the evolution of probabilistic distribution for each variable
could be acquired using the mean and variance based on gaussian approximation:

P (x, t) =
1√

2πσ(t)
exp− [x− x̄(t)]2

2σ(t)
(4)

The probability obtained above corresponds to one fixed point or basin of attraction. If the system has multista-
bility, then there are several probabilistic distributions localized at every basin of attraction, with different variations.
Therefore, the total probability is the weighted sum of all these probability distributions. The weighting factors
(w1, w2) are the size of the basin, representing the relative size of different basins of attractions. For example, for a
bistable system, the probability distribution takes the form: P (x, t) = w1P

a(x) + w2P
b(x), here w1 + w2 = 1. Here,

we determine the weights wi by giving a large number of random initial conditions for ODEs to find solution, and then
collect the statistics for different solution. For example, for a bistable system, if 10% initial condition goes to the first
steady state, and 90% initial condition goes to the second steady state, then the weight w1 for the first basin is 0.1 and
w2 for the second basin is 0.9. By giving large number of random different initial conditions for ODEs, we can solve
the equations at a fixed parameter set. By collecting the statistics of the solution, we can determine if the system is
monostable or bistable or multi-stable at current parameter region. In this work, the solution of 32 ODEs giving mul-
tiple (100000) different random initial conditions produce the multi-stability (bistable or tri-stable). For tri-stability,
the probability distribution takes the form: P (x, t) = w1P

a(x) + w2P
b(x) + w3P

c(x), w1 + w2 + w3 = 1. For 32
dimensional system, we can acquire 32 dimensional probability distribution. To exhibit the results in a 2-dimensional
space, we integrated out the other 30 variables and left two variables AKT and RB.
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Finally, once we have the total probability, we can construct the potential landscape by the relationship with
the steady state probability: U(x) = −lnPss(x). In the gene regulatory network system, every parameter or link
contributes to the structure and dynamics of the system, which is encoded in the total probability distribution, or the
underlying potential landscape.

For nonequilibrium gene regulatory systems, the driving force F can not be written as the gradient of potential
U , like the equilibrium case. In general, F can be decomposed into a gradient of the potential and a curl flux force
linking the steady state flux Jss and the steady state probability Pss [12, 15]( F = +D/Pss · ∂

∂xPss + Jss(x)/Pss =

−D ∂
∂xU+Jss(x)/Pss). Pss denotes steady state probability and potential U is defined as U = −lnPss. The probability

flux vector J of the system in concentration or gene expression level space x is defined as [13]: J(x, t) = FP −D · ∂
∂xP .

In the 32-dimensional protein concentration space, it’s hard to visualize 32-dimensional probabilistic flux. Approx-
imately, we explored the associated 2-dimensional projection of flux vector: J1(x1, x2, t) = F1(x1, x2)P −D ∂

∂x1
P and

J2(x1, x2, t) = F2(x1, x2)P −D ∂
∂x2

P .

Langevin Dynamics Method

A network of chemical reactions in noisy fluctuating environments can be addressed by ẋ = F(x) + ζ. Here, x(t) =
(x1(t), x2(t), ..., x32(t)) represents the vector of concentration or molecular number of species. F(x) is the vector for
the driving force of chemical reaction. In the cell, there are external noise and intrinsic noise, which can be significant
to the dynamics of the system [16, 17], so the noise term ζ is added to force item for which Gaussian distribution is
assumed, since the force ẋ = F(x) depict only the averaged dynamics of the system. The noise item is satisfied with:
< ζj(x, t) >= 0 and < ζi(x, t)ζj(x, t

′) >= 2Dijδijδ(t − t′)(δij = 1 for i = j, and δij = 0 for i ̸= j ). Here δ(t) is the
Dirac delta function, and D is diffusion coefficient matrix. The noise term is associated with the intensity of cellular
fluctuations either from the environmental external fluctuations or intrinsic fluctuations. Under large n expansions,
the process follows Brownian dynamics.

Following the Brownian dynamical trajectories with multiple different initial conditions by solving the above SDE
(stochastic differential equations) iteratively, we can obtain the steady state distribution function P (x) for the state
variable x (relative gene expression value in the gene regulatory network), which is relevant to the potential energy
function U(x) as P0(x) =

1
Z exp{−U(x)/D} . Here the partition function Z =

∫
dx exp{−U(x)/D}. In this way, we

map out the potential energy landscape.

Hamilton-Jacobian (HJ) Framework for Path Integral.

From our path integral formalism, we can evaluate the weights of the kinetic paths. The most probable trajectory can
be acquired when the action S(x) is minimized directly. The Lagrangian is written as:

L(x) =
1

4D
ẋ2 + V (x)− 1

2D
F(x) · ẋ (5)

and thus the generalized momentum can be written out as: P(x) = ∂L
∂̇x = 1

2D (ẋ − F(x)). In the kinetic system, the
Hamiltonian of the system has the form:

H(x) = −L(x) +P(x) · ẋ = Eeff (6)

According to the above equation, we can obtain 1
4D ẋ2 − V (x) = Eeff and |ẋ| =

√
4D(Eeff + V (x)). After

substituting Eq. S2 into the action, we can obtain S(x) =
∫
(P(x) · ẋ − H(x))dt. We can see that the action

characterizing the weights of the paths depends on the values of the Hamiltonian. Specific values of the Hamiltonian
correspond to specific values of the final time T . For a fixed Hamiltonian, a corresponding optimal path exits when
minimizing the action S(x).

From the least action principle, if the Hamiltonian of the system is constant, the variation of the action, for given
initial and final coordinates and initial and final time, is zero. Allowing a variation of the final time T and leaving
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the initial and the final coordinates fixed, we have δS = −Hδt. For a constant Hamiltonian, δS = −Eδt. We define
S0 =

∫
P(x) · ẋdt, since S(x) =

∫
(P(x) · ẋ−H(x)). We find δS0 = 0. Thus, the action S0 is minimized with respect

to all the paths satisfying the constant Hamiltonian and passing through the final point at any instant.
For multidimensional questions, the action depends not only the initial and final coordinates but also on the

initial and final time. In the HJ framework, we can transform the formulations into a different representation in
x space: S0 = SHJ(x) =

∫ ∑
i

1
2D (ẋi − Fi)dxi =

∫ ∑
i pi(x)dxi. Here pi is the associated momentum. Now the

action only depends on the initial and final coordinates. This action can be further simplified and is equivalent
to a line integral along a particular one dimensional path l so that SHJ(x) =

∫ ∑
i pi(x)dxi =

∫
pldl where pl =√

(Eeff + V (x))/D − 1
2DFl. This switch from the time-dependent to the Hamiltonian-dependent HJ description

[10, 18, 19]. The dominant path connection given initial and final states is obtained by minimizing the action in the
HJ representation SHJ =

∫ xf

xi
(
√
(Eeff + V (x))/D− 1

2DFl)dl, where dl is an infinitesimal displacement along the path
trajectory. Eeff is a free parameter that determines the total time elapsed during the transition.

In the current work, for simplification we chose Eeff = −Vmin(x), which is the effective potential by minimizing
V (x), and corresponding to the longest kinetic time. Finally, the optimal paths were obtained by minimizing the
discrete target function:

SHJ =
N−1∑
n

(
√
(Eeff + V (n))/D − 1

2D
Fl(n))∆ln,n+1 + λP (7)

where

P =
N−1∑

i

(∆li,i+1− < ∆l >)2

(∆l)2n,n+1 =
∑
i

(xi(n+ 1)− xi(n))
2

Fl(n) =
∑
i

Fi(x(n))(xi(n+ 1)− xi(n))/∆ln,n+1

V (n) =
∑
i

(
1

4D
F2(xi) +

1

2

∑
j

∂Fj(xi)

∂xj
) (8)

Here, ∆ln,n+1 is the Euclidean measure of the nth elementary path step, and P is a penalty function, which keeps
all the length elements close to their average and becomes irrelevant in the continuum limit. The minimization of
the discrete HJ effective action was performed by applying a simulated annealing algorithm or the conjugate gradient
algorithm. In this study, we chose the discrete steps n as 20, and the diffusion coefficient is chosen as 0.01. In Figure
2 and Figure 6 of main text, we projected the 32-dimensional path to 2-dimensional state space with respect to gene
AKT and RB as the biological paths.

Dynamic Paths from Discrete Dynamics

The landscape in Figure 2 only is the 2-dimensional projection of the whole 32 dimensional state space. In order to
demonstrate the cell states and the transitions between different cell types in the complete state space, we projected
the expression level of the 32 gene variables to binary states, and acquired discretized dynamics results of the network
(Figure 4 in main text).

We first used the Langevin dynamics to obtain the stochastic dimensionless trajectories of the 32 dimensional
system. Then the trajectory is converted to discrete trajectories by setting the value (0.5) of every variable as the
cutoff (gene expression level is between 0 to 1), i.e. the value higher than the cutoff is set to 1 (indicating high
expression), while the value lower than the cutoff is set to 0 (indicating low expression). So, we can obtain the discrete
trajectories for 32 variables of the system. For a 32 dimension system, there will be 232 states even in discrete case
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(every variable has two value, 1 represent high expression, 0 represent low expression), which cannot be handled
computationally. So, we chose the major 21 marker genes to present the discrete system, which has 221 = 2097152
states. For example, the normal state is represented by the binary number 001011010101110000000 (representing
expression level from gene 1 to gene 21, 1 for high expression, 0 for low expression), and for the cancer state, it is
represented by 100010000101110111100. For the apoptosis state, it is represented by 001101011010000000001. By the
statistics for the discrete trajectory, we can obtain the appearing probability separately for 221 different states. To
present the results, we set a probability cutoff 0.0002 (only states with higher probability than 0.0005 are chosen, the
cutoff is chosen so that the major states can be presented in a figure, not too many or too few states, i.e. we only
demonstrate the states and paths with higher probability). Figure 4 in main text shows the discrete landscape and
paths for cancer network represented by 247 cell states (nodes) and 334 transition jumps (edges) between the different
cell states. The sizes of nodes and edges are separately proportional to the occurrence probability of the corresponding
states and paths. Blue nodes represent states which are closer to normal cell states, and red nodes represent states
which are closer to cancer states. Especially, we acquired the dominant kinetic paths as the biological paths from
path integral formulism, which are shown as green and magenta paths separately for normal to cancer and cancer to
normal process.
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Table S1. 32 gene names in the cancer network and the corresponding function description.

Gene Functions
ATM=1 coordinate DNA repair by activating enzymes that fix the broken strands
P53=2 Tumor suppressor gene
P21=3 Tumor suppressor gene
PTEN=4 Tumor suppressor gene
CDH1=5 Tumor suppressor gene
RB=6 Tumor suppressor gene, control G1 checkpoint
ARF=7 Tumor suppressor gene, response to sustained mitogenic stimulation
AR=8 androgen receptor, oncogene
MYC=9 oncogene, promote proliferation
AKT=10 oncogene, promote proliferation, suppress apoptosis
EGFR=11 oncogene, release proliferative signal
VEGF=12 oncogene, promote angiogenesis
HGF=13 oncogene, promote metastasis
HIF1=14 oncogene, promote glycolysis
hTERT=15 oncogene, promote the product of enzyme telomerase
MDM2=16 oncogene, repress P53
CDK2=17 Cyclin-dependent kinases, cell cycle gene
CDK4=18 Cyclin-dependent kinases, cell cycle gene
CDK1=19 Cyclin-dependent kinases, cell cycle gene
E2F1=20 activate cyclins and ckds, promote proliferation
Caspase=21 apoptosis gene
BAX=22 Apoptosis regulator, promote apoptosis by binding to and antagonizing the Bcl2 protein
BAD=23 pro-apoptotic member of the Bcl-2 gene family which is involved in initiating apoptosis
BCL2=24 oncogene, inhibit apoptosis
NFkB=25 oncogene, repress tumor repressor PTEN
RAS=26 promote cell growth and division
TGFα=27 growth factor, activate cell proliferation, differentiation and development
TNFα=28 regulate immune cells, induce apoptosis
TGFβ=29 controls proliferation, differentiation
Wee1=30 repress cell cycle
MdmX=31 repress P53
Wip1=32 negative regulators of cell stress response pathways
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Table S2. Connections and corresponding evidences in the network (32 nodes, 111 connections
including 66 activation interactions and 45 repression interactions). For the column of interaction type, 1
represents activation, and -1 represents repression.

Source Node Target Node Interaction Type References

RB E2F1 -1 [20]
CDK2 RB -1 [21]
Wee1 CDK1 -1 [22]
NFKB MYC 1 [21]
ATM E2F1 1 [23]
E2F1 ARF 1 [21]
ARF MDM2 -1 [21]
ATM MDM2 -1 [24]
ATM P53 1 [25]
P53 P21 1 [20]
P53 PBCL2 -1 [20]
P53 BAX 1 [20]
BCL2 Caspase -1 [20]
P21 CDK2 -1 [20]
MDM2 P53 -1 [21]
MYC CDK2 1 [21]
MYC CDK4 1 [21]
CDK4 RB -1 [21]
AKT MDM2 1 [21]
AKT P21 -1 [21]
AKT BAD -1 [20]
PTEN AKT -1 [21]
MYC P21 -1 [21,26]
E2F1 CDK2 1 [22,27]
CDK2 E2F1 -1 [22]
MYC P53 1 [21]
BAX Caspase 1 [20,28]
BAD Caspase 1 [20,28]
MYC BAX 1 [21,29]
AKT NFKB 1 [21]
AKT HIF1 1 [30]
AKT VEGF 1 [31]
P53 PTEN 1 [32]
PTEN NFKB -1 [33,34]
NFKB PTEN -1 [35]
HIF1 VEGF 1 [36]
AKT AR -1 [37]
PTEN AR -1 [33,34]
AR P21 1 [38]
RB AR 1 [39]
MDM2 AR -1 [40]
HIF1 CDH1 -1 [41]
CDK2 CDH1 -1 [22]

Continued. . .
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Source Node Target Node Interaction Type References

P53 MDM2 1 [21]
AKT CDK2 1 [21]
NFKB BCL2 1 [21]
NFKB CDK4 1 [21]
RAS MDM2 1 [21]
RAS CDK4 1 [21]
TGFβ P21 1 [21]
TGFβ MYC -1 [21]
TGFα RAS 1 [21]
RAS MYC 1 [21]
BCL2 BAX -1 [42]
AKT Caspase -1 [21]
Caspase BCL2 -1 [28,42]
MdmX P53 -1 [42]
P53 Wip1 1 [42]
Wip1 ATM -1 [42]
Wip1 MdmX 1 [42]
Wip1 ARF -1 [42]
ARF MdmX -1 [42]
Wip1 MDM2 1 [42]
MDM2 P21 -1 [42]
RB MDM2 -1 [42]
ATM MdmX -1 [42]
AKT MdmX 1 [42]
MDM2 MdmX -1 [42]
RB CDK4 -1 [22]
RB CDK2 -1 [22]
P21 CDK1 -1 [22]
CDH1 CDK1 -1 [22]
CDK1 CDH1 -1 [22]
CDK1 Wee1 1 [22]
EGFR VEGF 1 [43]
EGFR MYC 1 [44]
EGFR AKT 1 [45]
EGFR RAS 1 [45]
AKT EGFR 1 [46]
TNFα EGFR 1 [47]
TGFα EGFR 1 [48]
TGFβ EGFR -1 [49]
HIF1 EGFR 1 [50]
VEGF AKT 1 [51]
VEGF RAS 1 [52]
VEGF BCL2 1 [53]
P53 VEGF -1 [54]
MYC VEGF 1 [55]
HGF MYC 1 [56]
HGF NFKB 1 [57]

Continued. . .
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Source Node Target Node Interaction Type References

HGF AKT 1 [58]
HGF EGFR 1 [59]
HGF HIF1 1 [60]
HGF BCL2 1 [61]
HGF VEGF 1 [62]
HGF CDH1 1 [63]
VEGF HGF 1 [64]
HIF1 HGF 1 [65]
TNFα HGF 1 [66]
TNFα TGFα 1 [67]
hTERT VEGF 1 [68]
hTERT ARF -1 [69]
P53 hTERT -1 [70]
HIF1 hTERT 1 [71]
TGFβ hTERT -1 [72]
HIF1 P53 1 [73]
HIF1 VEGF 1 [30,74]
HIF1 TGFβ 1 [75]
P53 HIF1 -1 [30]
RAS HIF1 1 [76]
TNFα HIF1 1 [77]
NFKB HIF1 1 [78]
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Table S3. Steady state relative gene expression level of three attractor state (a = 0.5, b = 0.5, k = 1)
respectively representing apoptosis, normal and cancer states. Only the key 21 genes are shown. The gene
expression level is in the range from 0 to 1.

Gene Numer Gene Apoptosis Normal Cancer
1 ATM 0.36340 0.42696 0.53399
2 P53 0.48017 0.46429 0.44160
3 P21 0.76646 0.50843 0.46523
4 PTEN 0.75901 0.29755 0.26638
5 CDH1 0.41957 0.63140 0.54350
6 RB 0.99767 0.71799 0.19438
7 ARF 0.25245 0.26346 0.36517
8 AR 0.68444 0.57478 0.11816
9 MYC 0.65714 0.47597 0.47606
10 AKT 0.28785 0.80542 0.85373
11 EGFR 0.52032 0.46055 0.46668
12 VEGF 0.39121 0.62358 0.67241
13 HGF 0.12002 0.59033 0.65474
14 HIF1 0.27710 0.66288 0.70476
15 hTERT 0.35362 0.46797 0.47319
16 MDM2 0.26235 0.48755 0.70843
17 CDK2 0.12482 0.45654 0.79604
18 CDK4 0.12593 0.42539 0.86807
19 CDK1 0.43442 0.46666 0.54233
20 E2F1 0.13813 0.25876 0.40906
21 Caspase 0.89277 0.06891 0.05561

Table S4. Repression link names in the sensitivity analysis and the corresponding regulations they
represent. The order numbers for causal and target genes are shown, which are corresponding to the gene name in
Table S1.

Link Name Causal Genes Target Genes
R1 17 6
R2 18 6
R3 15 7
R4 32 7
R5 4 8
R6 10 8
R7 16 8
R8 29 9
R9 4 10
R10 2 12
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Table S5. Activation link names in sensitivity analysis and the corresponding regulations they
represent. The order numbers for causal and target genes are shown, which are corresponding to the gene name in
Table S1.

Link Name Causal Genes Target Genes
A1 20 7
A2 6 8
A3 11 9
A4 13 9
A5 25 9
A6 26 9
A7 11 10
A8 12 10
A9 13 10
A10 9 12
A11 10 12
A12 11 12
A13 13 12
A14 14 12
A15 15 12
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Table S6. Interaction type matrix Mi. The element Mi(j, i) (the jth row and the ith column) represents the
interaction type from node j to node i. 1 represents activation, −1 represents repression, and 0 represents no
interaction.

Gene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0
2 0 0 3 1 0 0 0 0 0 0 0 −1 0 −1 −1 1 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 1 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
10 0 0 −1 0 0 0 0 −1 0 0 1 1 0 1 0 1 1 0 0 0 −1 0 −1 0 1 0 0 0 0 0 1 0
11 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
13 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
14 0 1 0 0 −1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
15 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 −1 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
17 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
25 0 0 0 −1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
29 0 0 1 0 0 0 0 0 −1 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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Table S7. Interaction strength Matrix Ms. The value of interaction strength in jth row (Ms(j)) represent the
interaction strength of gene j to any other genes.

Gene interaction strength
1 1.028
2 1.281
3 0.598
4 0.827
5 1.020
6 2.244
7 1.037
8 1.507
9 0.203
10 1.299
11 1.337
12 0.921
13 2.044
14 0.678
15 0.924
16 0.467
17 0.947
18 0.242
19 0.941
20 0.480
21 0.666
22 0.232
23 1.156
24 0.951
25 0.849
26 0.698
27 1.288
28 0.966
29 1.419
30 0.401
31 0.293
32 1.479
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Table S8. Transition path (produced by path integral) from normal state to cancer state
characterized by high/low expression level of 21 marker genes in Figure 3 of main text. The row of gene
ID represent the corresponding genes in Table S1. From the row normal to row cancer, every line represents a
cellular states. Normal represent the normal states, and cancer represents cancer states. 1 denotes high expression
level, and 0 represents low expression level.

gene ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Normal 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0

0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0
0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0
0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0
0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0

Cancer 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0

Table S9. Transition path (produced by path integral) from cancer state to normal state
characterized by high/low expression level of 21 marker genes in Figure 3 of main text. The row of gene
ID represent the corresponding genes in Table S1. From the row normal to row cancer, every line represents a
cellular states. Normal represent the normal states, and cancer represents cancer states. 1 denotes high expression
level, and 0 represents low expression level.

gene ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Cancer 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0
0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0
0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0
0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0

Normal 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0
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Table S10. Transition path (produced by path integral) from normal state to apoptosis state
characterized by high/low expression level of 21 marker genes in Figure 3 of main text. The row of gene
ID represent the corresponding genes in Table S1. From the row normal to row cancer, every line represents a
cellular states. Normal represent the normal state, and Apoptosis represents apoptosis states. 1 denotes high
expression level, and 0 represents low expression level.

gene ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Normal 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0

0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0
0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0
0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0
0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0
0 1 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1

Apoptosis 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1

Table S11. Transition path (produced by path integral) from cancer state to apoptosis state
characterized by high/low expression level of 21 marker genes in Figure 3 of main text. The row of gene
ID represent the corresponding genes in Table S1. From the row normal to row cancer, every line represents a
cellular states. Cancer represent the cancer state, and Apoptosis represents apoptosis states. 1 denotes high
expression level, and 0 represents low expression level.

gene ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Cancer 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0
0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0
0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0
0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0
0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1

Apoptosis 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1


