Supporting Information

Hao et al. 10.1073/pnas.1413970111

Numerical Methods

To illustrate our numerical method we consider the following diffusion equation:

$$\frac{\partial X}{\partial t} - D_X \nabla^2 X = F_X \text{ in } \Omega, \qquad [S1]$$

where the right-hand side accounts for all of the "active" terms. Let X_{ij}^n denote a numerical approximation of $X(ih_x, jh_y, n\tau)$, where h_x and h_y are the step size in the x and y directions, respectively, and τ is the time step size. Then, a discretization is derived by the explicit Euler five-point finite difference scheme, that is,

$$\frac{X_{ij}^{n+1} - X_{ij}^{n}}{\tau} - D_X \left(\frac{X_{i+1,j}^n + X_{i-1,j}^n - 2X_{i,j}^n}{h_x^2} + \frac{X_{i,j+1}^n + X_{i,j-1}^n - 2X_{i,j}^n}{h_y^2} \right)$$

= $F_X (X_{i,j}^n)$ in Ω .
[S2]

To make the scheme stable, we take $\tau \le h^2/4D_X$, namely $\tau = 0.1(h^2/D_X)$, where $h = h_x = h_y$. To test the convergence, we take h = 1/N, where n = 10, 20, 40, 80, 160, and 320. The "exact" solution is taken to be the solution with h = 640. The solution is computed up to t = 60 d and the L_2 error of the velocity and numerical order of accuracy are listed in Table S1. We can clearly observe the second-order accuracy in this table.

Parameter Estimation

A summary of all of the model parameters is given in Tables S2 and S3.

Eq. 4.

- d_E : Corneal epithelial half life is at least 4–5 wk (1). We take the tubular epithelial half-life to be 6 wk. Then, $d_E = ln(2)/42 = 1.65 \times 10^{-2} \text{ d}^{-1}$.
- E^* : We assume that the tubular radius is 10 µm and that the tubules occupy up to 90% of the renal cortex. Accordingly, the density of the tubular epithelial cell (TEC) in healthy tissue is taken to be $E^* = 0.8$ g/mL.
- A_E : The steady state of Eq. 4 in healthy tissue is $A_E d_E E^* = 0$. Hence, $A_E = 8.27 \times 10^{-3} \text{ g·cm}^{-3} \text{·d}^{-1}$.
- d_{EM} : The TECs are decreased by the activated macrophages. Assuming that if *M* is large, after a long period the TEC density will decrease by 10% even if TGF- β is not activated. Accordingly, $d_{EM} = 1/10d_E = 1.65 \times 10^{-3} \text{ d}^{-1}$.
- K_{T_β}: Based on ref. 2, the concentration of TGF-β in tumor microenvironment was estimated to be about 10 ng/mL. Because tumors secrete a large amount of TGF-β, K_{T_β} in our model should be significantly smaller; we take K_{T_β} = 10⁻¹⁰ g/cm³.
 λ_{ET_β}: We assume that the increase of TEC apoptosis by macro-
- $\lambda_{ET_{\beta}}$: We assume that the increase of TEC apoptosis by macrophages is double the natural apoptosis rate when TGF- β is approximately at its saturation value; hence, $\lambda_{ET_{\beta}} = 2$.

Eq. 5.

• A_f : Fibroblasts make up 7% of healthy renal tissue (3), so that

$$f^* = 7 \times 10^{-2} \text{ g/cm}^3$$

The steady state of Eq. 5 in healthy tissue is $A_f - d_f f = 0$. Because $d_f = 1.66 \times 10^{-2} d^{-1}$ (4), we get

$$A_f = d_f f^* \approx 1.66 \times 10^{-2} \times 7 \times 10^{-2} = 1.16 \times 10^{-3} \text{ g/cm}^3 \text{ d}^{-1}$$

• λ_{mfT} : In the cancer microenviroment, the transformation from fibroblast to myofibroblast by TGF- β was represented in ref. 5 by the term $a_{21}T_{\beta}f$, where $a_{21} = 6 \times 10^2$ cm³·g⁻¹·s⁻¹. We assume that in our model myofibroblast production rate is smaller than in ref. 5; this rate in our model has the form $\lambda_{mfT}(T_{\beta}/K_{T_{\beta}} + T_{\beta})f$ and, to compare this with $a_{21}T_{\beta}f$, we take the inhibition $K_{T_{\beta}} + T_{\beta}$ to be $3/2K_{T_{\beta}}$. We then choose λ_{mfT} such that

$$\lambda_{mfT} \frac{T_{\beta}}{\frac{3}{2}K_{T_{\beta}}} f = \frac{1}{10} a_{21} T_{\beta} f$$

Hence, $\lambda_{mfT} = 0.12 \text{ d}^{-1}$.

- λ_{mfG} : We assume that PDGF and TGF- β affect the transformation from *f* to *m* to approximately the same extent (6–8) and take $\lambda_{mfG} = \lambda_{mfT}$.
- λ_{fE} : We assume that in the absence of PDGF the production of fibroblasts by TEC is approximately twice the transformation of fibroblasts into myofibroblasts, that is, $\lambda_{fE}E = 2\lambda_{mf}f_f$, and take λ_{fE} by setting $E = E^*$, $f = f^*$; then $\lambda_{fE} = 1.05 \times 10^{-2} \text{ d}^{-1}$.

Eq. 7.

- $\lambda_{\rho T_{\beta}}$: We assume that TGF- β doubles the production of ECM by myofibroblast when TGF- β is approximately at its saturation value. Hence, $\lambda_{\rho T_{\beta}} = 2$.
- $\lambda_{\rho f}$: In the cancer microenvironment, the remodeling rate of ECM is 0.432 d⁻¹ (9). We assume that in renal fibrosis the remodeling rate is much smaller and take $\lambda_{\rho f} = 3 \times 10^{-3} \text{ d}^{-1}$. We also assume that the production rate of ECM by myofibroblasts is twice the production rate by fibroblasts (in the absence of TGF- β), namely, $\lambda_{\rho m} = 2\lambda_{\rho f} = 6 \times 10^{-3}$.
- ρ^* : The steady state of ρ , ρ^* is determined by solving the following steady-state equation in a healthy renal tissue:

$$\lambda_{\rho f} f\left(1 - \frac{\rho}{\rho_0}\right) - d_\rho \rho = 0.$$

Taking $f = f^*$, $\rho_0 = 10^{-3}$ g/cm³ (9), and $d_\rho = 0.37$ d⁻¹ (10), we get $\rho^* = 3.62 \times 10^{-4}$ g/cm³.

Eq. 8.

- *K_P*: In ref. 11 it was demonstrated that renal epithelial cells, in response to inflammation by crystals of calcium oxalate monohydrate and excess oxalate ions, secreted monocyte chemotactic protein-1 (MCP-1) at levels of at least 267 pg/mL, which is ~0.3 ng/mL. We assume that in patients with renal fibrosis the MCP-1 saturation can reach up to 5 ng/mL and take *K_P* = 5 × 10⁻⁹ g/mL.
 λ_{PM}: The degradation rate of MCP-1 is *d_P* = 1.73 d⁻¹ (12).
- λ_{PM} : The degradation rate of MCP-1 is $d_P = 1.73 \text{ d}^{-1}$ (12). We assume that, when *M* and *P* are large, the production of MCP-1 by macrophages is three times larger than the degradation of MCP-1, that is, $\lambda_{PM}M_0 = 3d_PK_P$. Because $M_0 = 5 \times 10^{-5} \text{ g/cm}^3$ (13), we get $\lambda_{PM} = 3d_PK_P/M_0 = 3 \times 10^{-3} \text{ d}^{-1}$.
- *d_{PM}*: MCP-1 internalized by macrophages. We assume that the rate of internalization is smaller by a factor of 1/10 than

the rate of production by macrophages when M are P are large, so that

$$d_{PM}=1/10\lambda_{PM};$$

hence, $d_{PM} = 2.08 \times 10^{-4} \text{ d}^{-1}$.

N A C

- Cenedella RJ, Fleschner CR (1990) Kinetics of corneal epithelium turnover in vivo. Studies of lovastatin. Invest Ophthalmol Vis Sci 31(10):1957–1962.
- Kipari T, et al. (2006) Nitric oxide is an important mediator of renal tubular epithelial cell death in vitro and in murine experimental hydronephrosis. Am J Pathol 169(2):388–399.
- Strutz F, Zeisberg M (2006) Renal fibroblasts and myofibroblasts in chronic kidney disease. J Am Soc Nephrol 17(11):2992–2998.
 Weissman-Shomer P, Fry M (1975) Chick embryo fibroblasts senscence in vitro: Pattern of
- cell division and life span as a function of cell density. Mech Ageing Dev 4(2):159–166.
- Kim Y, Wallace J, Li F, Ostrowski M, Friedman A (2010) Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: A mathematical model and experiments. J Math Biol 61(3):401–421.
- Masur SK, Dewal HS, Dinh TT, Erenburg I, Petridou S (1996) Myofibroblasts differentiate from fibroblasts when plated at low density. Proc Natl Acad Sci USA 93(9):4219–4223.
- Midgley AC, et al. (2013) Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated

Eq. 12.

• $\lambda_{T_{\beta}M}$: In the cancer microenvironment, the production rate of TGF- β by TECs is 1.7 × 10⁻⁴ d⁻¹ (5). We assume that in our model the production rate by macrophages is much larger and take $\lambda_{T_{\beta}M} = 1.5 \times 10^{-2}$ d⁻¹.

epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 288(21):14824–14838.

- 8. Singh V, Barbosa FL, Torricelli AA, Santhiago MR, Wilson SE (2014) Transforming growth factor β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro. *Exp Eye Res* 120:152–160.
- Kim Y, Roh S, Lawler S, Friedman A (2011) miR451 and AMPK mutual antagonism in glioma cell migration and proliferation: A mathematical model. *PLoS ONE* 6(12):e28293.
- Xue C, Friedman A, Sen CK (2009) A mathematical model of ischemic cutaneous wounds. Proc Natl Acad Sci USA 106(39):16782–16787.
- Umekawa T, Chegini N, Khan SR (2002) Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. *Kidney Int* 61(1):105–112.
- Chen D, Roda JM, Marsh CB, Eubank TD, Friedman A (2012) Hypoxia inducible factorsmediated inhibition of cancer by GM-CSF: A mathematical model. *Bull Math Biol* 74(11):2752–2777.
- 13. Tietz NW (1999) Clinical Guide to Laboratory Tests (Saunders, Philadelphia), 3rd Ed.

N	L ₂ error	Order
20	1.09e-1	
40	3.39e-2	1.69
80	1.01e-2	1.75
160	2.75e-3	1.87
320	7.11e-4	1.95

Table S1. Accuracy of numerical method

Table S2. Parameter descriptions and values

VAS PNAS

Parameter	Description	Value and refs.
D _M	Dispersion coefficient of macrophages	$8.64 imes 10^{-7} ext{ cm}^2 ext{ d}^{-1}$ (1, 2)
D _P	Diffusion coefficient of MCP-1	$1.728 \times 10^{-1} \text{ cm}^2 \cdot \text{d}^{-1}$ (3)
D _G	Diffusion coefficient of PDGF	$8.64 \times 10^{-2} \text{ cm}^2 \cdot \text{d}^{-1}$ (4)
D _Q	Diffusion coefficient of MMP	$4.32 \times 10^{-2} \text{ cm}^2 \text{ d}^{-1}$ (5, 6)
D_{Q_r}	Diffusion coefficient for TIMP	$4.32 \times 10^{-2} \text{ cm}^2 \cdot \text{d}^{-1}$ (5, 6)
$D_{T_{\beta}}$	Diffusion coefficient for TGF- β	$4.32 \times 10^{-2} \text{ cm}^2 \text{ d}^{-1}$ (5)
D _f	Dispersion coefficient of fibroblasts	$1.47 imes 10^{-6} ext{ cm}^2 ext{·d}^{-1}$ (7)
D _m	Dispersion coefficient of myofibroblasts	$1.47 \times 10^{-5} \text{ cm}^2 \cdot \text{d}^{-1}$ (7)
$\lambda_{ET_{\beta}}$	Rate of TEC apoptosis enhanced by TGF- eta	(5) estimated
$\lambda_{T_{\beta}M}$	Production rate of TGF- β by macrophages	$1.5 imes 10^{-2} d^{-1}$ (7) and estimated
λ _{GM}	Production rate of PDGF by macrophages	$2.4 \times 10^{-5} d^{-1}$ (4)
λομ	Production rate of MMP by macrophages	$3 \times 10^{-4} d^{-1}$ (2)
λ _{Qr} M	Production rate of TIMP by macrophages	$6 \times 10^{-5} d^{-1}$ (2, 6)
λ _{PE}	Activation rate of MCP-1 due to TECs	$1 \times 10^{-8} \sim 1 \times 10^{-7} \text{ d}^{-1}$ (6) and estimated
λρΜ	Activation rate of MCP-1 due to macrophages	$3 \times 10^{-3} d^{-1}$ estimated
$\lambda_{\rho f}$	Activation rate of ECM due to fibroblasts	$3 imes 10^{-3} ext{ d}^{-1}$ (2) and estimated
$\lambda_{\rho m}$	Activation rate of ECM due to myofibroblasts	$6 imes 10^{-3} d^{-1}$ (2) and estimated
$\lambda_{\rho T_{\beta}}$	Activation rate of ECM due to TGF- β	(5) estimated
λ _{fE}	Activation rate of fibroblasts due to TECs	$1.2 \times 10^{-2} d^{-1}$ (7) and estimated
λmfT	Activation rate of myofibroblasts due to TGF- β	0.12 d^{-1} (7) and estimated
λmfG	Activation rate of myofibroblasts due to PDGF	0.12 d^{-1} (7) and estimated
d _M	Death rate of macrophages	0.015 d ⁻¹ (8)
d _E	Death rate of TECs	$1.65 \times 10^{-2} d^{-1}$ estimated
d _{EM}	Increased death rate of TECs by macrophages	1.65 $ imes$ 10 ⁻³ d ⁻¹ (9) and estimated
$d_{ ho}$	Degradation rate of ECM	0.37 d ⁻¹ (4)
d _P	Degradation rate of MCP-1	1.73 d ⁻¹ (3)
d _{PM}	Internalization rate of MCP-1 by macrophages	$2.08 imes 10^{-4} ext{ d}^{-1}$ (3)
d _G	Degradation rate of PDGF	3.84 d ⁻¹ (4)
d _{QQr}	Binding rate of MMP to TIMP	$4.98 imes 10^8 ext{ cm}^3 ext{·g}^{-1} ext{·d}^{-1}$ (3, 6, 10)
d_{Q_rQ}	Binding rate of TIMP to MMP	$1.04 imes 10^9 ext{ cm}^3 ext{ g}^{-1} ext{ d}^{-1}$ (3, 6, 10)
d _Q	Degradation rate of MMP	4.32 d ⁻¹ (11)
d_{Q_r}	Degradation rate of TIMP	21.6 d ⁻¹ (6, 12)
$d_{\rho Q}$	Degradation rate of ECM due to MMP	$2.59 \times 10^7 \text{ cm}^3 \cdot \text{g}^{-1} \cdot \text{d}^{-1}$ (1)
$d_{T_{\beta}}$	Degradation rate of TGF-β	$3.33 \times 10^2 \text{ d}^{-1}$ (13)
df	Death rate of fibroblasts	$1.66 \times 10^{-2} d^{-1}$ (14)
d _m	Death rate of myofibroblasts	$1.66 \times 10^{-2} d^{-1}$ (14)

MMP, matrix metalloproteinase; TIMP, tissue inhibitor of metalloproteinase.

1. Mercapide J, Lopez De Cicco R, Castresana JS, Klein-Szanto AJ (2003) Stromelysin-1/matrix metalloproteinase-3 (MMP-3) expression accounts for invasive properties of human astrocytoma cell lines. Int J Cancer 106(5):676–682.

2. Miller CC, et al. (2003) Validation of a morphometric method for evaluating fibroblast numbers in normal and pathologic tissues. Exp Dermatol 12(4):403-411.

3. Umekawa T, Chegini N, Khan SR (2002) Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int 61(1):105–112.

4. Kim Y, Roh S, Lawler S, Friedman A (2011) miR451 and AMPK mutual antagonism in glioma cell migration and proliferation: a mathematical model. *PLoS ONE* 6(12):e28293. 5. Strutz F, Zeisberg M (2006) Renal fibroblasts and myofibroblasts in chronic kidney disease. *J Am Soc Nephrol* 17(11):2992–2998.

6. Bowen-Pope DF, Malpass TW, Foster DM, Ross R (1984) Platelet-derived growth factor in vivo: Levels, activity, and rate of clearance. Blood 64(2):458-469.

7. Wakefield LM, et al. (1990) Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest 86(6):1976–1984.

8. Midgley AC, et al. (2013) Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. *J Biol Chem* 288(21):14824–14838.

9. Singh V, Barbosa FL, Torricelli AA, Santhiago MR, Wilson SE (2014) Transforming growth factor β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro. *Exp Eye Res* 120:152–160.

10. Xue C, Friedman A, Sen CK (2009) A mathematical model of ischemic cutaneous wounds. Proc Natl Acad Sci USA 106(39):16782-16787.

Kim Y, Lawler S, Nowicki MO, Chiocca EA, Friedman A (2009) A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J Theor Biol 260(3):359–371.
 Chen D, Roda JM, Marsh CB, Eubank TD, Friedman A (2012) Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: A mathematical model. Bull Math Biol 74(11): 2752–2777.

13. Wakefield L, et al. (1990) Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest 86(6):1976–1984.

14. Tietz NW (1999) Clinical Guide to Laboratory Tests (Saunders, Philadelphia), 3rd Ed.

Table S3. Parameter descriptions and values

Parameter	Description	Value and refs.				
χр	Chemotactic sensitivity parameter by MCP-1	10 cm ⁵ ·g ⁻¹ ·d ⁻¹ (1, 2)				
A _E	Intrinsic TEC proliferation	8.27 \times 10 ⁻³ g·cm ⁻³ ·d ⁻¹ estimated				
A _f	Intrinsic fibroblast proliferation	$1.16 \times 10^{-3} \text{ g} \cdot \text{cm}^{-3} \cdot \text{d}^{-1}$ (3, 4) and estimated				
Ko	MMP saturation for activation of scar	3 × 10 ^{−8} g·cm ^{−3} (5, 6)				
K _G	PDGF saturation for activation of myofibroblasts	$1.5 \times 10^{-1} \text{ g} \cdot \text{cm}^{-3}$ (6, 7)				
K _M	Macrophage saturation for apoptosis of TECs	$5 \times 10^{-5} \text{ g} \cdot \text{cm}^{-3}$ (8)				
$K_{T_{\beta}}$	TGF- β saturation for inhibition of TECs	1 × 10 ^{−10} g⋅cm ^{−3} (9)				
K _P	MCP-1 saturation for influx of macrophages	5 × 10 ^{−9} g·cm ^{−3} (10)				
ρo	ECM saturation	10 ⁻³ g⋅cm ⁻³ (11)				
ρ*	ECM density in health	$3.62 \times 10^{-4} \text{ g} \cdot \text{cm}^{-3}$ estimated				
E*	TEC density in health	0.8 g cm ⁻³ estimated				
f*	Fibroblast density in health	$0.07 \text{ g} \cdot \text{cm}^{-3}$ (12) and estimated				
Mo	Source/influx of macrophages from blood	$5 \times 10^{-5} \text{ g} \cdot \text{cm}^{-3}$ (8)				
α	Influx rate of macrophages into interstitium	0.2 cm^{-1} (6)				

Kim Y, Lawler S, Nowicki MO, Chiocca EA, Friedman A (2009) A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J Theor Biol 260(3):359–371.
 Mercapide J, Lopez De Cicco R, Castresana JS, Klein-Szanto AJ (2003) Stromelysin-1/matrix metalloproteinase-3 (MMP-3) expression accounts for invasive properties of human astrocytoma cell lines. Int J Cancer 106(5):676–682.

3. Hao W, Friedman A (2014) Cholesterol levels determine plaque formation in arteries: A mathematical model. PLoS ONE 9(3):e90497.

4. Friedman A, Turner J, Szomolay B (2008) A model on the influence of age on immunity to infection with Mycobacterium tuberculosis. Exp Gerontol 43(4):275-285.

5. Palosaari H, Yliopisto O (2003) Matrix metalloproteinases (MMPs) and their specific tissue inhibitors (TIMPs) in mature human odontoblasts and pulp tissue. Eur J Oral Sci 111(2): 117–127.

6. Bowen-Pope DF, Malpass TW, Foster DM, Ross R (1984) Platelet-derived growth factor in vivo: Levels, activity, and rate of clearance. Blood 64(2):458-469.

7. Kim Y, Friedman A (2010) Interaction of tumor with its micro-environment: A mathematical model. Bull Math Biol 72(5):1029-1068.

8. Gattorno M, et al. (1998) Serum interleukin 12 concentration in juvenile chronic arthritis. Ann Rheum Dis 57(7):425–428.

9. Wakefield LM, et al. (1990) Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest 86(6):1976–1984.

10. Kipari T, et al. (2006) Nitric oxide is an important mediator of renal tubular epithelial cell death in vitro and in murine experimental hydronephrosis. Am J Pathol 169(2):388-399.

11. Miller CC, et al. (2003) Validation of a morphometric method for evaluating fibroblast numbers in normal and pathologic tissues. Exp Dermatol 12(4):403–411.

12. Uhal BD, et al. (1998) Cell size, cell cycle, and alpha-smooth muscle actin expression by primary human lung fibroblasts. Am J Physiol 275(5 Pt 1):L998-L1005.

Damage	Patient index	uTGFb*	uMCP1*	% fibrosis	INF^\dagger	Patient index	uTGFb*	uMCP1*	% fibrosis	INF
Low	1	0.018	0.78	0	1	2	0.056	1.14	0	1
	3	0.089	1.4	0	1	4	0.223	2.27	0	2
	5	0.005	1.1	0	1	6	0.003	0.33	0	1
	7	0.101	1.94	0	1	8	0.053	0.82	0	1
	9	0.0016	0.7	0	1	10	0.034	0.51	2	1
	11	0.029	1.33	2	1	12	0.268	4.12	2	2
	13	0.056	0.95	2	1	14	0.014	0.75	5	1
	15	0.002	2.23	5	2	16	0.072	1.756	5	1
	17	0.033	1.5	5	1	18	0.0007	0.81	5	1
	19	0.0055	1.24	5	1					
Intermediate	20	0.084	3.94	10	2	21	0.038	6.26	10	1
	22	0.502	3.5	10	1	23	0.0046	0.2	10	1
	24	0.0009	0.78	10	1	25	0.00097	0.5	10	1
	26	0.0058	1.24	10	1	27	0.021	0.58	10	1
	28	0.126	4.41	10	2	29	0.004	2.2	10	2
	30	1.42	2	15	1	31	0.021	0.73	15	1
	32	0.035	2.18	17.5	1	33	0.788	21.4	20	1
	34	0.0009	0.53	20	1	35	0.001	0.36	20	1
	36	0.0019	2.1	25	1	37	0.0035	0.33	25	1
	38	0.002	2.6	25	2					
High	39	0.052	1.51	30	1	40	0.293	19.8	33	2
	41	0.177	10.8	35	2	42	0.0039	1.34	40	2
	43	0.0014	0.85	50	2	44	0.0032	0.48	50	1
	45	0.005	0.6	50	1	46	0.003	2.05	70	1
	47	0.0055	0.99	80	2					

Table S4. Patient data for different levels of interstitial fibrosis based on kidney biopsy

*The units for urine MCP-1 and urine TGF- β are nanograms per milligram urine creatinine.

[†]INF is the degree of interstitial inflammation; 1 and 2 indicate that the degree of interstitial inflammation is <25% and \geq 25%, respectively.