Supporting Information

Thayer et al. 10.1073/pnas.1416079111

SANG SANG

Pma1			
GFP		Ũ	•
RFP	and an	, Angeler Ange	
Mrh1			
GFP	G	Ð	Э
RFP	e.90	1000 1000 1000	
Sur7			
© GFP	ø	a	0
			0 3 0 2 3

Fig. S1. PMA1, MRH1, and SUR7 recombination-induced tag exchange (RITE)-tag time-lapse images with separated channels. Images from Fig. 2B presented with GFP and RFP channels as separate grayscale images. PMA1-RITE (*Top*), MRH1-RITE (*Middle*), and SUR7-RITE (*Bottom*). (Magnification: Pma1, 200×; MrH1 and Sur7, 250×.)

RFP

Lsp1

Fig. 52. LSP1 and Nce102 RITE-tag time-lapse images with separated channels. Images from Fig. 4 *B* and *C* presented with GFP and RFP channels as separate grayscale images. LSP1-RITE (*Top*) and Nce102 (*Middle*). (Magnification: 700×.) Quantification of fluorescence at the plasma membrane is graphically displayed (*Bottom*).

Fig. S3. Comparison of putative long-lived asymmetrically retained proteins (LARP) levels under stable isotope labeling by amino acid conditions. RITE-tagged strains were grown overnight in either YEPD (R) or Ymin+his+leu (M) to mid-log phase cell density. Equivalent amounts of total whole-cell protein were probed with anti–GFP antibody on Western blots. All strains were heterozygous *MET15/met15*. Met6 and Sam2 were more highly expressed in minimal media, and Hsp26 only slightly more expressed. Sam1 and Thr1 appeared to have no difference in expression, and Gcv3 had a decrease in expression in minimal media.

Fig. S4. Hsp26 foci are coincident with Hsp104 foci. Cells from a strain containing Hsp104-GFP and Hsp26-mCherry are shown. Hsp26-mCherry foci were visible in ~10% of cells, whereas Hsp104-GFP foci were visible in >50% of cells. However, all Hsp26-mCherry foci overlapped with an Hsp104-GFP focus. (Magnification: 2,750×.)

Fig. S5. Plasma membrane LARP asymmetry is not mediated by the septin ring. Mrh1-GFP asymmetry between mother cells and buds was evaluated upon septin ring disruption by repressing $TetO_{T}$ -CDC12 (1) transcription by treating cells with 20 µg/mL of doxycycline for 5 h. Cells also expressed Cdc10-mCherry to follow septin morphology. Bud elongation and Cdc10-mCherry mislocalization to the bud tip occurred upon CDC12 repression and indicate septin ring disruption (2, 3). (Magnification: 2,500×.)

1. Mnaimneh S, et al. (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118(1):31-44.

2. Bouquin N, et al. (2000) Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae. J Cell Sci 113(Pt 8):1435-1445.

3. Hartwell LH (1971) Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69(2):265-276.

♥ ≪

Table S1. Plasmids and strains used

PNAS PNAS

Plasmid or strain	Genotype or descriptions	Source
Plasmids		
pKV015	V5-loxP-HA-GFP-HphMX-loxP-T7-mRFP used to fuse RITE tag to gene of interest	(1)
pSS146	pINT- <i>URA3-P_{GPD/TDH3}-cre-EBD78</i> , <i>Mlu</i> l linearized fragment used to integrate cre-EBD78 into CYC1 _{rem} locus	(1)
pKT127	pFA6a-link-vEGFP-KanMX used to fuse GFP to gene of interest	(2)
pKT128	pEAGa-link-vEGPP-SAHIS5 used to fuse GEP to gene of interest	(2)
pKTnCherry	<i>mCherry-KanMX</i> used to fuse mCherry to gene of interest	W. Shou laboratory Fred Hutchinson Cancer Research Center, Seattle
Yeast strains		
BY4741	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$	(3)
BY4742	MAT α his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0	(3)
UCC4044	MATalα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0/+ LAP4-V5-loxP-HA- GFP-HphMX-loxP-T7-mRFP/LAP4 CYC1 _{term} :URA3-P _{GPD/IDH3} -cre-EBD78:CYC1 _{term} /+	Present study
UCC4181	MATalα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0/+ MRH1-V5-loxP-HA- GFP-HphMX-loxP-T7-mRFP/MRH1 CYC1 _{term} :URA3-P _{GPD/TDH3} -cre-EBD78:CYC1 _{term} /+	Present study
UCC4190	MATalα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0/+ w/ PMA1-V5-loxP- HA-GFP-HphMX-loxP-T7-mRFP/PMA1 CYC1term:URA3-PGPDtTDH3-Cre-EBD78:CYC1term/+	Present study
UCC4243	MATalα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0/+ MET6-V5-loxP-HA- GFP-HphMX-loxP-T7-mRFP/MET6 CYC1 _{term} :URA3-P _{GPD/TDH3} -cre-EBD78:CYC1 _{term} /+	Present study
UCC4277	MATalα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0/+ YNL134C-V5-loxP- HA-GFP-HphMX-loxP-T7-mRFP/YNL134C CYC1 _{term} :URA3-P _{GPD/TDH3} -cre-EBD78:CYC1 _{term} /+	Present study
UCC4395	MATa/α his3Δ1/hisΔ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 lys2Δ0/+ trp1Δ63/+ hoΔ:: P _{SCW11} -cre- EBD78-NatMX/hoΔ:: P _{SCW11} -cre-EBD78-NatMX loxP-CDC20-Intron-loxP-HphMX/loxP-CDC20- Intron-loxP-HphMX loxP-UBC9-loxP-LEU2/loxP-UBC9-loxP-LEU2 LSP1-mCherry-KanMX/LSP1- mCherry-KanMX SUR7-GFP-SpHIS5/SUR7-GFP-SpHIS5	Present study
UCC4925	MATa/a his3∆1/his3∆1 leu2∆0/leu2∆0 ura3∆0/ura3∆0 lys2∆0/+ trp1∆63/+ ho∆::SCW11pr-cre- EBD78-NatMX/ho∆:: P _{SCW11} -cre-EBD78-NatMX loxP-CDC20-Intron-loxP-HphMX/loxP-CDC20- Intron-loxP-HphMX loxP-IBC9-loxP-IEU2/loxP-IBC9-loxP-IEU2	(4)
UCC5406	MATal α ade2Δ::hisGlade2Δ::hisG his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 met15Δ::ADE2/+ ura3Δ0/ura3Δ0 trp1Δ63/trpΔD63 hoΔ::P _{SCW11} -cre-EBD78-NatMX/hoΔ:: P _{SCW11} -cre-EBD78-NatMX loxP-UBC9- loxP-LEU2/loxP-UBC9-loxP-LEU2 loxP-CDC20-Intron-loxP-HphMX/loxP-CDC20-Intron-loxP- HphMX arg400::KanMX/arg4Δ0::KanMX lvs1Δ0::KanMX/lvs1Δ0::KanMX	Present study
UCC6884	MATa his3A1 leu2A0 met15A0 ura3A0 CYC1torm:URA3-Pcportpuz-cre-FBD78:CYC1torm	Present study
UCC6886	MATa his3A1 leu2A0 lys2A0 ura3A0 CYC1	Present study
UCC8773	MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 hoΔ:: P _{SCW11} -cre-EBD78-NatMX loxP-CDC20-Intron-loxP- HnhMX loxP-IBC9-loxP-IEI2	(4)
UCC8774	MATα his3D1 leu2D0 ura3D0 trp1D63 hoD:: P _{scw11} -cre-EBD78-NatMX loxP-CDC20-Intron-loxP- HphMX loxP-UBC9-loxP-LEU2	(4)
UCC10141	MATa\α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 lys2Δ0/+ trp1Δ63/+ hoΔ:: P _{SCW11} -cre- EBD78-NatMX/hoΔ:: P _{SCW11} -cre-EBD78-NatMX loxP-CDC20-Intron-loxP-HphMX/loxP-CDC20- Intron-loxP-HphMX loxP-UBC9-loxP-LEU2/loxP-UBC9-loxP-LEU2 MRH1-GFP-KanMX/MRH1- GFP-KanMX	Present study
UCC11298	MATa/a his3∆1/his3∆1 leu2∆0/leu2∆0 ura3∆0/ura3∆0 lys2∆0/+ trp1∆63/+ ho∆:: P _{sCW11} -cre- EBD78-NatMX/ho∆:: P _{sCW11} -cre-EBD78-NatMX loxP-CDC20-Intron-loxP-HphMX/loxP-CDC20- Intron-loxP-HphMX loxP-UBC9-loxP-I EU2/loxP-UBC9-loxP-I EU2 SUB7-GFP-SpHIS5/SUB7	Present study
UCC12510	MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0/+ HSP26-V5-loxP-HA- GFP-HphMX-loxP-TZ-mRFP/HSP26 CYC1'LIRA3-P_normsurgere-FBD78-CYC1	Present study
UCC12520	$MATa/\alpha$ his3 $\Delta 1/his3\Delta 1$ leu2 $\Delta 0/leu2\Delta 0$ ura3 $\Delta 0/ura3\Delta 0$ met15 $\Delta 0/+$ lys2 $\Delta 0/+$ THR1-V5-loxP-HA- GFP-HphMX-loxP-T7-mRFP/THR1 CYC1+cm:URA3-P_coprod2cre=EBD78:CYC1+cm=/+	Present study
UCC12526	MATalα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0+ SAM2-V5-loxP-HA- GFP-HphMX-loxP-T7-mRFP/SAM2 CYC1.torm/URA3-P.genutrua-Cre-EBD78:CYC1.torm/+	Present study
UCC12543	MATalα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0/+ NCE102-V5-loxP-HA- GFP-HphMX-loxP-T7-mRFP/NCE102 CYC1.com;URA3-Ponomuz-cre-EBD78:CYC1.com/+	Present study
UCC12561	MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 met15Δ0/+ lys2Δ0/+ GCV3-V5-loxP-HA- GFP-HphMX-loxP-T7-mRFP/GCV3 CYC1/IBA3-Pconmous-cre-FBD78/CYC1/+	Present study
UCC12592	MATalα his3Δ1/hisΔ1 leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0 lys2Δ0/+ trp1Δ63/+ hoΔ:: P _{SCW11} -cre-EBD78- NatMX/hoΔ:: P _{SCW11} -cre-EBD78-NatMX loxP-CDC20-Intron-loxP-HphMX/loxP-CDC20-Intron- loxP-HphMX loxP-UBC9-loxP-LEU2/loxP-UBC9-loxP-LEU2 HSP26-mCherry-KanMX/HSP26 HSP104- GFP-SpHIS5/HSP104	Present study

1. Verzijlbergen KF, et al. (2010) Recombination-induced tag exchange to track old and new proteins. Proc Natl Acad Sci USA 107(1):64–68.

2. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21(8):661–670.

- 3. Brachmann CB, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14(2):115–132.
- 4. Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492(7428):261-265.

Movie S1. Mrh1-RITE time-lapse. Mrh1 is retained in mother cells at the plasma membrane. (Magnification: 500×.)

Movie S1

SANG SANG

Movie S2. Pma1-RITE time-lapse. Pma1 is retained in mother cells at the plasma membrane. (Magnification: 500x.)

Movie S3. Sur7-RITE time-lapse. Sur7 is retained in mother cells at the plasma membrane. (Magnification: 500×.)

Movie S3

PNAS PNAS

Movie S4. Thr1-RITE time-lapse. Thr1 foci have a propensity to remain in mother cells. (Magnification: 1,000×.)

Movie S5. Hsp26-RITE time-lapse. Hsp26 foci have a propensity to remain in mother cells. (Magnification: 600×.)

Movie S5

PNAS PNAS

Movie S6. Hsp26-RITE time-lapse. Hsp26 foci are sometimes transferred to daughter cells. (Magnification: 1,000×.)

Movie S7. Lsp1-RITE time-lapse. Lsp1 is not retained in mother cells. (Magnification: 2,750×.)

Movie S7

NAS PNAS

Movie S8. Nce102-RITE time-lapse. Nce102 is not retained in mother cells. (Magnification: 2,500×.)

Dataset S1. Peptides observed with calculated ratio columns

Dataset S1

(*i*) Systematic gene name. (*ii*) Common gene name. (*iii*) Approximate molecular weight of source fragment (gel slice). (*iv*) Peptide sequence. (*v*) Median ¹³C/¹²C ratio for all observed events of this peptide from the gel slice. (*vi*) Species of all peptides specifically identified, heavy or light. (*vii*) SD of the medians calculated from 1,000 bootstrapped samples of events for this peptide.

Dataset S2. Plots of the $^{13}C/^{12}C$ ratio for peptides in given gel slices that correspond to all proteins that met threshold of having high quality data with ratio >0.1

Dataset S2

DNAS

Each page represents a single predicted yeast ORF with its standard and systematic *S. cerevisiae* name in the title. The *x* axis is approximate molecular weight (MW) of peptide (estimated from gel slice); *y* axis is median ratio ${}^{13}C{}^{12}C$ for all peptides mapped to that protein in a gel slice; size of dots reflect relative abundance of peptides in that slice; error bars are SD of the medians calculated from 1,000 bootstrapped samples. The expected MW of the full-length unmodified protein is plotted as a vertical dashed red line.

Dataset S3. Plots of the ${}^{13}C/{}^{12}C$ ratio for peptides in given gel slices that correspond to all proteins observed

Dataset S3

Plots, as described for Dataset 52, for all observed proteins, irrespective of passing filtering criteria described in *Materials and Methods*. Some contaminating human proteins were left as light-labeled controls in the dataset; they are named by their International Protein Index accession number.