
Figure S1, related to Figure 1
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Figure S5, related to Figure 5  



 
 

Legends to Supplementary Figures 
 
Figure S1: Datasets and subsets used in the manuscript, related to Figure 1.  
A. Graphic representation of the datasets. Names are provided on top of each 
dataset icon, explanation of the different ORFs used to map the respective 
datasets are in the legend on top and in the main text.  
B. Tabulated summary of different interactions subsets and therein contained 
effectors, interactions, and interacting host proteins for each pathogen in the 8k, 
12k and PPIN-1 search space. 12k and PPIN-1 include the 8k space, 
respectively. The 8k space interactors that are only in the search space versus 
those that are also part of the AI-1MAIN network are listed separately.  
C. Interactions of OECs, sorted according to phylogenetic relationship, with 
Arabidopsis host proteins are indicated by blue squares. Grey bars indicate 
OECs that were not cloned. 
 
Figure S2: Complete plant pathogen interactome network 2 (PPIN-2), related to 
Figure 2 
A. Complete PPIN-2 network contains interactions among host proteins found in 
PPIN-1, and AI-1RPT and literature curated interactions (LCI).  
B. Random network rewiring simulation shows that the effector interacting 
proteins are less connected than in degree-preserved randomly rewired 
networks. Shown is the size distribution of the largest connected component 
formed by the effector-interactors in 10,000 degree-preserved randomly rewired 
AI-1MAIN networks compared to the observed value (red arrow). 
 
Figure S3: Complete phenotyping data, related to Figure 3. 
A. Complete heat-map displaying phenotyping results for all tested T-DNA 
insertion lines. Locus ID and gene symbol are indicated to the left, IDs of the 
insertion lines to the right. 
B. Comparison of intra- and interspecies convergence. For each Arabidopsis 
protein interacting with at least two effectors the effector-degree is displayed in a 
color coded manner as a bar-graph. Arabidopsis proteins only interacting with a 
single effector are not shown. 
 
Figure S4: TCP14 re-localizes effectors to sub-nuclear foci, related to Figure 4.  
A-C. Controls demonstrating that TCP14 did not co-localize with controls with 
which it did not interact in Y2H. These included (A) three representative 
effectors; (B) the bZIP5 TF; and (C) the unrelated, sub-nuclear body localized 
PhyB protein. Note that the data in C represents images of hypocotyls of two-
week-old Arabidopsis seedlings hemizygous for 35S:phyB-CFP and EST:TCP14-
YFP. Seedlings were grown under white light. To induce the expression of 
TCP14-YFP, 20µM of estradiol was applied 24 hours before imaging.  
D. TCP14 does not re-localize Psy effectors AvrPto5 and HopBF1.  
E. TCP14 re-localizes five additional interacting Hpa effectors. HaRXL146 and 
CRN4b did not co-localize with TCP14-RFP as YFP-tagged fusions, but were re-
localized as CFP-tagged fusions by TCP14-YFP.  



 
 

F,G. TCP14 re-localizes 13 additional interacting Gor effectors. All confocal 
pictures were taken 40-48 hours after infiltration of Agrobacterium strains 
expressing the different xFP–tagged proteins in leaves of 5-6 week old N. 
benthamiana plants. 
H. Western blots of effector fusions used in transient expression assay. Red 
denotes effectors re-localized to TCP14. Expected molecular masses are given 
in Table S4. 
 
Figure S5: Evolutionary parameters of effectors interactions and high AAP 
proteins, related to Figure 5 
A. For none of the four groups of effector targets is the observed mean DT 
significantly different from random expectation. Shown are boxplots of the DT 

mean of observed effector-interactors (real) compared to the distribution of 
means observed in 1,000 random samplings from AI-1MAIN of the same size.  
B. For the AI-1MAIN interactors of none of the four groups of effector targets is the 
observed mean DT significantly different from random expectation. The boxplots 
show the DT mean of observed AI-1MAIN interactors of effector-interactors (real) 
compared to the distribution of means observed in 1,000 random networks 
obtained by degree preserving random rewiring. Boxes bracket the 25th and 75th 
percentile; whiskers indicate the 1.5-fold interquartile distances; dots represent 
remaining outliers. 
C. Real versus randomly observed interacting effector-interactors of top AAP-
ranking proteins. Plotted on Y-axis are cumulative counts of effector-interactors 
interacting with proteins encoded by the top AAP-ranking x genes. Data from AI-
1MAIN are shown as red dots, the black line shows the median of 1,000 randomly 
rewired networks, grey shaded areas show the 25th and 75th percentiles of values 
found in the rewiring controls. The lower panel provides for each data point the 
experimentally determined P value (* 0.05; ** 0.005). Boxplots are laid out as in 
B. 
D. Analysis as in B, but counting proteins interacting with effectors from two or 
three pathogens.  
E. Analysis as in B, but counting proteins interacting with effectors from three 
pathogens.  
F. Analysis as in B, but counting proteins interacting with effectors and whose 
genetic deletion caused an immune phenotype. 
 
 
 
 
 

 

  

 
 
  



 
 

Glossary 

AAP 
Amino Acid Polymorphism – all nucleotide polymorphism that result 

in a given amino acid change at a specific position in the protein.  

AD GAL4 Activation Domain in the Y2H system 

AI-1 

Arabidopsis interactome 1, a large-scale interaction network map 

consisting of AI-1MAIN and AI-1RPT, previously published in Science 

2011 (Figure S1). 

AI-1MAIN 

Systematic dataset of the Arabidopsis interactome, obtained by 

screening 8000 ORFs of the 8k_space systematically against each 

other twice (Figure S1). 

AI-1RPT 
A dataset obtained by screening a subset of 8k_space, consisting of 

1000 x 2000 Proteins against each other 6 times (Figure S1). 

degree Number of interaction partners 

Effector-

degree 

Number of virulence effectors interacting with a specific Arabidopsis 

protein. 

EHIn 

(Gor_EHIn, 

Hpa_EHIn, 

Psy_EHIn  

Effector Host Interactome – datasets describing interactions 

between effectors from the investigated (Psy, Hpa, Gor) pathogens 

with host proteins. Interactions within 8k_space and 12k_space (Gor 

only) and indicated by a respective subscript (Figure S1). 

DB GAL4 DNA Binding Domain in the Y2H system 

DT Tajima’s D 

edge Network term for connections between nodes, here: “interactions” 

edr Enhanced disease resistance 

eds Enhanced disease susceptibility 

Gor  Golovinomyces orontii 

Hpa Hyaloperonospora arabidopsidis 

node Network analysis term for connected entities, here proteins 

OEC G. orontii effector candidates 

ORF Open Reading Frame 

PPIN-1 

 

Plant-Pathogen Interactome Network-1 obtained by screening of 

Hpa and Psy effectors twice against proteins in the 8k_space and 

against a selection of immune proteins as described in Mukthar et 

al., Science, 2011 (Figure S1).  

Psy Pseudomonas syringae  

θW Watterson’s estimator θ for the scaled mutation rate 

8k_space 8,000 Arabidopsis proteins used to generate AI-1 and PPIN-1 

12k_space 12,000 Arabidopsis ORFs, including all of the 8k_space 



 
 

Supplemental Experimental Procedures 

1. Yeast-2-hybrid interactome mapping of OECs 

A detailed protocol of the Y2H pipeline used is presented in (Dreze et al., 2010). 
Briefly, the 84 cloned OECs were transferred into pDest-AD and pDest-DB 
vectors by Gateway recombination. Successful ORF transfer was confirmed by 
PCR analysis. Isolated destination clones were transferred into S. cerevisiae 
Y8930 (for DB clones; MATα) and S. cerevisiae Y8890 (for AD clones; MATa) by 
Lithium-Acetate based transformation. Transgenic clones were selected on 
selective medium and stored in 20% glycerol at -80°C before use. For 
autoactivator removal, DB- and AD-OEC clones were mated with yeast clones 
containing an empty bait or prey vector on YEPD medium. After o/n incubation, 
colonies were transferred to selective media for diploid yeast (Sc–Leu–Trp) and 
incubated o/n. Then, diploid colonies were transferred to interaction media (Sc–
Leu–Trp–His + 3-amino-1,2,4-triazole (3-AT), incubated o/n and replica-cleaned 
(excess yeasts were removed by pushing plates onto a fine velvet on a replica 
plating block). Three days later, growth phenotypes were scored and 
autoactivators removed from the OEC libraries. The AD-OEC yeast clones were 
pooled by separate growth o/n and unification into one solution. Equal 
representation of clones in pools was confirmed by plating and colony PCR on 30 
colonies. The Arabidopsis library used is described in (Mukhtar et al., 2011); 
Consortium, 2011). For the screen, single DB-OEC clones were mated with pools 
of 192 AD-At clones, while single DB-At clones were screened against the AD-
OEC pool. The screen was repeated once. Five µl of freshly grown DB- and AD- 
yeast were spotted on top of each other on YEPD medium using a robotic fluid 
handling device. Plates were incubated o/n, colonies replated onto interaction 
medium as well as cycloheximide (CHX) autoactivator control plates (Sc–Leu–
His + 3-AT + CHX (1 mg/l)), incubated o/n and replica-cleaned. After five days 
incubation, single colonies were isolated and rearrayed into 96-well plates. These 
primary positive interactors were reevaluated in a secondary screen. They were 
plated onto diploid-selection medium, incubated two days, and transferred to 
interaction medium plates (Sc–Leu–Trp–His + 3-AT). Three autoactivator plates 
(Sc-Leu-His + 1 mM 3-AT + CHX) were also included. Plates were replica-
cleaned and incubated three days. Positive clones were restreaked to diploid 
selection medium, incubated two days and lysed. PCR was used to obtain 
sequence information on corresponding AD- and DB-clones per colony. The 
interactors were identified by BLAST searches, single clones of these interactors 
retrieved from the stock and rearrayed for the retest screen. Matings of single 
clones were performed as described above, but phenotypes were scored on both 
Sc–Leu–Trp–His + 3-AT and Sc–Leu–Trp–Ade plates. Interactions were scored 
as verified when they were positive in three of four repeated matings and 
autoactivation was never detected.  
 

The experimental methods used to define Gor_EHIn were identical to those 
previously used for mapping bacterial and oomycete effector interactions, and for 



 
 

producing the Arabidopsis Interactome AI-1 (Consortium, 2011; Mukhtar et al., 
2011). Consequently, key parameters of the interactome screen such as 
sampling- and assay-sensitivity are identical between the experiments and 
integration of the data will not introduce biases due to experimental design 
(Venkatesan et al., 2009). Moreover, the 8k_space was systematically tested in 
all experiments and thus forms a common scaffold for integration. (Figure S1A). 

2. T-DNA lines and pathogen assays 

Homozygous insertion mutants were ordered from ABRC for 124 of 165 effector 
interactors. Homozygosity and correct insertion sites were verified by PCR using 
standard conditions. Plants were grown under short day conditions (9 h light, 
21°C; 15 h dark, 18°C).  
 
The phenotypic assays have different degrees of difficulty. We funneled the 
mutant collection through these assays from simplest (Hpa), for which we 
screened 179 mutants and second alleles extensively, to most difficult (Pto), 
where we focused on the mutants that had altered Hpa phenotypes and whose 
products interacted with the most effectors. 
 
Hyaloperonospora arabidopsidis (Hpa) isolates, inoculations, and growth assays. 
Hpa isolates Emwa1, Emoy2, and Noco2 were propagated on the susceptible 
Arabidopsis ecotypes Ws-2, Oy-1 and Col-0, respectively (Dangl et al., 1992; 
Holub et al., 1994). Twelve day old seedlings were inoculated with sporangia 
suspended in water at a concentration of 30,000 spores/ml. Plants were kept 
covered with a lid to increase humidity and grown at 21°C with a 9 hrs light 
period. Sporangiophores were counted on cotyledons at 4 (Hpa Noco2) or 5 
(Hpa Emwa1 and Emoy2) days post-infection (dpi) as described (Holt et al., 
2005). The number of sporangiophores per cotyledon was determined on 
approximately 100 cotyledons / genotype.  
 
Bacterial infection assays. P. syringae pv tomato DC3000 growth assays were 
performed as previously described (Holt et al., 2005) with modifications. Briefly, 
bacteria were resuspended in 10 mM MgCl2 to ~1x105 cfu/ml and syringe 
infiltrated into leaves of ~5 week old wild type and mutant plants. Leaf discs were 
cut from the infiltrated area on the day of infiltration (0 dpi) and 3 dpi, and placed 
into Eppendorff tubes containing 3 glass beads and 400µl 10 mM MgCl2. Tissue 
was ground using a Fastprep-24 Instrument (MP Biomedicals). Serial dilutions 
were plated on KB-agar plates and cfu/ml were determined. For day 0 samples, 
four leaf discs were transferred to the same microfuge tube and processed as 
described above. For day 3 samples, 8 x 4 leaf discs were processed. The 
experiment was repeated at least 3 times. 
 
Fungal infection assays. Powdery mildew infections were carried out as 
described previously, except that spores were harvested at 7 dpi (Weßling et al., 
2012). Inoculations were either performed on 18 day old seedlings or 4-5 week 
old plants. Briefly, inoculations were either performed on three pots per genotpye 
containing ~200 18 day old seedlings or four 4-5 week old plants were inoculated 



 
 

in a settling tower with G. orontii spores harvested from four leaves 14-21 dpi. 
Each round of inoculation included nine pots of randomized genotypes, thus all 
genotypes were included in three separate inoculations. After one minute 
incubation the pots were returned to the growth chamber. At seven dpi, three 
times 200 mg (older plants) or 500 mg (seedlings) plant material was harvested 
across pots and G. orontii spores isolated by shaking in water. The number of 
spores/g fresh weight was determined by counting eight chambers in a 
hemocytometer.  

3. Transient expression in N. benthamiana 

Agrobacterium-mediated transient expression assay: N. benthamiana plants 
were grown in a growth chamber equipped with LGM550 Professional LED Grow 
Light (LED Grow Master Global LLC, USA) at 24°C(day)/20°C (night) under a 16-
h light/8-h dark cycle. A. tumefaciens strain GV3101 containing protein 
expression constructs was grown at 28°C with appropriate antibiotics for 18-24 h. 
Agrobacterium cells were collected by centrifugation at 10,000 RPM for 1 min, 
and then resuspended in induction solution (10 mM MES (pH 5.6), 10 mM MgCl2, 
and 150 µM acetosyringone). Cell suspensions were incubated at room 
temperature for 2 h before infiltration into N. benthaminana. For co-infiltration, 
Agrobacterium strains expressing different proteins were mixed together at the 
desired final OD600 values (effector OD600 =1.5; TCP14 OD600 =0.05; and p19 
(silencing suppressor) expression plasmid OD600 = 0.1) and infiltrated into leaves 
of 5- to 6-week old N. benthamiana plants with a 1 ml needleless syringe. 
  
DAPI staining: DAPI (1 µg/ml) was infiltrated into leaves 1 h before confocal 
imaging. 
 
Estradiol treatment: 20 µM Estradiol in water with 0.004% Silwet L77 was applied 
to both abaxial and adaxial sides of leaves 6-8 hours before confocal imaging. 
The treatment was repeated 1 h later. 
 
Confocal Microscopy Imaging: Leaf discs (5 mm diameter) were collected at 40-
48 hours after infiltration. Each effector/TCP14 combination was assayed twice. 
The abaxial sides of three leaf discs from each co-infiltrated leaf were observed 
with a confocal microscope (LSM 7 DUO; Carl Zeiss). All samples were imaged 
with a 40x water objective. Between 5 and 15 nuclei were observed in each 
repetition. The confocal images were edited with Zen 2009 (Zeiss) and Adobe 
Photoshop CS2. Zen 2009 (Zeiss) and Excel (Microsoft) were used to create 
histograms. The excitation and detection wave lengths are listed in Table S5.  

4. Western Blotting 

Proteins were isolated in lysis buffer (20 mM HEPES pH 7.5; 13 % Sucrose; 1 
mM EDTA; 1 mM Dithiothreitol (DTT); 0.01 % Triton, 1x complete protease 
inhibitor cocktail (Roche)) from two 0.9 cm leaf discs/experiment using metal 
beads and a mixer mill (Retsch, Haan, Germany). After addition of 1 volume 
loading buffer (125 mM Tris-HCl pH 6.8; 5 % sodium dodecyl sulfate (SDS); 25 
% glycerol (v/v); 0.025 % bromphenol blue (w/v); 0.2 M DTT), sample were 



 
 

denaturated for 5 min at 95°C and the supernatant used for gel electrophoresis 
and western blotting by standard methods. Fusion proteins were detected by 
anti-GFP (Roche), anti-HA (Roche) and anti-c-myc (Sigma-Aldrich) antibodies 
according to manufacturer’s instructions. 

Supplemental Bioinformatic Procedures 

5. Convergence analyses 

Intraspecies convergence: Significance of intraspecies convergence was 
determined experimentally based on the experimentally observed number of 
interacting A. thaliana host proteins within Space 8k_sys for effectors from Hpa, 
Psy, and Gor provided in Figure S1B. For each pathogen effector interactors 
were sampled randomly from a list of AI-1MAIN proteins (not shown) and from a 
degree preserved list of AI-1MAIN loci (Figure 2C-E) (Consortium, 2011) using the 
“sample” command in R. The second analysis is more stringent as it increases 
the probability of repeatedly picking the more connected proteins and therefore 
leads to a lower number of nodes expected by chance. The distribution obtained 
from 10,000 samplings were plotted and compared to the experimentally 
observed value. The experimental P value was calculated by dividing the number 
of samplings where the number of common targets is greater or equals the 
observed number of common targets by the number of samplings performed. If 
the observed number of targets is not seen in the simulation, the P value is set to 
< 0.001. 

 

                 

                                                  
                                  

                   
 

 
Interspecies convergence statistics: Significance of the convergence of effectors 
from different pathogens interacting with common host proteins was determined 
experimentally. The convergence was determined for all possible pathogen 
combinations based on the numbers of common interaction partners provided in 
Figure 2F. For each pathogen the number of host interaction partners was 
sampled randomly from a unique list of proteins in AI-1MAIN (Consortium, 2011) 
using the “sample” command in R with replacement. The observed number of 
common proteins for each pathogen combination in each of 10,000 samplings 
was plotted as a background expectation and compared to the experimentally 
observed value of common interaction partners provided in Figure 2F. The 
experimental P value was calculated by dividing the number of samplings where 
the number of common targets is greater or equals the observed number of 
common interactors by the number of samplings performed. If the observed 
value of common targets is not seen in the simulation, the P value is set to < 
0.001. 

 



 
 

                 

                                                  
                                  

                   
 

 

6. Gene Ontology (GO) enrichment  

We used GO enrichment analysis to test, which functional processes are 
overrepresented i) among effector interacting proteins, and ii) among the top 55 
ranking genes. To this end we performed a GO enrichment analysis using all loci 
in AI-1MAIN as the background distribution. The analysis is based on GO 
annotations of TAIR10 (timestamp: 2013-09-03), which we downloaded from the 
TAIR ftp-server. We removed all annotations with the evidence code "inferred 
from electronic annotation" (IEA). 17 out of 2661 loci in AI-1MAIN do not have any 
manually curated GO annotation. For enrichment analysis we used the GOstats 
package version 2.28.0 (Falcon and Gentleman, 2007). We used the function 
hyperGTest to perform a hypergeometric test on the GO terms. We used a P 
value cut-off of 0.005 and “conditional testing”, which means that parent terms 
are tested without genes, which already have been found to be significant in a 
children term. 

7. Scoring of phenotypic assays 

Scoring significant phenotypes: The three pathogens H. arabidopsidis, P. 
syringae and G. orontii used in our infection assays have different lifestyles and 
therefore the level of infection of wild-type and mutant plants is assessed using 
different statistical approaches. Depending on the data collected for each 
pathogen we used different statistical tests to determine if a T-DNA line shows a 
significant difference in pathogen infestation in the infection assay compared to 
the Col-0 control plants.  

 
Values of G. orontii experiments of adult plants and seedlings have been derived 
from hemocytometer counts and represent spores/g fresh weight. A Gaussian 
generalized linear model was fitted on the data and used for ANOVA analysis (R 
package “car”)(Fox and Weisberg, 2011). As we have repeated the inoculation 
experiments up to four times with a T-DNA line and the control line we treat it as 
a block experiment, where every T-DNA line and the respective control plants of 
one batch are treated as one block. The block is treated as second factor in our 
ANOVA analysis beside the first factor of the knocked-out gene. Our data were 
analyzed as a two-way ANOVA experiment with the factors gene and batch. The 
Benjamini & Hochberg method (Benjamini and Hochberg, 1995) was applied for 
multiple testing correction. 
 
P. syringae data are represented as cfu/ml and have the same characteristics 
like G. orontii data and have been analyzed the same way.  
 



 
 

H. arabidopsidis isolates Emwa1, Emoy2 and Noco2 data sets were collected as 
counts of sporangiophores per cotyledon. These data do not satisfy the 
requirement of ANOVA for normality distribution. This requires the use of a non-
parametric test. We used the Kruskal-Wallis test to calculate the P value and 
corrected the results with Bonferroni multiple testing correction method.  

Determination of edr vs. eds phenotypes: To determine if a given insertion 
mutant shows an eds or edr phenotype compared to Col-0 accession, we 
calculated a log2 fold change.  

 
For each pathogen / pathogen strain p the mean value x of raw spore / 
sporangiophores counts for each T-DNA and Col-0 control line were normalized 
by scaling values between 0 and 1. 

           (    )  
           

             
 

where xi,p is the raw mean value of the pathogen p and the value of the tested 
gene i. Xmin,p is the minimum value of pathogen p and Xmax,p is the maximum 
value of pathogen p. 
 
The phenotype of the T-DNA line with respect to the Col-0 control plants was 
evaluated by calculating the fold change of the mean normalized values of all 
available batches for each T-DNA line. The average fold change of all batches 
for a given T-DNA line was converted to a log2 fold change. A log2 fold change of 
0 means same pathogen infestation of T-DNA line and control line, a negative 
log2 fold change shows a lower infestation (enhanced disease resistance) and a 
positive log2 fold change indicates a higher infestation (enhanced disease 
susceptibility).  
 

        
                  

  

                  
  

 

 
fci,p,k is the fold change of T-DNA line i inoculated with pathogen p in batch k. 
Normalized(xM i,p,k ) is the normalized value of T-DNA line i inoculated with 
pathogen p in batch k and Normalized(xC i,p,k ) is the normalized value of control 
line of T-DNA line i inoculated with pathogen p in batch k.  
 

              (
       

  
) 

 
Log2 fc i,p is the log2 fold change of T-DNA line i of pathogen p. fci,p,k is divided by 
the number of batches ni of the respective T-DNA line i.  
 
Merging phenotypes for multiple T-DNA lines: For the summarized phenotypic 
analysis of mutants we combined the phenotypic outcome if more than one T-
DNA line per gene was available. Therefore we compared the pathogen-specific 



 
 

P values of the phenotypes on the different T-DNA lines representing the same 
gene. We selected the phenotypic outcome with the lowest (most significant) P 
value to obtain merged phenotypes for a gene. We found no contradictory 
phenotypes for any pathogen, i.e. we had no case where we observed an edr 
phenotype in one mutant line and an eds phenotype in the other mutant line. In 
15 cases we observed a statistically significant pathogen-specific phenotype in 
one allele of a gene and no phenotype for the second allele of this gene. In these 
instances we selected the outcome of the line with the statistically significant 
result (i.e. the line showing the altered pathogen infection phenotype). 

8. Arabidopsis Consensus Sequence Building and AAP evaluation 

To evaluate natural variation in Arabidopsis accessions we used the complete 
genomes of 80 accessions sequenced in the context of the 1001Genomes 
project and mapped on the Col-0 reference genome. These were collected in 
eight regions distributed over Europe and Asia, where Arabidopsis naturally 
occurs and provide a large spatial and phylogenetic distribution adapted in 
different environments. This dataset was published by Cao et al., 2011 and can 
be downloaded from 1001genomes.org.  
 
A challenge for the quantitative evaluation of coding variation is the fact that 
single nucleotide polymorphisms (SNPs) are reported relative to the Columbia 
(Col-0) reference genome (Cao et al., 2011). This results in numerous SNPs 
being called in all 80 accessions. In contrast, a conservative nomenclature would 
identify this as a SNP in Col-0 only. We used a majority voting scheme to define 
the consensus sequence of the Arabidopsis population consisting of the genomic 
sequences of Col-0 and the dataset MPICao2010 (Cao et al., 2011), which is 
available at 1001genomes.org (Altmann et al., in preparation). In this scheme, 
the most common base at any position defines the consensus sequence and all 
other variants that occur in the population are counted as variant SNPs where 
they occur. The codons in coding regions of the consensus sequence of 
representative gene models as annotated in TAIR10 were compared against the 
respective codons in the 81 accessions in the genome matrix. In each accession 
we examined the codons for synonymous SNPs (sSNPs), non-synonymous 
SNPs (nsSNPs) and the resulting amino acid. A unique amino acid 
polymorphism (AAP) is defined qualitatively as a specific amino acid substitution 
at a given position, independent of the frequency of how often the specific 
substitution was found in the analyzed population. In other words a SNP leading 
to a hypothetical G->A substitution counts as a single unique AAP independent of 
how often this amino acid replacement occurred; a substitution resulting in a 
hypothetical G->T replacement is counted as a second unique AAP. For each 
protein we counted the unique number of AAPs observed for an individual 
position. We calculated the sum of unique AAPs per position of a protein, which 
results in the number of unique AAPs in a protein.  

9. Calculation of Tajima’s D (DT) and Watterson’s θ (θW) 

In order to determine DT and θW values for all genes in AI-1Main, we extracted the 
aligned genomic sequences of all 80 accessions and Col-0 for the respective 



 
 

representative gene models as fasta file from the whole genome alignment  
(TAIR10_genome_matrix_2012_03_13.txt.gz) from the dataset MPICao2010 
(Cao et al., 2011) (1001genomes.org/projects/MPICao2010/). This information 
was used to calculate DT and θW using the standard settings in the compute 
program of the analysis software package (version 0.8.4) developed by the 
Thornton lab (Thornton, 2003). 
 
To rank genes for their genetic variation within the 81 accessions, we calculated 
a combined rank of DT and θW (Dθ-ranking). We sorted all genes in descending 
order according to their DT and θW values. Subsequently genes were ranked 
according to the ascending order of the mean rank of these two lists.  

10. Statistics of DT for effector targets and their AI-1MAIN interactors  

To determine whether the DT values of effector-interactors, or that of their AI-
1MAIN interaction partners, deviate significantly from the background distribution, 
we performed sampling and random rewiring analyses for the four effector 
groups as indicated in the main text (all targets; targets of two or three 
pathogens; targets of three pathogens; and targets with phenotype). 
 
To evaluate DT for effector-interactors, we randomly drew without replacement 
1,000 samples of the same size as the respective effector group from the unique 
set of genes encoding proteins in AI-1MAIN as random control. To analyze the 
significance of DT of the AI-1MAIN interaction partners of effector-interactors, we 
generated 1,000 randomized degree-preserved networks and determined the 
mean DT of all interaction partners of the respective effector-interactors in the 
random networks. For each of the four sets of effector-interactors and their AI-
1MAIN interaction partners, we calculated a two-sided P value for the observed 
mean compared to the distribution of the 1,000 mean values of the random 
controls. We counted the number of occurrences greater equal and lower equal 
than population mean +/- (population mean - sample mean), and divided it by the 
number of samples.  
 
11. Statistical evaluation of top Dθ- and AAP-ranking genes with effector-
interactors 

Dθ-ranking: We investigated whether proteins encoded by top Dθ-ranking genes 
preferentially interact with effector-interactors. This analysis was performed for 
interactions with the four different sets of effector targets: all effector targets; 
proteins interacting with effectors from two or three pathogens; proteins 
interacting with effectors of three pathogens; and effector targets showing a 
phenotype in the phenotyping assay.  

 
We performed 100,000 times a degree-preserving random rewiring of the AI-
1MAIN network by permuting two interaction partners of two randomly selected 
edges using the rewire function in the igraph R package v0.7.0 (Csardi and 
Nepusz, 2006). This was repeated to generate 1,000 rewired networks. In each 
random network we counted the number of effector-interactors interacting with 



 
 

proteins encoded by the cumulative 1 – 70 top Dθ-ranking genes and the 
analysis was repeated for each class of effector-interactors. The data was used 
to calculate the experimental P value for the probability of finding the 
experimentally observed number of interactions between top Dθ-ranking genes 
with effector-interactors by chance. We calculated an observed P value by 
dividing the number of observations with a value greater equal than the real 
number of observation by the number of generated rewired networks.  

Amino Acid Polymorphism Effector Interactors Evaluation: To determine, if loci 
having a high number of AAPs interact more often with effector targets than other 
loci, we evaluated the AAP in the same way than the combined Dθ ranking. We 
sorted the loci descending by their number of AAPs and determined the 
cumulative number of interacting effector-interactors. To calculate a P value we 
compared the real value against the distribution of number of effector targets 
from 1,000 rewired networks. P value calculation and network rewiring was 
conducted as for evaluation of combined ranking of DT and θW. 

12. Fisher Exact Contingency Tables 

Proteins that are object of intraspecies convergence are also object of 
interspecies convergence (based on Figure S2B) 
 

AI-1MAIN Effector 
interactors 

Intraspecies 
convergence 

no intraspecies 
convergence 

Total 

Interspecies 
convergence 

25 7 32 

no intraspecies 
convergence 

31 92 123 

Total 56 99 155 

Two-tailed Fisher’s exact test: P < 0.0001 
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