Supporting Information

Chaboureau et al. 10.1073/pnas.1324002111

Validation of Paleoclimate and Paleobiome Simulations

Mesozoic Biomes Derived from LPJ. LPJ is a dynamic global vegetation model that computes photosynthesis, evapotranspiration, and ultimately net primary production and surface cover of vegetation through 10 plant functional types (PFTs). These PFTs are differentiated by physiological, morphological, phenological, bioclimatic, and fire response attributes (1). The phenology differentiation is constructed referring to phenology of presentday groups of plants: evergreen, raingreen, and summergreen. Such a distinction is neither relevant nor very well constrained for Mesozoic vegetation, so here the woody PFTs have been gathered according to their bioclimatic characteristics (tables 1 and 2 in ref. 1), ultimately giving tropical, temperate, and boreal biomes. Temperate and tropical herbaceous PFTs were kept in the analysis (Table S2).

Testing the Impact of pC0₂: A Model–Data Comparison. The aim of this part is to test the 15 simulations performed with FOAM-LPJ for the five continental configurations and for the three atmospheric CO₂ concentrations used here (560, 1,120, and 2,240 ppm). The five continental configurations stand for the Late Triassic, the Early Jurassic, the Early Cretaceous, the mid-Cretaceous, and the Late Cretaceous. We first compare our model outputs, e.g., biomes, to the geographical distribution of climatesensitive sediments. Based on the works of Warren, Scotese, Parrish et al., and Chumakov et al. (2–5), we have plotted the location of evaporites and coals on our five paleogeographic maps (Fig. S1).

Coals are indicators of a humid climate and are found at low and high latitudes. They are not discriminating for the temperature and can be found under cool or warm climatic conditions (3). For the Late Triassic, very few sites characterized by the presence of coal deposits exist. When computing the spatial fit between coals and simulated biomes (i.e., the percentage of coal sites that are not found in an arid biome), it appears that atmospheric CO₂ concentrations of 1,120 and 2,240 ppm are better to fit the data (Table S1). Indeed, some desert regions appear at 560 ppm over the high latitudes where coal deposits are found. For the Early Jurassic (180 Ma), many more sites with coal deposits have been listed. Here again, except for one site located at 35°S to 75°E, the agreement between model and data is perfect for the high CO₂ levels (1,120 and 2,240 ppm). An atmospheric CO₂ level of 560 ppm induces the extension of desert regions over the northern high latitudes where coal deposits are found. For the Cretaceous geographies, the same conclusions can be drawn. First, most of the coal deposits are located outside the desert areas, and second, a CO₂ concentration of 560 ppm does a less good job in simulating humid areas fitting the coal's distribution.

Evaporites are generally used in the literature to constrain the areal extent of arid zones. However, based on the study of the South Atlantic evaporitic basin (visible on the Early Cretaceous map), Chaboureau et al. (6) have demonstrated that the evaporites deposited in the southern part of the Central segment (20°S–10°S) may have been controlled by the climate favoring aridity and high saline waters. In contrast, the evaporites of the northern part (10°S to 5°N) can hardly be reconciled with the climatic conditions occurring there and may be due to hydro-thermal sources. This hypothesis is supported by the gradient found in the mineralogical composition from the north to the south. From this study, we also note that seasonally arid climate is enough to simulate environmental conditions in agreement

with the formation of evaporites. If now we look at the geographical distribution of the evaporites on our maps, one can first conclude that they are less abundant than the coal deposits. Second, evaporitic basins are mainly localized over the desert area, although some are found over the tropical biome. A closer inspection shows that most of the evaporites found over the tropical biome are close to the tropical–desert transition area. In detail, this transition is marked by savannah, which corresponds to a highly seasonal climate (one rainy season and one arid season).

As an intermediate conclusion, for each time interval, no big mismatch appears between our bioclimatic maps and the data record. This shows that (i) our numerical simulations can be trusted for use as a basis to interpret the way the angiosperms have colonized the temperate areas and (ii) 1,120 and 2,240 ppm scenarios produce better fit with continental data than 560 ppm.

To go a step further in our model-data comparison and find out the best fit between 1,120 and 2,240 ppm for each time interval, we need to compare our climatic simulations with other proxies, namely, reconstructed sea surface temperatures. Unfortunately, such datasets are not available for the Late Triassic and the Early Jurassic. Thus, for these periods we relied on pCO₂ estimates from the literature to choose our scenarios. These estimates have high uncertainties, and most rely on stomatal analyses of different tree species. The latest studies suggest values of ca. 900 ppmv (7), whereas most studies agree on a background atmospheric pCO_2 of *ca.* 1,000 ppm for the late Triassic and the early Jurassic [whereas a doubling of this value likely occurred at the Triassic-Jurassic boundary event (8-11)]. Given this information and the good fit of coals with our simulation (Table S1), we chose 1,120 ppm as the best-fit scenario for the late Triassic and the early Jurassic.

Tentative reconstructions of sea surface temperature (SST) gradients are available for Cretaceous times, for which foraminifera and fish tooth $\delta^{18}O_p$, TEX₈₆, and D47 are used (12–20). Because of uncertainties concerning our understanding of the way marine organisms record temperature, an envelope delimited by simulated winter and summer SSTs in the northern hemisphere is plotted for each simulation in Fig. S2. Temperatures have been averaged between 60°W and 140°E because most SSTs estimates are coming from Tethysian locations. Because they are driving evaporation budget and related moisture advection toward the continent, we pay particular attention to midlatitude to high-latitude SSTs.

For the Aptian, high-latitude SSTs have been derived from the clumped isotope thermometry D47 measured on Berrasian–late Valanginian belemnites (12), which allows us to estimate temperature during shell biomineralization and to assess δ^{18} O shells independent of seawater δ^{18} O. Accounting for error bars, the authors suggest temperatures ranging from 10 to 20 °C at that time. At 1,120 ppm (Fig. S24), simulated SSTs at the same latitude are clearly out of this range (0–7 °C), whereas the fit is better at 2,240 ppmv, temperatures ranging from 4 °C to 17 °C (Fig. S2*B*). At low latitude, the congruence with the TEX86 data is also better with 2,240-ppm simulation, whereas temperatures are underestimated at 1,120 ppm.

For 90 Ma, the temperatures have been reconstructed from rudists (18), TEX₈₆ measurements (14), and planktonic foraminifera δ^{18} O (19) and show strong variations. For instance, temperature at 30°N range from 16 °C to 32 °C depending on the proxy used. The main uncertainties in the reconstruction of paleotemperatures from biogenic carbonate include assumptions

about the equilibrium fractionation in extinct species, about the true δ water value, and about the possible diagenesis. Here the selected planktonic foraminifera data in the study of (19) exclude altered carbon material, but the nonequilibrium calcification could cause underestimated actual upper ocean water temperatures by the isotopic measurements. In contrast to the foraminifera, the outer layer of certain groups of rudist is compact and has a good potential to preserve the original chemical and isotopic composition (18). For both 1,120 and 2,240 ppm scenarios, our simulations fail to capture the lower range of lowlatitude reconstructions (by the planktonic foraminifera). At 2,240 ppm, simulated temperatures are high enough at 60°N to encompass reconstructed temperatures from foraminifera, which range between 17 °C and 20 °C at this latitude (Fig. S2D) and are consistent with the high values at the low latitudes. The 1,120ppm experiment depicts temperatures that are too cool to match the data (Fig. S2C).

For 70 Ma, the robustness of the reconstructed temperatures from fish tooth $\delta^{18}O_p$ (16) is more important because the oxygen isotopes of biogenic phosphate are less prone to postmortem alteration (in comparison with biogenic carbonate) and no nonequilibrium oxygen isotope fractionation has been observed during precipitation of biogenic apatite. For 1,120 ppm the envelope fit with 70% of reconstructed temperatures from fish tooth $\delta^{18}O_p$ (Fig. S2*E*) versus only 51% with 2,240 ppm (Fig. S2*F*). In particular, the midlatitude to high-latitude reconstructions (11–12 °C at 50°) fit better with simulated SSTs from the 1,120ppm scenario (10 °C in winter, 26 °C in summer), whereas the sensitivity of the simulated low-latitude summer and winter SSTs is low and less discriminating (between 25 °C and 35 °C at 20° of latitudes).

To summarize, although model-data discrepancies still exist, as the reader can easily see in Fig. S2, their comparison shows the best correspondence for atmospheric CO_2 at 2,240 ppm for the Early and mid-Cretaceous and 1,120 ppm for the Late

- Sitch S, et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. *Global Change Biol* 9(2):161–185.
- 2. Warren JK (2006) Evaporites; Sediments, Resources, and Hydrocarbons (Springer, Berlin).
- 3. Scotese C (2000) The Palaeomap Project. Available at www.scotese.com.
- Parrish JT, Ziegler AM, Scotese CR (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. *Palaeogeogr Palaeoclimatol Palaeoecol* 40(1-3):67–101.
- Chumakov NM, et al. (1995) Climatic belts of the mid-Cretaceous time. Stratigr Geol Correl 3(3):241–260.
- Chaboureau A-C, et al. (2012) The Aptian evaporites of the South Atlantic: A climatic paradox? Clim Past 8(3):1047–1058.
- Steinthorsdottir M, Wohlfarth B, Kylander ME, Blaauw M, Reimer PJ (2013) Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions. *Quat Sci Rev* 68:43–58.
- Beerling DJ, Royer DL (2002) Reading a CO2 signal fossil stomata. New Phytol 153(3): 387–397.
- McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. *Science* 285(5432):1386–1390.
- Bonis NR, van Konijngburg-van Cittert JHA, Kürschner WM (2010) Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeogr Palaeoclimatol Palaeoecol 29(1-2):146–161.
- 11. Retallack GJ (2009) Greenhouse crises of the past 300 million years. *Geol Soc Am Bull* 121(9-10):1441–1454.

Cretaceous (Fig. S2). Therefore, we have integrated and discussed the results of these best-fit model-data simulations in our manuscript.

Assessment of Model Limitations

For consistency purposes, we used identical atmospheric CO₂ concentration (pCO₂) for FOAM and LPJ in our analysis. However, despite the common use of LPJ-like models (e.g., Biome4) to assess global vegetation changes under past and future climate conditions, the behavior of such algorithms under pCO₂ far higher than present, such as those of the Mesozoic, has not been studied to our knowledge. For example, the CO₂ fertilization effect (CO₂ rise that leads to an increase in photosynthesis activity that ultimately drives a strong enhancement of net primary productivity) has been shown to be correctly simulated in temperate areas and overestimated in tropical forests for present day (21), but to what extent this effect and limitations are valid for Mesozoic vegetation and pCO₂ remains unknown. To test this potential limitation and make sure that the vegetation changes discussed in the paper are linked to climate and not to an artificial fertilization effect, the climatic outputs from the FOAM experiments were used to force LPJ offline with varying prescribed pCO₂, from 280 ppm to 2.240 ppm.

Fig. S3 shows the impact of CO₂ fertilization: increasing prescribed pCO₂ from 280 ppm to 1,120 or 2,240 ppm in LPJ drives a rise in temperate PFTs at the global scale, at the expense of desert areas. This phenomenon is independent from the chosen climatic scenario (here 1,120 ppm or 2,240 ppm) from FOAM. Most importantly, Fig. S3 shows that the LPJ CO₂ effect does not affect the trend of temperate biome evolution through time: the picture of increasing temperate biome fractions throughout the Mesozoic is still valid when LPJ is forced with pCO₂ as low as 280 ppm, confirming that climate is playing the most important role in this trend.

- Price GD, Passey BH (2013) Dynamic polar climates in a greenhouse world: Evidence from clumped isotope thermometry of early Cretaceous belemnites. *Geology* 41(8): 923–926.
- Littler K, Robinson SA, Bown PR, Nederbragt AJ, Pancost RD (2011) High sea-surface temperatures during the Early Cretaceous Epoch. Nat Geosci 4(3):169–172.
- Sinninghe Damsté JS, van Bentum ZC, Reichart G-J, Pross J, Schouten S (2010) A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2. *Earth Planet Sci Lett* 248(1-2):426–437.
- Mutterlose J, Malkoc M, Schouten S, Sinninghe Damsté JS, Forste A (2010) TEX₈₆ and stable ⁶¹⁸O paleothermometry of early Cretaceous sediments: Implications for belemnite ecology and paleotemperature proxy application. *Earth Planet Sci Lett* 298(3-4):286–298.
- Pucéat E, et al. (2010) Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. *Earth Planet Sci Lett* 298(1-2): 135–142.
- Pucéat E, et al. (2007) Fish tooth δ18 O revising Late Cretaceous meridional upper ocean water temperature gradients. *Geology* 35(2):107–110.
- Steuber T, Rauch M, Masse J-P, Graaf J, Malkoc M (2005) Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. *Nature* 437(7063):1341–1344.
- Bice KL, Norris RD (2002) Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian). *Paleoceanography* 17(4):1070.
- Pearson PN, et al. (2001) Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413(6855):481–487.
- Hickler T, et al. (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. *Global Change Biol* 14(7):1531–1542.

B3. Toarcian - 180 Ma - 2240 ppm

Fig. S1. Evolution of biomes as simulated by FOAM-LPJ: evaporites and coals for each continental configuration and for three atmospheric CO_2 concentrations. Yellow stars show the locations of coal deposits. Evaporitic basins are represented with light blue shading. Maps with rectangles show our best-fit model-data scenario discussed in the main text.

1. Warren JK (2006) Evaporites; Sediments, Resources, and Hydrocarbons (Springer, Berlin).

2. Warren JM (2010) Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci Rev 98(3-4):217-268.

Fig. S2. Comparison between our climate simulations (green and orange envelopes; see the text for more details) and the latitudinal thermal gradient based on sea surface temperature reconstructions for the Aptian (*A* and *B*), the Cenomanian–Turonian (*C* and *D*), and the Campanian–Maastrtichtian (*E* and *F*).

A. FOAM (1120 ppmv)

B. FOAM (2240 ppmv)

Table S1. Percentage of coals located under nondesertic biome

Timeslices	% of coals under nondesertic biomes at 560 ppm	% of coals under nondesertic biomes at 1120 ppm	% of coals under nondesertic biomes at 2240 ppm
Late Triassic (225 Ma)	87.8%	89.9%	89.9%
Early Jurassic (180 Ma)	95.9%	98.6%	98.6%
Early Cretaceous (120 Ma)	95.9%	98.6%	100%
Mid-Cretaceous (90 Ma)	97.5%	100%	100%
Late Cretaceous (70 Ma)	98.2%	100%	100%

The best-fit scenarios are in bold.

PNAS PNAS

Table S2. Correspondence between LPJ plant functional types and biomes used in this study

LPJ original PFTs	Corresponding biomes in this study
Tropical broad-leaved evergreen	Tropical
Tropical broad-leaved raingreen	Tropical
Temperate needle-leaved evergreen	Temperate
Temperate broad-leaved evergreen	Temperate
Temperate broad-leaved summergreen	Temperate
Boreal needle-leaved summergreen	Boreal
Boreal needle-leaved evergreen	Boreal
Boreal broad-leaved summergreen	Boreal
Temperate herbaceous	Temperate herbaceous
Tropical herbaceous	Tropical herbaceous
Desert	Desert

No.	Country	Locality	Type of fossils	Dating	Ref(s).	LPJ biome (this study)
1A	Portugal	Torres Vedras	Mesofossils	Late Barremian–Early Aptian	2–4	Tropical
1A	Portugal	Cos-Juncal–Nazaré– Leiria	Mesofossils	LateAptian	2–4	Tropical
1A	Portugal	Figueira da Foz	Mesofossils	LateAptian	4, 5	Tropical
1A	Portugal	Torres Vedras	Fragmentary angiosperm remains of leaf floras	Late Barremian–Early Aptian	6–8	Tropical
1A	Portugal	Catefica	Diverse well-preserved flowers, fruits, seeds	Late Barremian–Aptian	9, 10	Tropical
1A	Portugal	Cercal	Leaf floras	Aptian–Albian	2, 6, 7, 11	Tropical
1A	Portugal	Nazare	Angiosperm leaves	Late Albian	6. 7. 9. 12	Tropical
1A	Portugal	Famalicao	Mesofossil flora (diverse)	Late Aptian	9. 12–15	Tropical
1A	Portugal	Vale de Agua	Angiosperm flowers, fruits, seeds and dispersed stamens	Late Aptian–Early Albian	9,10, 12, 13, 16–21	Tropical
1A	Portugal	Juncal	Macrofossil and mesofossil flora	Late Aptian–Early Albian	9	Tropical
1A	Portugal	Figueira da Foz	Leaves of angiosperms	Late Aptian–Early Albian	6, 7	Tropical
1A	Portugal	Buarcos	Angiosperm flowers, fruits, seeds (diverse mesofossils)	Late Aptian–Early Albian	10, 12, 13, 17, 22, 23	Tropical
1A	Portugal	Villa Verde	Mesofossil floras	Late Aptian–Early Albian	24, 25	Tropical
2A	Spain	Cuenca	Mesofossil floras, tricolpate pollen	Late Barremian	26	Tropical
3A	Great Britain	Isle of White	Pollen	Barremian–Aptian	27	Temperate
3A	Great Britain	Kingsclere Borehole, Berkshire	Pollen	Barremian–Aptian boundary	28, 29	Temperate
3A	Great Britain	"Wealden sediments"	Macrofossils and mesofossils	Barremian	27, 30, 31	Temperate
4A	Virginia	Bank near Brooke	Macrofossils (leafs)	Early to Middle Albian	32–34	Temperate
4A	Virginia	Drewry's Bluff	Macrofossils, mesofossil (fruits, seeds, and stamens of angiosperms)	Aptian	23, 35–39	Temperate
4A	Virginia	Dutch Gap	Macrofossils (rare), mesofossils (diverse)	Early Aptian	23, 32, 35, 36, 39, 40	Temperate
5A	Maryland and Washington, DC	Kenilworth	Pollen, mesofossils (fruits, seeds)	Early Albian or Late Aptian	12, 41	Temperate
6A	Texas	Glenrose	Pollen	Early Albian	36	Arid
7A	Israel	Negev	Pollen	Late Barremian– LateAptian	42, 43	Tropical
8A	Jordan	Mahis	Mesofossils	Albian	44	Tropical
9A	Egypt	Dakhla basin	Pollen	Aptian or Early Albian	45	Tropical
10A	Tunisia	Bir el Karma and Foum el Hassan	Mesofossils	Late Aptian–Early Albian	46, 47	Tropical
11A	Gabon	North Gabon	Pollen	Late Barremian	48	Tropical
12A	Congo	Congo	Pollen	Barremian	49	Tropical
13A	Brazil	Araripe basin	Macrofossils, pollens	Late Aptian–Early Albian	50–58	Tropical
14A	Transbaikalia	Semion Valley	Mesofossils, pollen	Aptian–Early Albian	59	Cold/temperate
15A	Mongolia		Pollen	Aptian or Late Barremian	60, 61	Temperate
16A	China	Heilongjiang Province	Angiosperm fossils	Aptian	62	Temperate
16A	China	Jixi Basin	Angiosperm fossils	Mid-Barremian–Early Aptian	63	Temperate
16A	China	Liaoning	Angiosperm fossils (Archaefructus)	Early to Early–Late Aptian	64–67	Arid
17A	Australia	Gippsland Basin	Angiosperm	Aptian	68	Cold/temperate
18A	South America	Santa Cruz Province	Angiosperms	Early–Late Aptian	69–75	Temperate
1C	Czech Republic	Bohemian Basin	Mesofossils (diverse)	Cenomanian to Santonian	76-85	Temperate
2C	Germany	Prangenhaus and Rohdenhaus	Mesofossils (diverse)	Late Albian–Early Cenomanian	86	Temperate
3C	Virginia	Puddledock	Mesofossils (diverse)	Middle Albian	12, 87–91	Temperate

Table S3. Details of the main fossil sites (numbered in Fig. 2) according to the review by Friis et al. (1) and their climate correspondence in this study

PNAS PNAS

Table S3. Cont.

PNAS PNAS

No.	Country	Locality	Type of fossils	Dating	Ref(s).	LPJ biome (this study)
4C	Maryland and Washington, DC	Kenilworth	Mesofossils, pollen	Middle Albian	12, 41	Temperate
4C	Maryland and Washington, DC	West Brothers	Macrofossil floras (flowers, fruits and seeds, diverse)	Late Albian	92–94	Temperate
4C	Maryland and Washington, DC	Mauldin Mountain	Mesofossilflora (diverse)	Earliest Cenomanian	94–96	Temperate
4C	Maryland and Washington, DC	Bull Mountain	Macrofossil floras (diverse)	Late Albian	96	Temperate
5C	New Jersey	Old Crossman Clay Pit	Angiosperm flowers, fruits and seeds, pollen	Turonian age	97–113	Temperate
6C 7C	Massachusetts Alabama	Gay Head Shirley's Mill	Macrofossils (diverse), mesofossils Macrofossils	Earliest Campanian Middle to Late Cenomanian	114, 115 116	Temperate Temperate
8C	Kansas	Linnenberger's Ranch	Mesofossils, pollen	Early Cenomanian	117–124	Temperate
8C	Kansas	Hoisington locality	Angiosperm leaves	Early Cenomanian	122, 123	Temperate
8C	Kansas	Rose Creek locality	Macrofossils, angiosperm leaves	Early Cenomanian	125, 126	Temperate
9C	Texas	Arthur's Bluff	Macrofossil flora (leaves), pollen	Cenomanian	119, 120, 127–131	Tropical
10C	Alaska	Alaska	Angiosperms	Latest Albian– Cenomanian	132	Temperate
11C	Greenland	Nuussuaq and Vartenhuk	Angiosperms (rare)	Late Albian	133	Temperate
11C	Greenland	Disko, Nuussuaq, and in the Umanak Fjord	Angiosperms (diverse)	Latest Albian or earliest Campanian	133, 134	Temperate
12C	Israel	Gerofit and Qetura	Angiosperms (diverse)	Early Turonian	135–139	Tropical
13C	Jordan	Jordan	Angiosperm leaves (diverse)	Cenomanian	140	Tropical
14C	Lebanon	Nammoura	Angiosperms (leaves)	Cenomanian	141, 142	Tropical
15C	Kazakhstan	Northwestern Kazakhstan	Macrofossils, mesofossils	From the latest Albian to the Maastrichtian	143–147	Temperate
15C	Kazakhstan	Western Kazakhstan (Karatsche-Tau and Kyzyl-Shen)	Angiosperms (diverse leaves)	Middle Albian	144, 145	Temperate
15C	Kazakhstan	Northwestern Kazakhstan (Sarbay Iron Quarry)	Macrofossil (leaves), diverse mesofossil floras (flowers, fruits, seeds and twig)	Cenomanian–Early Turonian	143, 146, 148–151	Temperate
15C	Kazakhstan	Kachar	Mesofossil floras (angiosperm fruits and seeds)	Cenomanian–Turonian	147, 152	Temperate
15C	Kazakhstan	Southern Kazakhstan (Karatau range)	Macrofossil floras	Turonian	153	Temperate
16C	Siberia	West Siberia (Chulym–Yenisei)	Diverse macrofossil floras (leaves, reproductive structures)	Cenomanian	154, 155	Cold
16C	Siberia	Lena–Vilyuy River Basin	Macrofossil floras	Early Cenomanian	156, 157	Cold
17C	Northeastern Russia	Eliseevskoye	Macrofossil floras (leaves and reproductive organs)	Latest Albian–Early Cenomanian	158	Cold?
18C	East of Russia	Southern Primorye region	Angiosperm remains	Early to Middle Albian	159	Temperate
19C	Southern Africa	Southern tip of South Africa	Pollen	Cenomanian	160	Temperate
19C	Southern Africa	Central Botswana	"Angiosperms mentioned"	Cenomanian–Coniacian	161	Temperate
20C	Madagascar	Morondova Basin	Pollen	Early Cenomanian	162	Temperate
21C	Australia	Eromanga Basin	Macrofossils (diverse leaves)	Latest Albian–Early Cenomanian	163	Temperate
22C	Antarctica	Alexander Island	Angiosperms (diverse)	Late Albian	164–167	Temperate
23C	New Zealand	Pitt Island	Angiosperm leaves	Turonian	168	Temperate

Table S3. Cont.

PNAS PNAS

						LPJ biome
No.	Country	Locality	Type of fossils	Dating	Ref(s).	(this study)
24C	South America	Santa Cruz Province, Bajo de los	Angiosperm leaves	Late Albian–Early Cenomanian	169, 170	Temperate
1M	Portugal	Mira	Mesoflora (diverse flowers, fruits, seeds, and stamens)	Campanian– Maastrichtian age	8, 171– 175	Tropical
1M	Portugal	Esgueira	Pollen, macrofossils (diverse), mesofossils	Campanian– Maastrichtian	172, 173, 175, 176	Tropical
2M	Austria	Grünbach	Macrofossils	EarlyCampanian	177	Temperate
2M	Austria	Gmünd	Pollen	Santonian	178	Temperate
3M	Germany	Aachen	Angiosperm remains	Santonian	78, 179– 183	Temperate
3M	Germany	Quedlinburg– Blankenberg area	Macrofossil (leaf, reproductive organs), mesofossil floras (diverse)	Mid to Late Santonian	78, 184, 185	Temperate
3M	Germany	Eisleben	Macrofossils floras (diverse)	Maastrichtian	78	Temperate
3M	Germany	Walbeck	Macrofossil and mesofossil floras (diverse)	Late Maastrichtian	78	Temperate
4M	Sweden	Äsen	Angiosperm flowers, fruits, and seeds	Campanian	92, 174, 180, 186– 194	Temperate
5M	Romania	Budurone	Mesofossil floras	Maastrichtian	195	Temperate
6M	North Carolina	Neuse River Cutoff	Mesofossil floras (diverse)	Early Campanian	92, 146, 196–198	Temperate
7M	Georgia	Upatoi Creek	Mesofossil floras	Coniacian	199	Temperate
7M	Georgia	Allon Quarry	Macrofossil and mesofossil floras	Late Santonian	200–205	Temperate
8M	Colorado	Denver Basin	Mesofossil floras	Maastrichtian	206	Temperate
9M	Canada	Vancouver Island, British Columbia; Brannan Lake	Mesofossil floras	Early Campanian	207–209	Cold
10M	Greenland	Disko,Nuussuaq, and in the Umanak Fjord area	Angiosperm remains (diverse)	Earliest Campanian	133, 210– 216	Cold
11M	Sudan	JebelMudaha	Pollen and mesofossils (angiosperm fruits and leaves)	Turonian to Early Senonian	217, 218	Tropical
12M	Kazakhstan	Northwestern Kazakhstan	Macrofossil and mesofossil floras	From the latest Albian to the Maastrichtian	143–147	Temperate
12M	Kazakhstan	Taldysay	Angiosperm reproductive organs (mesofossils)	Santonian–Early Campanian	151	Temperate
13M	Japan	Hokkaido; Sankebetsu River, Hidaka–Monbetsu River, Kumaoizawa	Mesofossils	Coniacian–Santonian	219–222	Tropical
13M	Japan	Honshu	Angiosperms	EarlyConiacian	223–226	Tropical
13M	Japan	Gokurakuzawa	Mesofossils	EarlySantonian	227	Tropical
14M	India	Chhindwara district of Madhya Pradesh	Reproductive structures, fruits, seeds	Maastrichtian	228–237	Tropical
15M	Antarctica	Antarctic Peninsula	Mesofossil flora (diverse)	Late Santonian	238, 239	Temperate
15M	Antarctica	James Ross Island	Macrofossil floras (leaves)	Coniacian	167	Temperate
15M	Antarctica	South Shetland Islands	Pollen, leaf assemblages	Late Campanian to probably Early Maastrichtian	240	Temperate
16M	Nigeria		Fruit and seed floras	Maastrichtian	241–244	Tropical
17M	New Zealand	Pakawau Bush Road	Flowers	Campanian or Maastrichtian	245, 246	Temperate

 Friis EM, Crane PR, Pedersen KR (2011) Early Flowers and Angiosperm Evolution (Cambridge Univ Press, Cambridge, UK).
 Rey J (1972) Recherches geéologiques sur le Creétacé inférieur de l'Estremadura (Portugal). Serv Geol Portugal Mem 3(21):1–477.
 Rey J (1993) Les unités lithostratigraphiques du groupe de Torres Vedras (Estremadura, Portugal). Comun Inst Geol Mineiro 79:75–85.
 Rey J, Dinis JL, Callapez P, Cunha PP (2006) Da Rotura Continental a Margem Passiva. Composicaoe Evolucao do Cretacico de Portugal (Cadernos de Geologia de Portugal, Lisbon).
 Dinis JL, Rey J, Graciansky P-C (2002) Le bassin lusitanien (Portugal) à l'Aptien supérieur-Albien: Organisation séquentielle, proposition de corrélations, évolution. C R Geosci 334(10): 2727-276. 757–764.

- 6. de Saporta G (1894) Flore Fossile du Portugal. Nouvelles Contributions à la Flore Mésozoique. Accompagnées d'une Notice Stratigraphique par Paul Choffat (Imprimerie de l'Acad R des Sci, Lisbon).
- 7. Teixeira C (1948) Flora Mesozoica Portuguesa (Direcção Geral de Minas e Serv Geol, Serv Geol de Portugal, Lisbon).
- 8. Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeogr Palaeoclimatol Palaeoecol 232(2-4):251-293. 9. Friis EM, Pedersen KR, Crane PR (1994) Angiosperm floral structures from the Early Cretaceous of Portugal. Plant Syst Evol 8(Suppl):31-49.
- 10. Friis EM, Pedersen KR, Crane PR (1999) Early angiosperm diversification: The diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann Mo Bot Gard 86(2):259-296.
- 11. Teixeira C (1947) Nouvelles recherches et revision de la flore de Cercal. Broteria Ser Trimest Cienc Nat 16:5-15.
- 12. Friis EM, Crane PR, Pedersen KR (1997) Anacostia, a new basal angiosperm from the Early Cretaceous of North America and Portugal with monocolpate/trichotomocolpate pollen. Grana 36(4):225-244.
- 13. Friis EM, Pedersen KR (2011) Canrightia resinifera, a new Early Cretaceous fruit of magnolialean affinity from Portugal. Grana 50:3-29.
- 14. Eriksson O, Friis EM, Löfgren P (2000) Seed size, fruit size and dispersal spectra in angiosperms from the Early Cretaceous to the Late Tertiary. Am Nat 156(1):47-58.
- 15. Eriksson O, Friis EM, Pedersen KR, Crane PR (2000) Seed size and dispersal systems of Early Cretaceous angiosperms from Famalicao, Portugal. Int J Plant Sci 161(2):319–329.
- 16. Friis EM, Pedersen KR, Crane PR (2000) Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39(5):226-245.
- 17. Friis EM, Pedersen KR, Crane PR (2000) Reproductive structure and organization of basal angiosperms from the Early Cretaceous (Barremian or Aptian) of Western Portugal. Int J Plant Sci 161(6, Suppl):S169-S182.
- 18. Friis EM, Pedersen KR, Crane PR (2001) Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410(6826):357–360.
- 19. Friis EM, Pedersen KR, von Balthazar M, Grimm GW, Crane PR (2009) Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170(8):1086-1101.
- 20. von Balthazar M, Pedersen KR, Friis EM (2005) Teixeiraea lusitanica gen. et sp. nov., a ranunculalean flower from the Early Cretaceous of Portugal. Plant Syst Evol 255:55–275.
- 21. Pedersen KR, von Balthazar M, Crane PR, Friis EM (2007) Early Cretaceous floral structures and in situ tricolpate-striate pollen: New early eudicots from Portugal. Grana 46(3):176–196. 22. Friis EM, Pedersen KR, Crane PR (2009) Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. Am J Bot 96(1):252-283.
- 23, Rydin C, Pedersen KR, Crane PR, Frijs EM (2006) Former diversity of Ephedra (Gnetales): Evidence from Early Cretaceous seeds from Portugal and North America, Ann Bot (Lond) 98(1): 123-140.
- 24. Friis EM, Pedersen KR, Crane PR (2010) Diversity in obscurity: Fossil flowers and the early history of angiosperms. Philos Trans R Soc Lond B Biol Sci 365(1539):369-382.
- 25. Friis EM, Pedersen KR (1996) Eucommiitheca, a new pollen organ with Eucommiidites pollen from the Early Cretaceous of Portugal. Grana 35(2):104-112.
- 26. Diéguez C, Martin-Closas C, Trinca P, Lopéz-Moroon N (1995) IV. Paleontology. 1 Flora. Las Hoyas, a Lacustrine Konservat-Lagerstätte, Cuenca, Spain. II International Symposium on Lithographic Limestones, Field Trip Guide Book, ed Meleéndez MN (Madrid, Univ Complutense de Madrid), pp 29-32.
- 27. Watson J, Sincock CA (1992) Bennettitales of the English Wealden (The Palaeontogr Soc, London).
- 28. Couper RA (1958) British Mesozoic microspores and pollen grains. A systematic and stratigraphic study. Palaeontographica 103:75–179.
- 29. Hughes NF, McDougall AB, Chapman JL (1991) Exceptional new record of Cretaceous Hauterivian angiospermid pollen from southern England. J Micropalaeontol 10(1):75-82.
- 30. Hughes NF (1994) The Enigma of Angiosperm Origins (Cambridge Univ Press, Cambridge, UK).
- 31. Batten DJ (1998) Palaeoenvironmental implication of plant, insect and other organic-walled microfossils in the Weald Clay Formation (Lower Cretaceous) of southeast England. Cretac Res 19(3-4):279-315.
- 32. Fontaine WM (1889) The Potomac or Younger Mesozoic Flora, US Geological Survey Monograph (US Gov Print Off, Washington, DC), Vol 15.
- 33. Hickey LJ, Doyle JA (1977) Early Cretaceous fossil evidence for angiosperm evolution. Bot Rev 43(1):2-104.
- 34. Crane PR, Pedersen KR, Friis EM, Drinnan AN (1993) Early Cretaceous (Early to Middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of Eastern North America. Syst Bot 18(2):328-344.
- 35. Doyle JA, Hickey LJ (1976) Pollen and Leaves from the Mid-Cretaceous Potomac Group and Their Bearing on Early Angiosperm Evolution, ed Beck CB (Columbia Univ Press, New York), pp 139-206.
- 36. Upchurch GR, Doyle JA (1981) Paleoecology of the Conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia, ed Romans RC (Plenum, New York), pp 167–202.
- 37. Crane PR, Upchurch GR (1987) Drewria potomacensis gen. et sp. nov., an early Cretaceous member of Gnetales from the Potomac Group of Virginia. Am J Bot 74(11):1722–1736. 38. Brenner GJ (1967) The gymnospermous affinity of Eucommiidites Erdtman, 1948. Rev Palaeobot Palynol 5(1-4):123-127.
- 39. Pedersen KR, Friis EM, Crane PR (1993) Pollen organs and seeds with Decussosporites Brenner from Lower Cretaceous Potomac Group sediments of eastern USA. Grana 32(4-5):273-289
- 40. Ward LF (1905) Status of the Mesozoic Floras of the United States. Second Paper, Monographs of the United States Geological Survey (US Gov Print Off, Washington, DC), Vol 48, pp 1 - 616
- 41. Brenner GJ (1963) The spores and pollen of the Potomac Group of Maryland. Md Dep Geol Mines Water Resour Bull 27:1-215.
- 42. Brenner GJ, Bickoff IS (1992) Palynology and the age of the Lower Cretaceous basal Kurnub Group from the coastal plain to the northern Negev of Israel. Palynology 16(1):137–185.
- 43. Walker JW, Brenner GJ, Walker AG (1983) Winteraceous pollen in the lower cretaceous of Israel: Early evidence of a magnolialean angiosperm family. Science 220(4603):1273–1275.
- 44. Taylor DW, Brenner GJ, Basha SH (2008) Scutifolium jordanicum gen. et sp. nov. (Cabombaceae), an aquatic fossil plant from the Lower Cretaceous of Jordan, and the relationships of related leaf fossils to living genera. Am J Bot 95(3):340-352.
- 45. Schrank E (1983) Scanning electron and light microscopic investigations of angiosperm pollen from the Lower Cretaceous of Egypt. Pollen Spores 25(2):213-242.
- 46. Mohr BAR, Bernardes-de-Oliveira MEC, Barale G, Ouaja M (2006) Palaeogeographic distribution and ecology of Klitzschophyllites, an early Cretaceous angiosperm in southern Laurasia and northern Gondwana. Cretac Res 27(3):464-472.
- 47. Barale G, Ouaja M (2001) Découverte de nouvelles flores avec des restes à affinités angiospermiennes dans le Crétacé inférieur du Sud Tunisien. Cretac Res 22(2):131-143.
- 48. Doyle JA, Jardiné S, Doerenkamp A (1982) Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of northern Gondwana. Bull Cent Rech Explor Prod Elf-Aquitaine 6:39-117.
- 49. Dejax J (1987) Sur la preésence de grains de pollen à sculpture crotonoide dans le Crétacé inférieur du Congo. Mem Travaux Inst Montpellier 17:253-271.
- 50. de Lima MR (1978) Palinologia da Formaçao Santana (Cretaceo do Nordeste do Brasil). Introdução geologicae descrição sistematica dos polens da subturma Azonotriletes. Ameghiniana Rev Asoc Paleontol Argentina 15:333-365.
- 51. de Lima MR (1979) Palinologia da Formação Santana (Cretaceo do Nordeste do Brasil). II. Descrição sistematica dos esporos da subturma Zonotriletes e turma Monoletes, e dos polens das turmas Saccites e Aletes. Ameghiniana Rev Asoc Paleontol Argentina 16:27-63.
- 52. de Lima MR (1980) Palinologia da Formação Santana (Cretaceo do Nordeste do Brasil). III. Descrição sistematica dos polens da turma Plicates (subturma Costates). Ameghiniana Rev Asoc Paleontol Argentina 17:15-47.
- 53. Osborn JM, Taylor TN, de Lima MR (1993) The ultrastructure of fossil ephedroid pollen with gnetalean affinities from the Lower Cretaceous of Brazil. Rev Palaeobot Palynol 77(3-4): 171-184
- 54. Mohr BAR, Friis EM (2000) Early angiosperms from the Aptian Crato Formation (Brazil), a preliminary report. Int J Plant Sci 161(6, Suppl):S155–S167.
- 55. Mohr BAR, Rydin C (2002) Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Mitteilungen des Museums für Naturkunde Berlin. Geowisse Reihe 5:335-544.
- 56. Mohr BAR, Eklund H (2003) Araripia florifera, a magnoliid angiosperm from the Lower Cretaceous Crato Formation (Brazil). Rev Palaeobot Palynol 126(3-4):279–292.
- 57. Mohr BAR, Bernardes-de-Oliveira MEC (2004) Endressinia brasiliana, a magnolialean angiosperm from the Lower Cretaceous Crato Formation (Brazil). Int J Plant Sci 165(6):1121–1133. 58. Mohr BAR, Bernardes-de-Oliveira MEC, Loveridge RF (2007) The macrophyte flora of the Crato Formation. The Crato Fossil Beds of Brazil: Window into an Ancient World, eds Martill DM, Bechly G, Loveridge RF (Cambridge Univ Press, Cambridge, UK), pp 537-565.
- 59. Vakhrameev VA, Kotova IZ (1977) Ancient angiosperms and accompanying plants from the Lower Cretaceous of Transbailkalia. Paleontol J 1977:487-495.
- 60. Nichols DJ, Watabe M, Ichinnorov N, Ariunchimeg Y (1997) Preliminary report on the palynology of the Cretaceous of the Gobi Desert, Mongolia. Proceedings of the IX International Palynological Conference (Am Assoc of Stratigr Palynol, Dallas, TX), pp 131–138.
- 61. Nichols DJ, Matsukawa M, Ito M (2006) Palynology and age of some Cretaceous nonmarine deposits in Mongolia and China. Cretac Res 27(2):241-251.
- 62. Sha J, et al. (2003) The Upper Jurassic-Lower Cretaceous of eastern Heilongjiang, Northeast China: Stratigraphy and regional basin history. Cretac Res 24(6):715–728.
- 63. Sun Z, Dilcher DL (1988) Fossil Smilax from Eocene sediments in western Tennessee. Am J Bot 75(Suppl 6):118.
- 64. Wu S-Q (1999) A preliminary study of the Jehol flora from western Liaoning. Palaeoworld 11:7-37.
- 65. Wu S-Q (2003) Land plants. The Jehol Biota, eds Chang M, Chen PJ (Shanghai Sci and Tech Publ, Shanghai, China), pp 167–177.

- 66. Sun G, Zheng S, Dilcher DL, Wang Y, Mei S (2001) Early Angiosperms and Their Associated Plants from Western Liaoning, China (Shanghai Sci and Tech Publ, Shanghai, China).
- 67. Rydin C, Wu SQ, Friis EM (2006) Liaoxia (Gnetales): Ephedroids from the Early Cretaceous Yixian Formation in China. Plant Syst Evol 262(3-4):239-265.
- 68. Taylor DW, Hickey LJ (1990) An aptian plant with attached leaves and flowers: Implications for angiosperm origin. Science 247(4943):702–704.
- 69. Archangelsky S (1963) A new Mesozoic flora from Tico, Santa Cruz Province, Argentina. Bull Br Mus Geology 8(2):45-92.
- 70. Archangelsky S (1967) Estudio de la Formacion Baquero Cretacico Inferior de Santa Cruz, Argentina. Rev Mus Plata Nueva Ser Paleontol 5:63-171.
- 71. Archangelsky A (2001) The Tico Flora (Patagonia) and the Aptian Extinction Event. Acta Palaeobot 41(2):115-122.
- 72. Archangelsky A, Taylor TN, Kurmann MH (1986) Ultrastructural studies of fossil plant cuticles: Tico harrisii from the early Cretaceous of Argentina. Bot J Linn Soc 92:101-116.
- 73. Archangelsky S, Taylor TN (1986) Ultrastructural studies of fossil plant cuticles. II. Tarphyderma gen. n., a Cretaceous conifer from Argentina. Am J Bot 73(11):1577–1587.
- 74. Archangelsky S, Taylor TN (1993) The ultrastructure of in situ Clavatipollenites pollen from the Early Cretaceous of Patagonia. Am J Bot 80(8):879-885.
- 75. Romero EJ, Archangelsky S (1986) Early cretaceous angiosperm leaves from southern South America. Science 234(4783):1580-1582.
- 76. Knobloch E (1964) Neue Pflanzenfunde aus dem suüdböhmischen Senon, Jahrb Staatl Mus Mineral Geol Dresden 133-201.
- 77. Knobloch E, Mai DH (1984) Neue Gattungen nach Früchten und Samen aus dem Cenoman bis Maastricht (Kreide) von Mitteleuropa. Feddes Repert 95:3-41.
- 78. Knobloch E, Mai DH (1986) Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpr Ustred Ustavu Geol 47:1-219.
- 79. Velenovsky J (1882) Die Flora der Böhmischen Kreideformation. Beitr Paläontol Osterreich-Ungarns Orientes 2:8-32.
- 80. Velenovsky J (1883) Die Flora der Böhmischen Kreideformation. Beitr Paläontol Osterreich-Ungarns Orientes 3:1-22.
- 81. Velenovsky J (1884) Die Flora der Böhmischen Kreideformation. Beitr Paläontol Osterreich-Ungarns Orientes 4:1-14.
- 82. Velenovsky J (1889) Kvetena Ceskeho Cenomanu. Rozpr Kralovske Ceské Spolecnosti Nauk 7:1-75.

- 83. Velenovsky J, Viniklar L (1926) Flora Cretacea Bohemiae. I. Rozpr Statniho Geol Ustavu Cesk Repub 1:1-57. 84. Velenovsky J, Viniklar L (1927) Flora Cretacea Bohemiae. II. Rozpr Statniho Geol Ustavu Cesk Repub 2:1-54.
- 85. Velenovsky J, Viniklar L (1929) Flora Cretacea Bohemiae. III. Rozpr Statniho Geol Ustavu Cesk Repub 3:1-33.
- 86. Viehofen A, Hartkopf-Froöder C, Friis EM (2008) Inflorescences and flowers of Mauldinia angustiloba sp. nov. Lauraceae) from mid-Cretaceous karst infillings in the Rhenish Massif, Germany. Int J Plant Sci 169(7):871-889.
- 87. Crane PR, Friis EM, Pedersen KR (1994) Paleobotanical evidence on the early radiation of magnoliid angiosperms. Plant Syst Evol 8(Suppl):51-72.
- 88. Friis EM, Eklund H, Pedersen KR, Crane PR (1994) Virginianthus calycanthoides gen. et sp. nov.-a calycanthaceous flower from the Potomac Group (Early Cretaceous) of eastern North America. Int J Plant Sci 155(6):772–785.
- 89. Friis EM, Pedersen KR, Crane PR (1995) Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. Am J Bot 82(7):933-943.
- 90. von Balthazar M, Pedersen KR, Crane PR, Stampanoni M, Friis EM (2007) Potomacanthus lobatus gen. et sp. nov., a new flower of probable Lauraceae from the Early Cretaceous (Early to Middle Albian) of eastern North America. Am J Bot 94(12):2041-2053
- 91. von Balthazar M, Pedersen KR, Crane PR, Friis EM (2008) Carpestella lacunata gen. et sp. nov., a new basal angiosperm flower from the Early Cretaceous (Early to Middle Albian) of eastern North America. Int J Plant Sci 169(7):890–898.
- 92. Friis EM, Crane PR, Pedersen KR (1988) Reproductive structures of Cretaceous Platanaceae. Biol Skr K Dan Vidensk Selsk 31:1-55.
- 93. Crane PR, Friis EM, Pedersen KR (1989) Reproductive structure and function in Cretaceous Chloranthaceae. Plant Syst Evol 165:211-226.
- 94. Drinnan AN, Crane PR, Pedersen KR, Friis EM (1991) Angiosperm flowers and tricolpate pollen of buxaceous affinity from the Potomac Group (mid- Cretaceous) of eastern North America. Am J Bot 78(2):153–176.
- 95. Drinnan AN, Crane PR, Friis EM, Pedersen KR (1990) Lauraceous flowers from the Potomac Group (mid- Cretaceous) of eastern North America. Bot Gaz 151(3):370-384.
- 96. Pedersen KR, Friis EM, Crane PR, Drinnan AN (1994) Reproductive structures of an extinct platanoid from the Early Cretaceous (latest Albian) of eastern North America. Rev Palaeobot Palvnol 80(3-4):291-303.
- 97. Newberry JS (1895) The Flora of the Amboy Clays, US Geological Survey Monograph, ed Hollick CA (US Gov Print Off, Washington, DC), Vol 26.
- 98. Berry EW (1909) Contribution to the Mesozoic flora of the Atlantic coastal plain III. Bull Torrey Bot Soc 36(5):245-264.
- 99. Christopher RA (1979) Normapolles and triporate pollen assemblages from the Raritan and Magothy Formations (Upper Cretaceous) of New Jersey. Palynology 3:73-121.
- 100. Crepet WL, Nixon KC, Friis EM, Freudenstein JV (1992) Oldest fossil flowers of hamamelidaceous affinity, from the Late Cretaceous of New Jersey. Proc Natl Acad Sci USA 89(19):8986-8989.
- 101. Crepet WL, Nixon KC, Gandolfo MA (2005) An extinct calycanthoid taxon, Jerseyanthus calycanthoides, from the Late Cretaceous of New Jersey. Am J Bot 92(9):1475–1485.
- 102. Nixon KC, Crepet WL (1993) Late Cretaceous fossil flowers of ericalean affinity. Am J Bot 80(22):616-623.
- 103. Crepet WL, Nixon KC (1994) Flowers of Turonian Magnoliidae and their implications. Plant Syst Evol 8(Suppl):73-91.
- 104. Crepet W, Nixon K (1998) Fossil Clusiaceae from the late Cretaceous (Turonian) of New Jersey and implications regarding the history of bee pollination. Am J Bot 85(8):1122-1133.
- 105. Crepet WL, Nixon KC (1998) Two new fossil flowers of magnoliid affinity from the Late Cretaceous of New Jersey. Am J Bot 85(9):1273-1288.
- 106. Crepet WL (1996) Timing in the evolution of derived floral characters: Upper Cretaceous (Turonian) taxa with tricolpate and tricolpate-derived pollen. Rev Palaeobot Palynol 90(3-4): 339-359
- 107. Gandolfo M, Nixon K, Crepet W (1998) Tylerianthus crossmanensis gen. et sp. nov. (aff. Hydrangeaceae) from the Upper Cretaceous of New Jersey. Am J Bot 85(3):376–386.
- 108. Gandolfo M, Nixon K, Crepet W (1998) A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). Am J Bot 85(7):964-974. 109. Gandolfo MA, Nixon KC, Crepet WL, Friis EM (1998) Oldest known fossils of monocotyledons. Nature 394(6693):532-533.
- 110. Gandolfo MA, Nixon KC, Crepet WL (2002) Triuridaceae fossil flowers from the Upper Cretaceous of New Jersey. Am J Bot 89(12):1940–1957.
- 111. Gandolfo MA, Nixon KC, Crepet WL (2004) Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms. Proc Natl Acad Sci USA 101(21):8056-8060.
- 112. Hermsen EJ, Gandolfo MA, Nixon KC, Crepet WL (2003) Divisestylus gen. nov. (aff. Iteaceae), a fossil saxifrage from the Late Cretaceous of New Jersey, USA. Am J Bot 90(9):1373–1388. 113. Martínez-Millán M, Crepet WL, Nixon KC (2009) Pentapetalum trifasciculandricus gen. et sp. nov., a thealean fossil flower from the Raritan Formation, New Jersey, USA (Turonian,
- Late Cretaceous). Am J Bot 96(5):933–949.
- 114. Hollick A (1906) The Cretaceous Flora of Southern New York and New England, US Geological Survey Monographs (US Gov Print Off, Washington, DC).
- 115. Tiffney BH (1977) Dicotyledonous angiosperm flower from the Upper Cretaceous of Martha's Vineyard. Massachusetts. Nature 265(5590):136–137.
- 116. Berry EW (1919) Upper Cretaceous floras of the eastern Gulf Region in Tennessee, Mississippi, Alabama, and Georgia. US Geol Surv Prof Pap 112:1-177. 117. Lesquereux L (1892) Flora of the Dakota Group, US Geological Survey Monographs (US Gov Print Off, Washington, DC), Vol 17.
- 118. Dilcher DL (1979) Early angiosperm reproduction: An introductory report. Rev Palaeobot Palynol 27(3-4):291-328.
- 119. Crane PR, Dilcher DL (1984) Lesqueria: An early angiosperm fruiting axis from the mid-Cretaceous. Ann Mo Bot Gard 71(2):384-402.
- 120. Dilcher DL (1989) The occurrence of fruits with affinity to Ceratophyllaceae in Lower and mid-Cretaceous sediments. Am J Bot 76(Suppl 6):162.
- 121. Retallack G, Dilcher DL (1981) Early angiosperm reproduction: Prisca reynoldsii gen. et sp. nov. From mid-Cretaceous coastal deposits, Kansas, USA. Palaeontographica B 179(5-6): 103-137
- 122. Dilcher DL, Crane PR (1984) Archaeanthus: An early angiosperm from the Cenomanian of the Western Interior of North America. Ann Mo Bot Gard 71(2):351–383.
- 123. Dilcher DL, Kovach WL (1986) Early angiosperm reproduction: Caloda delevoryana gen. et sp. nov., a new fructification from the Dakota Formation (Cenomanian) of Kansas. Am J Bot 73(8):1230-1237
- 124. Wang H, Dilcher DL (2006) Aquatic angiosperms from the Dakota Formation (Albian, Lower Cretaceous), Hoisington III locality, Kansas, USA. Int J Plant Sci 167(2):385-401.
- 125. Upchurch GR, Dilcher DL (1990) Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek Locality, Jefferson County, southeastern Nebraska. US Geol Surv Bull 1915: 1–55.
- 126. Basinger JF, Dilcher DL (1984) Ancient bisexual flowers. Science 224(4648):511-513.
- 127. Berry EW (1912) Contributions to the Mesozoic flora of the Atlantic coastal plain VIII. Texas. J Torrey Bot Soc 39(8):387-406.
- 128. Berry EW (1922) The flora of the Woodbine Sand at Arthurs Bluff, Texas. US Geol Surv Prof Pap 129-G:153-181.
- 129. Pedersen KR, Crane PR, Friis EM (1989) Pollen organs and seeds with Eucommiidites pollen. Grana 28(4):279-294.
- 130. Knowlton FH (1901) Reports by Professor F. H. Knowlton on fossil plants collected by T. Wayland Vaughan in Lamar County; by G. H. Ragsdale in Cooke County. T.V. Munson in Denison, TX. US Geological Survey 21st Annual Report 1899–1900, ed Hill RT (Rhamey Hill, Denison, TX), pp 314–318.
- 131. MacNeal DL (1958) The flora of the Upper Cretaceous Woodbine Sand in Denton County, Texas. Monogr Acad Nat Sci Philadelphia 10:1-152.
- 132. Smiley CJ (1969) Cretaceous floras of Chandler-Coville region, Alaska. Stratigraphy and preliminary floristics. Am Assoc Pet Geol Bull 53(3):482–502. 133. Seward AC (1926) The Cretaceous plant-bearing rocks of western Greenland. Philos Trans R Soc Lond B Biol Sci 215:57–175.
- 134. Dam G, et al. (2009) Lithostratigraphy of the Cretaceous-Paleocene Nuussuaq Group, Nuussuaq Basin, West Greenland. Geol Surv Den Greenl Bull 19:1-171.
- 135. Dobruskina IA (1996) Connections of Israeli Upper Cretaceous flora with coeval floras of adjacent regions. Rheedea 6(1):43-58.

136. Dobruskina IA (1997) Turonian plants from the southern Negev, Israel. Cretac Res 18(1):87-107.

- 137. Krassilov VA, Dobruskina IA (1998) A graminoid plant from the Cretaceous of the Middle East. Paleontol J 32:429-434.
- 138. Krassilov VA (2004) Cretaceous floral structures from Negev, Israel as evidence of angiosperm radiation in the Gondwana realm. Acta Palaeobot 44(1):37–53.
- 139. Krassilov VA, Lewy Z, Nevo E, Silantieva N (2005) Late Cretaceous (Turonian) Flora of Southern Negev, Israel (Pensoft, Sofia, Bulgaria).
- 140. Bender F, Mädler K (1969) Die sandige Schichtenfolge der Kreide mit einer Angiospermen-Flora in Südjordanien. Geol Jahrb Beih 81:35–92.
- 141. Dilcher DL, Basson PW (1990) Mid-Cretaceous angiosperm leaves from a new fossil locality in Lebanon. *Bot Gaz* 151(4):538–547. 142. Krassilov VA, Bacchia F (2000) Cenomanian florule of Nam-moura, Lebanon. *Cretac Res* 21(6):785–799.
- 142. Krassilov VA, Bacchia F (2000) Cenomanian florule of Nam-moura, Lebanon. Cretac Res 21(6):785–799.
- 143. Shilin PV (1986) Pozdnemelovye flory Kazakhstana: systematicheskii sostav, istoriya razvitiya, stratigraficheskoe znachenie (Nauka, Alma-Ata). 144. Vakhrameev VA, Krassilov VA (1979) Reproductive structures of angiosperms from the Albian of Kazakhstan. Paleontol J 1979:112–118.
- 144. Vakinameev VA, Krassilov VA (1979) Reproductive structures of angiosperms from the Albian of Kazakhstan. Paleontol J 1979:112– 145. Krassilov VA, Shilin PV, Vachrameev VA (1983) Cretaceous flowers from Kazakhstan. Rev Palaeobot Palynol 40(1-2):91–113.
- 145. Krassilov VA, Shilin PV, Vachrameev VA (1965) Cretaceous lowers from Razakhstani. Rev Palaeobol Palynol 40(1-2):91–113. 146. Frumin S. Friis EM (1996) Liriodendroid seeds from the Late Cretaceous of Kazakhstan and North Carolina. USA. Rev Palaeobol Palynol 94(1-2):39–55.
- 140. Frumin's, Fris Ewi (1996) Linodendroid seeds from the Late Cretaceous of Kazakristan and North Carolina, USA. Key Palaeobol Palynol 94(1-2):39–55.
- 147. Hvalj AV (2001) Karpologija srednemelovykh khvojnykh i tsvetkovykh Kachara (Jugo-Vostochnoe Zaural'e). PhD Thesis (Komarov Bot Inst, Russ Acad of Sci, Saint Petersburg, Russia). 148. Frumina SI, Zhilin SG, Korchagina IA (1995) Alapaja (Taxodiaceae) seeds from the Cenomanian-Turonian of Northern Kazakhstan. *Paleontol J* 29(1A):194–202.
- 149. Frumin 5, Friis EM (1999) Magnoliid reproductive organs from the Cenomanian-Turonian of north-western Kazakhstan: Magnoliaceae and Illiciaceae. Plant Syst Evol 216:265–288.
- 150. Frumin S, Eklund H, Friis EM (2004) Mauldinia hirsuta sp. nov., a new member of the extinct genus Mauldinia (Lauraceae) from the Late Cretaceous (Cenomanian- Turonian) of Kazakhstan. Int J Plant Sci 165(5):883–895.
- 151. Krassilov VA, Shilin PV (1995) New platanoid staminate heads from the mid-Cretaceous of Kazakhstan. Rev Palaeobot Palynol 85(3):207-211.
- 152. Golovneva LB, Oskolski AA (2007) Infructescences of Cathiaria gen. n. from the late Cretaceous of North Kazakhstan and Siberia (Russia). Acta Palaeobot 47(1):57-87.
- 153. Jarmolenko AV (1935) The Upper Cretaceous flora of the North-Western Kara-Tau. Acta Univ Asiae Mediae Ser Viiib Botanica 28:1-36.
- 154. Golovneva LB (2007) Occurrence of Sapindopsis (Platanaceae) in the Cretaceous of Eurasia. Paleontol J 41(11):1077-1090.
- 155. Golovneva LB (2008) A new platanaceous genus Tasymia (angiosperms) from the Turonian of Siberia. Paleontol J 42(2):192-202.
- 156. Maslova NP, Golovneva LB (2000) A hamamelid inflorescence with in situ pollen grains from the Cenomanian of eastern Siberia. Paleontol J 34(Suppl 1):S40–S49.
- 157. Krassilov VA (1967) Early Cretaceous Flora of South Primorye and its Stratigraphic Significance (Nauka, Moscow).
- 158. Maslova NP, Herman A (2004) New finds of fossil hamamelids and data on the phylogenetic relationships between the Platanaceae and Hamamelidaceae. Paleontol J 38(5):563–575. 159. Krassilov VA, Volynets Y (2008) Weedy Albian angiosperms. Acta Palaeobot 48(2):151–169.
- 160. McLachlan IR, Pieterse A (1978) Preliminary palynological results: Site 361, Leg 40. Initial Rep Deep Sea Drill Proj 24:857-881.
- 161. Rayner RJ (1993) The fossils from the Orapa Diamond mine: A review. Botswana Notes Rec 25:1-17.
- 162. Zavada MS (2003) The ultrastructure of angiosperm pollen from the Lower Cenomanian of the Morondova Basin, Madagascar. Grana 42:20-32.
- 163. Dettmann ME, Clifford HT, Peters M (2009) Lovellea wintonensis gen. et sp. nov.—Early Cretaceous (late Albian), anatomically preserved, angiosperm flowers and fruits from the Winton Formation, western Queensland. Cretac Res 30(2):339–355.
- 164. Cantrill DJ (1996) Fern thickets from the Cretaceous of Alexander Island, Antarctica containing Alamatus bifurcatus Douglas and Aculea acicularis sp. nov. Cretac Res 17:169-182.
- 165. Cantrill DJ, Nichols GJ (1996) Taxonomy and palaeoecology of Early Cretaceous (Late Albian) angiosperm leaves from Alexander Island, Antarctica. Rev Palaeobot Palynol 92(1):1–28. 166. Cantrill DJ (1995) The occurrence of the fern Hausmannia Dunker (Dipteridaceae) in the Cretaceous of Alexander Island, Antarctica. Alcheringa 19(3):243–254.
- 167. Hayes PA, Francis JE, Cantrill DJ, Crame JA (2006) Palaeoclimate analysis of Late Cretaceous angiosperm leaf floras, James Ross Island, Antarctica. *Actientings* 19(3):243–234.
- Palaeoenvironments, James Ross Basin, Antarctica, Geological Society Special Publication, eds Francis JE, Pirrie D, Crame JA (Geol Soc, London), Vol 258, pp 49-62.
- 168. Pole M, Philippe M (2010) Cretaceous plant fossils of Pitt Island, the Chatham group, New Zealand. Alcheringa 34(3):231–263.
- 169. Archangelsky S, et al. (2009) Early angiosperm diversification: Evidence from southern South America. Cretac Res 30(5):1073–1082.
- 170. Passalia MG, Romero EJ, Panza JL (2001) Improntas foliares del Creta'cico de la provincia de Santa Cruz, Argentina. Ameghiniana 38(1):73–84. 171. Schönenberger J, Pedersen KR, Friis EM (2001) Normapolles flowers of fagalean affinity from the Late Cretaceous of Portugal. Plant Syst Evol 226(3-4):205–230.
- 172. Friis EM, Pedersen KR, Crane PR (1992) Esgueiria gen. nov., fossil flowers with combretaceous features from the Late Cretaceous of Portugal. Biologiske Skrifter. K Dan Vidensk Selsk 41:1-45.
- 173. Friis EM, Pedersen KR, Schönenberger J (2003) Endressianthus, a new Normapolles producing plant genus of fagalean affinity from the Late Cretaceous of Portugal. Int J Plant Sci 164: \$201-\$223.
- 174. Friis EM, Pedersen KR, Schönenberger J (2006) Normapolles plants: A complex of extinct fagalean lineages. Plant Syst Evol 260:107-140.
- 175. Friis EM, Pedersen KR, Crane PR (2010) Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. Rev Palaeobot Palynol 162(3):341-361.
- 176. Pons D, Broutin J (1978) Les organes reproducteurs de Frenelopsis oligostomata (Crétacé, Portugal). Comptes Rendus 103e Congrès National des Sociétés Savantes, Nancy, pp 139– 159.
- 177. Herman AB, Kvacek J (2002) Campanian Grünbach Flora of Lower Austria: Preliminary floristics and palaeoclimatology. Ann Nat Hist Mus Wien Ser B Bot Zool 103A:1-21.
- 178. Zetter R, Hesse M, Huber KH (2002) Combined LM, SEM and TEM studies of Late Cretaceous pollen and spores from Gmünd, Lower Austria. Stapfia 80:201–230.
- 179. Batten DJ, Dupagne-Kievits J, Lister JK (1988) Palynology of the Upper Cretaceous Aachen Formation of Northeastern Belgium, eds Streel M, Bles MJM (Nat Mus Lab Paleontol Univ Liège, Liège, Belgium), pp 95–103.
- 180. Friis EM, Crane PR (1989) Reproductive structures of Cretaceous Hamamelidae. Evolution, Systematics, and Fossil History of the Hamamelidae. Introduction and 'Lower' Hamamelidae, eds Crane PR, Blackmore S (Clarendon, Oxford, UK), pp 155–174.
- 181. Debey MH (1848) Uebersicht der urweltlichen Pflanzen des Kreidegebirges überhaupt und der Aachener Kreideschichten insbesondere. Verh Naturhistorischen Ver Preussischen Rheinlandes 5:113–125.
- 182. Kräusel R (1922) Beiträge zur Kenntnis der Kreideflora. I. Uber einige Kreidepflanzen von Swalmen (Niederlande). Meded Rijks Geol Dienst, Ser A 2:1-40.
- 183. Kräusel R (1923) Uber pflanzenführende Kreideschichten aus der Umgebung von Heerlen (Holländ. Limburg) und die Verbreitung des Aachener Sandes in den südlichen Niederlanden. Senckenbergiana 5:145–154.
- 184. Pacltova B (1982) Some pollen of recent and fossil species of the genus Platanus L. Acta Univ Carol 4:367-391.
- 185. Tschan GF, Denk T, von Balthazar M (2008) Credneria and Platanus (Platanaceae) from the Late Cretaceous (Santonian) of Quedlinburg, Germany. Rev Palaeobot Palynol 152(3-4): 211–236.
- 186. Friis EM, Skarby A (1981) Structurally preserved angiosperm flowers from the Upper Cretaceous of southern Sweden. Nature 291(5815):485–486.
- 187. Friis EM, Skarby A (1982) Scandianthus gen. nov., angiosperm flowers of saxifragalean affinity from the Upper Cretaceous of southern Sweden. Ann Bot 50:569-583.
- 188. Friis EM (1983) Upper Cretaceous (Senonian) floral structures of juglandalean affinity containing Normapolles pollen. Rev Palaeobot Palynol 39(1-2):161–188.
- 189. Friis EM (1984) Preliminary report on Upper Cretaceous angiosperm reproductive organs from Sweden and their level of organization. Ann Mo Bot Gard 71(2):403–418.
- 190. Friis EM (1985) Structure and function in Late Cretaceous angiosperm flowers. Biol Skr K Dan Vidensk Selsk 25:1-37.
- 191. Friis EM (1985) Actinocalyx gen. nov., sympetalous angiosperm flowers from the Upper Cretaceous of southern Sweden. Rev Palaeobot Palynol 45(3-4):171–183.
- 192. Friis EM (1990) Silvianthemum suecicum gen. et sp. nov., a new saxifragalean flower from the Late Cretaceous of Sweden. Biol Skr 36:1–35.
- 193. Eklund H, Friis EM, Pedersen KR (1997) Chloranthaceous floral structures from the Late Cretaceous of Sweden. Plant Syst Evol 207:13–42.
- 194. Schönenberger J, Friis EM (2001) Fossil flowers of ericalean affinity from the Late Cretaceous of Southern Sweden. Am J Bot 88(3):467–480.
- 195. Lindfors SM, Csikic Z, Grigorescu D, Friis EM (2010) Preliminary account of plant mesofossils from the Maastrichtian Budurone microvertebrate site of the Hateg Basin, Romania. Palaeogeogr Palaeoclimatol Palaeoecol 293(3-5):353–359.
- 196. Friis EM (1988) Spirematospermum chandlerae sp. nov., an extinct species of Zingiberaceae from the North American Cretaceous. Tertiary Res 9:7-12.
- 197. Mickle JE (1996) Grexlupus carolinensis, a new probable lauraceous fruit from the Late Cretaceous of North Carolina. J Elisha Mitchell Sci Soc 112(1):1-6.
- 198. Eklund H (2000) Lauraceous flowers from the Late Cretaceous of North Carolina, USA. Bot J Linn Soc 132(4):397-428.
- 199. Magallon-Puebla S, Herendeen PS, Crane PR (1997) Quadriplatanus georgianus gen. et sp. nov.: Staminate and pistillate platanaceous flowers from the Late Cretaceous (Coniacian-Santonian) of Georgia, USA. Int J Plant Sci 158(3):373–394.
- Herendeen PS, Crane PR, Drinnan AN (1995) Fagaceous flowers, fruits, and cupules from the Campanian (Late Cretaceous) of Central Georgia, USA. Int J Plant Sci 156(1):93–116.
 Herendeen PS, Magallon-Puebla S, Lupia R, Crane PR, Kobylinska J (1999) A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of central Georgia, USA. Ann Mo Bot Gard 86:407–471.
- 202. Keller JA, Herendeen PS, Crane PR (1996) Fossil flowers and fruits of the Actinidiaceae from the Campanian (Late Cretaceous) of Georgia. Am J Bot 83(4):528-541.
- 203. Magallon-Puebla S, Herendeen PS, Endress PK (1996) Allonia decandra: Floral remains of the tribe Hamamelideae (Hamamelidaceae) from Campanian strata of southeastern USA. Plant Syst Evol 202(3-4):177–198.
- 204. Crane PR, Herendeen PS (1996) Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Rev Palaeobot Palynol 90(3-4):319–337.
- 205. Sims HJ, Herendeen PS, Crane PR (1998) A new genus of fossil Fagaceae from the Santonian (Late Cretaceous) of central Georgia, USA. Int J Plant Sci 159(2):391-404.

- 206. Johnson KR, Reynolds ML, Werth KW, Thomasson JR (2003) Overview of the Late Cretaceous, early Paleocene, and early Eocene megafloras of the Denver Basin, Colorado. Rocky Mt Geol 38(1):101–120.
- 207. Delevoryas T, Mickle JE (1995) Upper Cretaceous magnoliaceous fruit from British Columbia. Am J Bot 82(6):763-768.
- 208. Rothwell GW, Stockey RA (2002) Anatomically preserved Cycadeoidea (Cycadeoidaceae), with a reevaluation of systematic characters for the seed cones of Bennettitales. Am J Bot 89(9):1447–1458.
- 209. Stockey RA, Rothwell GW (2003) Anatomically preserved Williamsonia (Williamsoniaceae): Evidence for bennettitalean reproduction in the Late Cretaceous of Western North America. Int J Plant Sci 164(2):251–262.
- 210. Heer O (1882) Flora Fossilis Grönlandica. Die Fossile Flora Grönlands. Part I. Flora Fossilis Arctica. Die Fossile Flora der Polarländer (Wurster J and Comp, Zurich), pp 1809–1883.
- 211. Heer O (1883) Flora Fossilis Grönlandica. Die Fossile Flora Grönlands. Part II. Flora Fossilis Arctica. Die Fossile Flora der Polarländer (Wurster J and Comp, Zurich).
- 212. Heer O (1883) Oversigt over Grønlands fossile flora. Medd Gronl 5:81-202.
- 213. Heer O (1883) Flora fossilis Grønlandica. Afbildninger af Grønlands fossile flora. Medd Gronl 5(Suppl):1-27.
- 214. Nathorst AG (1890) Ueber die Reste eines Brotfruchtbaums, Artocarpus dicksoni n.sp., aus den cenomanen Kreideablagerungen Grönlands. K Sven Ventenskapsakad Handl 24:1–10. 215. Seward AC, Conway VM (1935) Additional Cretaceous plants from western Greenland. K Sven Vetenskapsakad Handl 15:1–51.
- 216. Seward AC, Conway VM (1939) Fossil plants from Kingigtoq and Kangdlunguaq, West Greenland. *Medd Gronl* 93:1–41.
- 217. Schrank E (1992) Nonmarine Cretaceous correlations in Egypt and northern Sudan: Palynological and palaeobotanical evidence. Cretac Res 13(4):351-368.
- 218. Schrank E, Rüffle L (2003) The Late Cretaceous leaf flora from Jebel Mudaha, Sudan. Cour Forschungsinst Senckenberg 241:119–129.
- 219. Nishida H (1994) Elsemaria, a Late Cretaceous angiosperm fructification from Hokkaido, Japan. Plant Syst Evol 8(Suppl):123-135.
- 220. Nishida H, Nishida M (1988) Protomonimia kasainakajhongii gen. et sp. nov.: A permineralized magnolialean fructification from the mid-Cretaceous of Japan. Bot Mag 101:397–437.
- 221. Nishida M, Ohsawa T, Nishida H, Yoshida A, Kanie Y (1996) A permineralized magnolialean fructification from the Upper Cretaceous of Hokkaido, Japan. Res Inst of Evol Biol 7:19–30. 222. Ohana T, Kimura T, Chitaley S (1999) Keraocarpon gen. nov., magnolialean fruits from the Upper Cretaceous of Hokkaido, Japan. Paleontol Res 3(4):294–302.
- 223. Takahashi M, Crane PR, Ando H (1999) Esgueiria futabensis sp. nov.; a new angiosperm flower from the Upper Cretaceous (lower Coniacian) of northeastern Honshu, Japan. Paleontol Res 3(2):81–87.
- 224. Takahashi M, Crane PR, Ando H (1999) Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futuba Group, lower Coniacian, Upper Cretaceous) of Northeast Japan. J Plant Res 112:187–206.
- 225. Takahashi M, Herendeen PS, Crane PR (2001) Lauraceous flowers from the Kamikitaba locality (Lower Coniacian; Upper Cretaceous) of Northeast Japan. J Plant Res 114:429-434.
- 226. Takahashi M, Friis EM, Herendeen PS, Crane PR (2008) Fossil flowers of Fagales from the Kamikitaba Locality (Early Coniacian; Late Cretaceous) of Northeastern Japan. Int J Plant Sci 169(7):899–907.
- 227. Takahashi M, Crane PR, Friis EM (2007) Fossil seeds of Nymphaeales from the Tamayama Formation (Futaba Group), Upper Cretaceous (Early Santonian) of northeastern Honshu, Japan. Int J Plant Sci 168(3):341–350.
- 228. Sahni B (1934) The silicified flora of the Deccan Intertrappean Series, Part II. Gymnospermous and angiospermous fruits. 21st Indian Science Congress, Bombay, pp 317–318.
- 229. Sahni B, Rode KP (1937) Fossil plants from the Intertrappean beds of the Mohgaon Kalan, in the Deccan, with a sketch of the geology of Chhindwara district. Proc Natl Acad Sci India, Sect B Biol Sci 7:165–174.
- 230. Chitaley SD (1956) On the fructification of Tricoccites trigonum Rode from the Deccan Intertrappean Series of India. Palaeobotanist 5:56-63.
- 231. Prakash U (1960) A survey of the Deccan Intertrappean flora of India. J Paleontol 34(5):1027-1040.
- 232. Chitaley SD, Sheikh MT (1973) Harrisostrobus intertrappea gen. et sp. nov., a petrified gymnospermous cone from the Deccan Intertrappean beds of India. Palaeontographica B 144(1-2):25–30.
- 233. Chitaley SD, Patel MZ (1975) Raoanthus intertrappea, a new petrified flower from India. Palaeontographica B 153(4-6):141–149.
- 234. Nambudiri EMV, Tidwell WD (1978) On probable affinities of Viracarpon Sahni from the Deccan Intertrappean flora of India. Palaeontographica B 166(1-3):30-43.
- 235. Patil GV, Singh RB (1978) Fossil Eichhornia from the Eocene Deccan Intertrappean beds, India. Palaeontographica B 167(1-3):1–7. 236. Patil GV, Upadhye EV (1984) Cocos-Like Fruit from Mohgaonkalan and Its Significance Towards the Stratigraphy of Mohgaonkalan Intertrappean Beds, eds Sharma AK, Mitra GC,
- Banerjee M (Today and Tomorrow's Printers and Publisher, New Delhi), pp 541–554. 237. Bonde SD (2005) Eriospermocormus indicus gen. et sp. nov. (Liliales: Eriospermaceae): First record of a monocotyledonous corm from the Deccan Intertrappean beds of India. Cretac Res 26(2):197–205
- 238. Eklund H (2003) First Cretaceous flowers from Antarctica. Rev Palaeobot Palvnol 127(3-4):187-217.
- 239. Eklund H. Cantrill DJ. Francis JE (2004) Late Cretaceous mesofossil assemblage from Table Nunatak. Antarctica. Cretac Res 26(2):211-228.
- 240. Dutra TL, Batten DJ (2000) Upper Cretaceous floras of King George Island, West Antarctica, and their palaeoenvironmental and phytogeographic implications. Cretac Res 21(2-3): 181–209.
- 241. Chesters KIM (1955) Some plant remains from the Upper Cretaceous and Tertiary of West Africa. Ann Mag Nat Hist 8(91):498–503.
- 242. van Hoeken-Klinkenberg PMJ (1964) A palynological investigation of some Upper Cretaceous sediments in Nigeria. Pollen Spores 6:209-231.
- 243. Jan du Chêne RE, Adegoke OS, Adediran SA, Petters SW (1978) Palynology and foraminifera of the Lokoja Sandstone (Maastrichtian), Bida Basin, Nigeria. Rev Espanol Micropaleontol 10(3):379–393.
- 244. Jan du Chêne R E, Klasz I, Archibong EE (1978) Biostratigraphic study of the borehole OJO-1, SW Nigeria, with special emphasis on the Cretaceous microflora. Rev Micropaleontol 21: 123–139.
- 245. Kennedy EM, Spicer RA, Rees PM (2002) Quantitative palaeoclimate estimates from Late Cretaceous and Paleocene leaf floras in the northwest of the South Island, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 184(3-4):321–345.
- 246. Kennedy EM, Lovis JD, Daniel JL (2003) Discovery of a Cretaceous angiosperm reproductive structure from New Zealand. N Z J Geol Geophys Abstr 46(4):519–522.