Supporting Information

Cabrero et al. 10.1073/pnas.1412706111

Fig. S1. C/C chloride channel family expression in Drosophila melanogaster. Data mining of FlyAtlas identified three CLC genes, but only two of the three show highly abundant expression in adult Malpighian tubules.

Fig. 52. Disruption of *ClC-a* expression has no impact on the resting transepithelial potential. Transepithelial potentials of GAL4 driver parental lines and the $ClC-a^{KK101247}$ insertional allele are compared with principal cell-specific and stellate-cell–specific *ClC-a* knockdowns. There is no significant difference between any of the lines. Data are shown as mean \pm SEM (n = 8).

CIC-a Ab

DN A C

	Ponceau S				Western blot				Merge		
kDa	L	Α	В	kDa	L	Α	В	kDa	L	Α	в
260	-			260				260	-		
160	-			160				160			
110	-			110		-		110		-	
80	-	1000	-	80		-		80		-	
60	-		1000 A	60				60	and.		
50	-			50				50	-		
40	-		10.00	40				40			
			122								
30		in the second	14	30				30	-		
20	-			20				20			
15	-			15				15			
10	-			10				10			
3.5	1			3.5				3.5	100		

Fig. S3. Western blot analysis of Malpighian tubules using CLC-a antibody. (A) Ponceau S staining of control sample (A) and peptide block sample (B). (B) Western blot analysis of CLC-a antibody before (A) and after (B) blocking with the antigenic peptide. (C) Merge picture of A and B.

Fig. 54. Immunocytochemistry of CLC-a. Confocal microscopy sections of *D. melanogaster* Malpighian tubules showed membrane localization of CLC-a (arrows, red). *A* and *B* show two different transverse (*Upper*), coronal (*Lower*), and sagittal (*Right*) planes of the same Malpighian tubule after immunocytochemistry using CLC-a antibody.

Fig. S5. Western blot analysis of Malpighian tubules using CLC-c antibody. (*A*) Ponceau S staining of control sample (*A*) and peptide block sample (*B*). (*B*) Western blot analysis of CLC-c antibody before (*A*) and after (*B*) blocking with the antigenic peptide. (*C*) Merge picture of *A* and *B*.

Fig. S6. Immunocytochemistry of CLC-c. (A) Control line showing principal and stellate cell (dashed lines) localization of CLC-c. (B) Specificity was confirmed by blocking CLC-c antibody with the antigenic peptide. (C) Down-regulation of ClC-a in stellate cells abolished the staining of CLC-c in the stellate cell and increased the staining in the principal cell. (D) Knockdown of ClC-c in principal cells decreased the staining in principal cells and increased staining in the stellate cells. (Scale bars: 25 µm.)