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S1 Applying the population-weighted opportunities model to

six European cities

S1.1 Data collection and preprocessing

We use Gowalla check-ins data set [S1] (http://snap.stanford.edu/data/loc-gowalla.html)

to test the performance of our population-weighted opportunities (PWO) model in

predicting the mobility patterns in European cities. Gowalla is a location-based social

networking website in which users share their locations through checking-in. The data

set includes in total 6,442,890 check-ins of users over the period of Feb. 2009 - Oct.

2010. For the data set we define a trip of a user’s by his/her two consecutive check-

ins at different locations. If a trip’s origin and destination are both in same city, we

classify the trip to inner-city trips. Based on the data, we sort out inner-city trips in

six European cities that have a sufficient number of Gowalla users, including London

(UK), Berlin (German), Prague (Czech), Oslo (Norway), Copenhagen (Denmark) and

Goteborg (Sweden). Table S1 shows the number of trips in each city. According to

the methods presented in section Materials and methods, Data preprocessing

in the main text, we partition each city into equal-area square zones, each of which

is of 1 km2. Figure S1 shows the zone partition results and the population density

distribution of the six cities.

Table S1: Data summary of six European cities.

City Number of Trips Number of Zones

London 49,323 986

Berlin 18,504 494

Prague 10,066 268

Oslo 11,464 88

Copenhagen 10,022 364

Goteborg 67,438 422
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S1.2 Prediction results

We compare the travel distance distributions and the travel fluxes between all pairs

of locations produced by the PWO model and the radiation model. The results are

respectively shown in figure S2 and figure S3, in which we can see that the predictions

of the PWO model, including the distributions of travel distance and the travel fluxes

between all pairs of locations are in good agreement with real observations, whereas

the radiation model’s results deviate from the real data.

S2 Applying the PWO model to four additional U. S. cities

S2.1 Data collection and preprocessing

We collected travel survey data from the Metropolitan Travel Survey Archive website

(http://www.surveyarchive.org/), which records more than 40 U. S. cities’ travel survey

archives. Most surveys contain information of citizens, including their households,

vehicles and a diary of their trips on a given day (including each trip’s origin and

destination location, start and end time, trip mode and purpose). Through checking

the data we find that for most data sets the trip-endpoints are labelled by TAZ code or

ZIP code. Due to the difficulty in converting the codes to geographic coordinates, we

only use the survey data sets of four U. S. cities (New York, Seattle, Detroit and the

Twin Cities) that contains the information of trip-endpoint’s geographic coordinates

(latitude and longitude).

We find out and record all trips in terms of the coordinates of their origins and

destinations from the four data sets. Table S2 shows the number of trips and some

other data descriptions of the four cities. Figure S4 shows the zone partition results

and the population density distribution of the four cities.

S2.2 Prediction results

Figure S5 shows the travel distance distributions produced by the PWO model as well

as the radiation model. We can see that the PWO model can precisely reproduce the

observed distributions of travel distance, whereas the prediction results of the radiation

model deviate from the real data. We also compare the travel fluxes between all pairs
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Table S2: Data summary of four U. S. cities.

City Survey Year Households Number of Trips Number of Zones

New York 1998 10,971 69,282 3,006

Seattle 2006 4,746 62,277 3,175

Detroit 1994 7,300 53,583 4,056

Twin Cities 2001 8,961 35,469 2,684

of locations produced by both models with the real data. As shown in Figure S6, we

find that the average fluxes predicted by both models deviate from real observations to

some extent. The prediction errors result from the low sampling rate in the household

travel surveys. For instance, in New York, there are 3,006 zones and the travel matrix

contains more than 9 × 106 elements in principle. However, the surveys only record

69,282 trips. In other word, more than 99% of the real travel matrix’s elements are

zeros. In contrast, the travel matrices established by the models are always fully filled

(although the values of some elements are very small). Thus the fluxes predicted

by both models inevitably deviate the insufficient samples of real fluxes. We believe

adequate sampling rate of real fluxes will allow a fair comparison between reproduced

results and real observations to validate our model.

S3 Comparing the PWO model with parameterised models

Since the 1940s, many trip distribution models have been proposed for predicting hu-

man or freight mobility patterns. The gravity model [S2] and intervening opportunity

model [S3] are two widely used models among them. Since both of them rely on spe-

cific parameters estimated in terms of real traffic data to predict mobility model, we

name them parameterised models. A recently presented rank-based model [S4] also

belongs to the parameterised models, although it needs very low input information to

reproduce some key characteristics of human mobility patterns. In this section, we will

compare the prediction performance of the PWO model with those of parameterised

models.
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S3.1 The parameterised models

(1) The gravity model

The gravity model [S2] stems from Newton’s gravity law and has many modified

versions so far. The original gravity model has the form

Tij = α
mimj

rβij
, (S1)

where Tij is the travels departed from location i to location j, mi and mj are the

populations of origin and destination and rij is the distance between i and j. Al-

though this model has a very similar form with Newton’s gravity law, the model’s

prediction results may violate the origin constraint Ti =
∑

j Tij and the destination

constraint Tj =
∑

i Tij . To ensure the constraints, one can alternatively use the doubly

constrained gravity model [S5]

Tij = AiTiBjTjf(rij), (S2)

where Ti is the total travels departed from location i, Tj is the total travels arrived at

location j, f(rij) is a function of the distance rij , and Ai = 1/
∑

j BjTjf(rij) as well

as Bj = 1/
∑

iAiTif(rij) are balancing factors that are interdependent to each other.

An iterative process enables calculating Ai and Bj , but it demands high computational

complexity. To simplify the calculation, one can use the singly constrained versions,

either origin or destination constrained, of the gravity model by setting one set of the

balancing factors Ai or Bj equal to one.

Here we employ the origin-constrained gravity model [S5] to predict mobility pat-

terns in cities, described as

Tij = Ti
mjf(rij)∑N
k ̸=imkf(rik)

. (S3)

The distance function f(rij) can be of any forms, such as power or exponential function.

Based on numerical test, we find that the gravity model with power function f(rij) =

r−β
ij offers better characterization of the cities’ mobility patterns than the exponential

function (see figure S7 and figure S8). Thus we use the power distance function, the

parameter β of which is estimated by fitting the real travel data of eight cities (see

details in S2.2).
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(2) The intervening opportunities (I. O.) model

The I. O. model [S3] stresses that trip making is not directly related to distance

but to the relative accessibility of opportunities for satisfying the objective of the

trip. The model’s basic assumption is that for every trip departed from a location,

there is a constant probability p that determines a traveller being satisfied with a

single opportunity. If a location j has mjΘ opportunities (we assume the number of

opportunities at a location j is proportional to its population mj), the probability of

a traveller being attracted by location j is αmj , where α = pΘ.

Considering now the probability qji of not being satisfied by any of the opportunities

offered by the jth destinations away from the origin i, we can write

qji = qj−1
i (1− αmj) (S4)

or
qji − qj−1

i

qj−1
i

= −αmj = −α(Si,j − Si,j−1), (S5)

where Sij is the total population between location i and j (including i and j). Assuming

that the number of destinations is sufficiently large, we can treat q and S as continuous

variables. Then Eq. (S5) can be rewritten as

dqi
qi(S)

= −αdS. (S6)

After integration we obtain

qi(s) =
e−αS

1− e−αM
, (S7)

where M is the total population in the city. Note that the trip departed from location

i to location j is equal to

Tij = Ti[qi(Si,j−1)− qi(Sij)]. (S8)

Combining Eq. (S8) and Eq. (S7), we obtain the I. O. model:

Tij = Ti
e−α(Sij−mj) − e−αSij

1− e−αM
. (S9)

(3) The rank-based model

The rank-based model [S4] assumes that the probability of an individual travelling

from an origin to a destination depends (inversely) only upon the rank-distance between
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the destination and the origin. The model is described as

Tij = Ti
Ri(j)

−γ∑N
k ̸=iRi(j)−γ

, (S10)

where Ri(j) is the rank-distance from location j to i (e.g., if j is the closest location to

i, Ri(j) = 1; if j is the second closest location to i, Ri(j) = 2) and γ is an adjustable

parameter.

S3.2 Estimating model parameters

Before applying the parameterised models, it is necessary to estimate their parameters.

The goal of the parameter estimation is to maximise the accuracy of reproducing real

mobility patterns by the models. Here we use Hyman method [S6], a standard method

for calibrating gravity model in transportation planning [S5], to identify the gravity

model’s parameter.

Hyman method aims to find an optimal parameter to minimise the difference be-

tween modelled average travel distance and real average travel distance

E(β) = |r̄(β)− r̄| =

∣∣∣∣∣
∑

i

∑
j Tij(β)rij∑

i

∑
j Tij(β)

−
∑

i

∑
j Tijrij∑

i

∑
j Tij

∣∣∣∣∣ , (S11)

where r̄(β) is the average distance given by the gravity model with parameter β, r̄

is the real average travel distance, Tij(β) is the number of travels from zone i to j

generated by the gravity model and Tij is the real number of travels from zone i to j.

It is not easy to solve the equation E(β) = 0. Hyman suggests that we use the secant

method to address this problem, described by the following process:

Step 1. Give an initial estimate of β0 = 1/r̄.

Step 2. Calculate a trip matrix using the gravity model with the parameter β0 and

obtain a modelled average travel distance r̄(β0). Estimate a better value of β by means

of

β1 = β0r̄(β0)/r̄. (S12)

Step 3. Applying the gravity model with the estimated value of β to calculate a new

trip matrix and obtain a newly modelled average travel distance r̄(β) to compare with

r̄ . If they are sufficiently close to each other, terminate the iteration and accept the

newest value of β as the best estimation; otherwise go to step 4.
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Step 4. Improve the estimation of β via:

βi+1 =
(r̄ − r̄(βi−1))βi − (r̄ − r̄(βi))βi−1

r̄(βi)− r̄(βi−1)
. (S13)

step 5. Repeat steps 3 and 4 until r̄(β) is sufficiently close to r̄.

The estimated parameters of the gravity model, the I.O. model and the rank-based

model by Hyman method are listed in Table S2 for different cities.

Table S3: Estimation of parameter values in three parameterised models

City Gravity model I. O. model Rank-based model Avg. travel distance

β α γ r̄ (km)

Beijing 1.71 5.71×10−6 1.14 5.50

Shenzhen 1.63 3.41×10−6 1.19 4.77

Abidjan 2.43 3.04×10−5 1.36 2.47

Chicago 2.14 2.69×10−4 1.15 9.49

New York 2.28 5.45×10−4 1.20 11.71

Seattle 1.93 2.65×10−4 1.12 8.30

Detroit 2.02 4.59×10−4 1.13 8.94

Twin Cities 1.93 3.56×10−4 1.04 8.15

S3.3 Comparison among different models

(1) Travel distance distribution

Figure S9 shows the travel distance distribution predicted by different models. We

see that both the gravity model and the rank-based model can reproduce the observed

distributions of travel distance in most cases, but the I. O. model’s results have signif-

icant deviation from the real data. Although in some cases the results of the gravity

model (or rank-based model) are better than those of the PWO model, the gravity

model needs a distance-decay function with adjustable parameters to match real data,

whereas our model relies solely on the population distribution without free parameters.

(2) Destination travel constraints

Figure S10 shows the destination travel constraints produced by the models. We see

that the results from the PWO model are in equal or better agreement with the real

data than those of the other models in all cases. It is noteworthy that the rank-based
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model shows the worst performance in this aspect. We speculate that the fact that

the rank-based model do not make use of the population data at destination locations

accounts for the big difference from real observations.

(3) Travel fluxes between all pairs of locations

We compare the travel fluxes between all pairs of locations predicted by models with

empirical data. As shown in figure S11 and figure S12, we observe that all the predicted

average fluxes by the PWO model, the gravity model and the rank-based model are

comparable with the real fluxes to some extent. To give a more explicit comparison

among different models, we use Sørensen similarity index as an alternative to measure

the degree of agreement between reproduced travel matrices and empirical observations.

Figure S13 shows that on average, the accuracy of the PWO model is higher than that

of the I. O. model and the rank-based model. Although in some cases the gravity model

can yield better prediction accuracy than the PWO model, the gravity model needs

parameter values estimated from previous mobility measurements. In contrast, the

PWO model only require the population distribution as input, rendering its application

scope broader.

S4 Relationship among trip distribution models

To deepen our understanding of the underlying mechanism in the trip distribution

models explored in this paper, we discuss the relationship among them. We will first

show that, in the particular case of uniform population distribution, the PWO, the

radiation model, the I. O. model and the rank-based model can all transform into

gravity-like models. Next, we will show that these models can be classified into two

categories of modelling frameworks: sequential selection and global selection.

S4.1 Uniform population distribution

Consider a uniform population distribution (i.e. Sji = ρπr2ij , where ρ is the population

density). We can write the PWO model (Eq. (1) in the main text) as

Tij = Ti
mj(r

−2
ij − π

A)∑N
k ̸=imk(r

−2
ij − π

A)
, (S14)
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where A is the area of the city. Comparing with Eq. (S3), we can realise that Eq. (S14)

is actually a gravity model with the distance function f(rij) = r−2
ij − π

A . This function

is a power law with a cut-off (see figure S14(A)). Since the population is not uniformly

distributed in real cities, we can not directly use such distance function in the gravity

model to predict travel fluxes. Alternatively, we have to estimate its parameters by

relying on real traffic data prior to applying the gravity model. However, we may

directly choose a population function, such as f(Sji) = 1
Sji

− 1
M , to be used in the

PWO model in the sense that the heterogeneity of population distribution has been

captured by Sji. Figure S14(B) shows the relationship between the population Sji and

the travel proportion Tij/Ti in Abidjan, which is in agreement with the population

function.

When the population distribution is of uniform distribution (sij = ρπr2ij), the radi-

ation model [S7] is reduced to

Tij ∝ Timjr
−4
ij , (S15)

which is actually a gravity model with a power-law distance function with power ex-

ponent β = 4. Comparing with the uniform version of the PWO model (having a

power exponent β = 2), the selection scope of an individual in the radiation model is

relatively more local. The radiation model can characterise the mobility patterns at

the country scale (the estimated power exponent of gravity law in the case of U. S.

state-wide commuting trips is 3.05 [S7], which does not significantly deviate from 4),

but it is not applicable to predicting city mobility patterns. Table S2 shows that the

estimated power exponents of the cities are subject to the range 1.63−2.43, quite close

to the exponent in Eq. (S14) but different from that in Eq. (S15).

The I. O. model can be also transformed into a gravity-like form in the case of

uniform population distribution:

Tij ∝ Ti(e
αmj − 1)e−αSij = Ti(e

αmj − 1)e−λr2ij , (S16)

where λ = αρπ. The distance function is of high-order exponential form, implying the

lack of long-distance travel generated by the model. Thus it is not surprise that the I.

O. model usually underestimates long-distance travels, as shown in figure S9.

The rank-based model uses rank-distance rather than spatial distance to predict the

travels between locations. When the population are uniformly distributed in cities, the
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rank-distance between locations is proportional to the square of the spatial distance,

such that the rank-based model can be rewritten as

Tij ∝ Tir
−2γ
ij . (S17)

The distance function in Eq. (S17) is a power law with the power exponent around

2 (see Table S2). It can thus yield similar results to the travel distance distribution

resulting from the gravity model and the PWO model (see figure S9). However, in the

rank-based model the information of population in destination is ignored, rendering

the destination travel constraints inaccurate, as shown in figure S10.

Taken together, insofar as given uniform population distributions, the PWO model,

the radiation model, the I. O. model and the rank-based model can presented to be

gravity-like models. Although these models have different hypothesis, they share sim-

ilar underlying mechanism: the probability that an individual selects a travel destina-

tion is decreased along with the increment of some prohibitive factors. In the gravity

models, the factor is spatial distance; in the rank-based model it is the rank-distance; in

the I. O. model, the radiation model or the PWO model, it is the population between

origins and destinations. The key difference lies in the fact that the gravity model,

the I. O. model and the rank-based model need adjustable parameters to quantify the

decrement effect, whereas in the radiation model and the PWO model, the decrement

effect is naturally determined by population distribution.

S4.2 Sequential selection and global selection

According to the decision-making process of travellers for selecting destinations, the

frameworks of predicting mobility patterns can be classified into two categories. The

first category includes the I. O. model and the radiation model, in which each traveller

ranks potential destinations in ascending order according to the distance to his/her

origin. An individual first decides whether to travel to the first destination in terms of a

probability which is determined by some specific rules (see schematic in figure S15(B)).

If the individual abandons the destination, the second one will be considered in terms of

the same probability. Analogously, all potential destinations will be considered step by

step until the individual eventually decides to travel to a chosen one. We name such

step-by-step decision-making process sequential selection. The modelling framework
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can be described in a unified form:

qji = qj−1
i (1− θj), (S18)

where qji is the probability of excluding the 1st to jth destinations departed from the

origin i and θj is the probability of selecting jth destination insofar as the 1st to

(j − 1)th destinations are not selected. Thus, the probability of selecting j to travel

can be expressed in a joint probability

pij = qj−1
i θj . (S19)

The I. O. model can be derived by assuming that the probability θj is proportional

to the population of destination j (i.e. θj = αmj). After some calculations (see details

in section S2.1), we finally have

pij =
e−α(Sij−mj) − e−αSij

1− e−αM
, (S20)

which is the probability of selecting destination j departed from i in the I. O. model.

Similarly, assuming that the probability θj is the ratio of the population of destina-

tion j to the total population Sij between locations i and j, we have

qji = qj−1
i (1−mj/Sij) =

∏
j

Si,j−1

Sij
=

mi

Sij
(S21)

and

pij = qj−1
i

mj

Sij
=

mimj

Si,j−1Sij
, (S22)

which is nothing but the radiation model.

Different forms of probability θj can lead to different versions of models that are

subject to the framework of sequential selection. For instance, assuming the probability

θj is the ratio of mj to the remaining population M − Sij +mj , we can have

qji = qj−1
i (1−

mj

M − Sij +mj
) =

∏
j

M − Sij

M − Sij +mj
=

M − Sij

M
(S23)

and

pij = qj−1
i

mj

M − Sij +mj
=

mj

M
, (S24)

which is the uniform selection model [S8].
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Note that in the sequential selection models, it is possible to find that travellers do

not select any destinations to travel unless the system is infinite [S9]. In general, the

probability is pii = 1 −
∑

j pij . In other words, a traveller stays at the origin with

probability pii. For the I. O. model, pii = (1 − e−αmi)/(1 − e−αM ); for the radiation

model and the uniform selection model, pii = mi/M .

The second category, named global selection, includes the gravity model, the PWO

model and the rank-based model. In global selection model’s decision-making process, a

traveller evaluates the attractions of all possible destinations simultaneously and selects

a destination to travel with a probability proportional to the destination’s attraction

(see schematic in figure S15(C)). The unified framework can be described as

pij =
Aj∑
j Aj

, (S25)

where Aj is the attraction of destination j. If we solely use population to capture

the destination’s attraction, the uniform selection model is obtained; if we use some

functions to describe the decay of attraction along with the increase of (real or rank)

distance, we can obtain the gravity or the rank-based model (see Eq. (S3) and Eq.

(S10)); if the attraction is inversely proportional to the population between destinations

and origins, the PWO model is derived.

Despite the difference between the two modelling frameworks, both sequential and

global selection models imply the preference for closer destinations in human travel

decision-making: in sequential selection model, a closer destination has a higher pri-

ority to be selected; in global selection model, the attraction of a closer destination

decays slowly than that of a farther one. Although both frameworks capture the

decision-making process of travellers to some extent, our comparison study (figure S7-

S11) demonstrates that at the city scale, global selection models perform better than

sequential selection models.
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Figure S1: The zone partition and population density distribution of six Eu-

ropean cities. (A) London. (B) Berlin. (C) Prague. (D) Oslo. (E) Copenhagen. (F)

Goteborg. The density function Φpop(i) represents the probability of finding a travel

started from zone i.
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Figure S2: Comparing the travel distance distributions generated by different

models. (A) London. (B) Berlin. (C) Prague. (D) Oslo. (E) Copenhagen. (F)

Goteborg. Pdist(r) is the probability of a travel between locations at distance r.
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Figure S4: The zone partition and population density distribution of four U. S.

cities. (A) New York. (B) Seattle. (C) Detroit. (D) Twin Cities. The density function

Φpop(i) represents the probability of finding a travel started from zone i.
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Figure S5: Comparing the travel distance distributions generated by different

models. (A) New York. (B) Seattle. (C) Detroit. (D) Twin Cities. Pdist(r) is the

probability of a travel between locations at distance r.
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Figure S7: Comparing the travel distance distributions generated by two types

of gravity models. (A) Beijing. (B) Shenzhen. (C) Abidjan. (D) Chicago. (E) New

York. (F) Seattle. (G) Detroit. (H) Twin Cities.
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Figure S9: Comparing the travel distance distributions generated by different

models. (A) Beijing. (B) Shenzhen. (C) Abidjan. (D) Chicago. (E) New York. (F)

Seattle. (G) Detroit. (H) Twin Cities.
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Figure S10: Comparing the destination travel constraints of different models.

(A) Beijing. (B) Shenzhen. (C) Abidjan. (D) Chicago. (E) New York. (F) Seattle. (G)

Detroit. (H) Twin Cities.
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Figure S12: Comparing the observed fluxes with the predicted fluxes for five

U. S. cities.
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Figure S13: Comparing the prediction ability of different models based on

Sørensen similarity index (SSI).
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Figure S14: Distance function and population function. (A) The distance function

f(rij) = r−2
ij − π

A . A = π1002. (B) The relationship between the population Sji and

travel proportion Tij/Ti. Blue circles are empirical data and red line is the theoretical

function (M = 607167).
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Figure S15: Schematic description of sequential selection and global selection.

(A) Simplified scenario of destination selection. Central circle (red) is the origin, other

circles are selectable destinations. (B) The decision-making process of sequential selec-

tion. each traveller ranks all possible destinations in ascending order according to the

distance to his/her origin. An individual first decides whether to travel to the first desti-

nation in terms of some probability If the individual abandons the first destination, the

second one will be considered in terms of the same probability. Subsequently, all possible

destinations will be considered step by step until the individual decides to travel to the

chosen one. (C) The decision-making process of global selection. a traveller evaluates

the attractions of all possible destinations simultaneously and selects a destination to

travel with a probability proportional to the destination’s attraction.
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