Supporting Information

Perturbation of Long-Range Water Dynamics as the Mechanism for the Antifreeze Activity of Antifreeze Glycoprotein.

Sairam S. Mallajosyula, Kenno Vanommeslaeghe and Alexander D. MacKerell Jr.*

Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street HSF II, Baltimore, Maryland

21201, United States

Figure S1: Upper Panel: Selected oxygen (carbohydrate) – oxygen (water) radial distribution functions, g(r), from 250K simulations of (a) AFGP8 and (b) s-AFGP4 using the TIP5P water model. The g(r) for pure water (TIP5P water model) under the same simulation conditions is also presented for comparison. Lower Panel: Difference (Δ) between the radial distribution functions. Δ is calculated as the difference between g(r) of pure water and g(r) of select oxygen (carbohydrate) -oxygen (water) radial distribution from 250K simulations of (a) AFGP8 and (b) s-AFGP4.

Figure S2: Upper Panel: Selected oxygen (carbohydrate) – oxygen (water) radial distribution functions, g(r), from 250K simulations of (a) AFGP8 and (b) s-AFGP₄ using the TIP4P-2005 water model. The g(r) for pure water (TIP4P-2005 water model) under the same simulation conditions is also presented for comparison. **Lower Panel:** Difference (Δ) between the radial distribution functions. Δ is calculated as the difference between g(r) of pure water and g(r) of select oxygen (carbohydrate) -oxygen (water) radial distribution from 250K simulations of (a) AFGP8 and (b) s-AFGP₄.

Figure S3: Q distributions for water molecules around Gal (left panels) from 250 K simulations of (a) AFGP8 and (b) s-AFGP₄. The Q distribution for water molecules around protein (right panels) from 250 K protein-only simulations of (a) AATAATPATAATPA and (b) ATAATAATAATA are also presented. The distributions were evaluated for water molecules less than 3.5 Å, between 3.5 Å-5.5 Å, and between 10.0 Å-12.0 Å from the selection (Gal or protein). The Q distribution for pure water at 250 K (dotted line with filled circle) and 300 K (dotted line with open triangles) are also presented. The distributions are evaluated from simulations using the TIP4P-2005 water model.

Figure S4: Q_K distribution for water molecules around Gal evaluated in increments of 0.2 Å shells from the glycopeptides from 250 K simulations of (a) AFGP8 and (b) s-AFGP4. The Q_K distribution for water molecules around protein evaluated in increments of 0.2 Å shells from 250 K protein-only simulation of (c) AATAATPATAATPA and (d) ATAATAATAATAA. (e) The trace of the highest Q_k peak from all these profiles. Dotted line indicates the value of the highest Q_k peak from pure water simulations at 250 K. The distributions are evaluated from simulations using the TIP5P water model.

Figure S5: Water-water H-bond autocorrelation functions from 250 K and 300 K simulations of AFGP8 (dot dashed lines) and s-AFGP₄ (dotted lines). The autocorrelation functions were evaluated for water molecules within two spatial regions, less than 3.5 Å (blue lines) and 10.0 Å -12.0 Å (red lines) from the glycopeptides. Autocorrelation functions evaluated from 250 K and 300 K pure water simulations (dashed black line) are also presented for comparison. The distributions are evaluated from simulations using the TIP4P-2005 water model.

AFGP8		s-AFGP ₄		Water	
250 K	300 K	250 K	300 K	250 K	300 K
TIP5P					
0.0066	0.3011	0.0066	0.2998	0.0047	0.2778
TIP4P-2005					
0.0367	0.2253	0.0362	0.2248	0.0332	0.2137

Table S1: Diffusion Coefficient (D) estimated from the mean square displacement (MSD) of water oxygen atoms. MSD were evaluated from the last 2 ns of the molecular dynamics simulations used to calculate the H-bond auto-correlation functions.