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Supplementary Figure 1 Genes with high- and medium-expression levels are robustly
detected by low- and high- coverage sequencing. (a) Comparison of genes detected by low-
and high-coverage sequencing of a cDNA library from a representative single cell. Total

2



numbers of genes detected above the threshold (TPM>1) are indicated in shaded circles. Venn
diagram shows the overlap between sets of detected genes. Genes in each category (detected
only by low- or high-coverage sequencing or by both) were further subdivided based on their
expression levels and are shown in the pie charts of corresponding colors. Green pie chart- of
the 3162 genes that were detected in the high-coverage data but not detected in the low-
coverage data, only 60 (1.9%) were found to be high-abundance genes (TPM>100). In contrast,
1985 of the detected in the high-coverage data but not detected in the low-depth data (62.8%)
were found to be low-abundance genes (1<TPM<10). Orange pie chart- A low percentage
(1.5%) of total genes detected above 1 TPM were only detected by low-coverage sequencing.
These transcripts were captured when sequencing the libraries by MiSeq®, possibly due to
sampling error during cluster generation, but were not sufficiently abundant to be detected when
sequencing the libraries by HiSeq®. Of these 122 genes, only 3 (2.5%) were found to be high-
abundance genes (TPM>100), while 98 (80.3%) were detected at medium expression levels
(10<TPM=<100) in the low-coverage data. Blue pie chart- in contrast with both of the dropout
data sets, the 4644 genes that were detected in both the low- and high-coverage data were
more evenly distributed and were composed of 1523 (32.8%) high-abundance genes, 2582
(55.6%) medium-abundance genes, and 539 (11.6%) low-abundance genes, based on the TPM
levels determined from the high-coverage data. (b) Graph showing average number of genes
detected by high-coverage sequencing that are no longer detectable across downsampled
sequencing depths. (¢) Graph showing average total number of genes detected above the
threshold (TPM>1) in high- and low-coverage data across cells of a given type. (d) Graph (same
as Fig 1c) showing the average number of genes expressed at various levels detected by high
coverage sequencing in each cell type. (e-g) Graphs show the average numbers of genes at
various expression levels detected only in high-coverage data set (e), in both data sets (f), and

only in low-coverage data set across all cells (g). Results represent mean + s.d.
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Supplementary Figure 2 Estimates of gene expression levels between high-coverage
mMRNA Seq and downsampled datasets. Graph showing correlation coefficients between
gene expression levels derived from high-coverage mRNA Seq and data derived from
downsampled reads. Cyan data points indicate correlation for all genes and magenta data

points indicate the correlations calculated only for genes detected in both datasets.
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Supplementary Figure 3 PCA scree plot for low-coverage sequencing data for all
analyzed cells. Genes driving PC1 and PC2 have the greatest relative contribution to the

variation between analyzed cells.
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Supplementary Figure 4 Principal component analysis distinguishes cell populations
even at very low sequencing depths. Plots of sample scores in PC1 and PC2 for all 301 cells
derived from (a) high-coverage data, (b) high-coverage data downsampled to 300,000 reads per
cell, (c) low-coverage data (averaging 270,000 reads per cell), high-coverage data further
downsampled to: (d) 100,000 reads, (e) 50,000 reads, (f) 10,000 reads, (g) 5,000 reads, (h)
1,000 reads, (i) 500 reads, and (j) 100 reads per cell. Notably, the broad distinctions between

diverse cell types are still visible with fewer than 10,000 sequencing reads per cell.
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Supplementary Figure 5 Hierarchical clustering reveals specific gene expression profiles
of different cell types. (a) Heatmap of expression data for 301 cells clustered using the 500
genes with the strongest PC1-3 gene loading scores derived from low-coverage mRNA
sequencing data. Rows correspond to individual cell samples and columns correspond to
genes. Five major gene clusters indicated with the colors: red, green, yellow, orange and cyan
are revealed. Cells from three populations: HL60 cells, 2339 cells, and 2338 cells were captured
using independent chips on different days and are highlighted in the right column of symbols
next to the dendrogram with filled versus open circles. For 2338 cells and HL60 cells, the
independent chips also included different capture site geometries (Supplementary Table 1). In
all three cases, cells of the same origin collected using different chips clustered together. Within
the HL60 group, the cells captured on a different day using a smaller capture site clustered
more closely on the dendrogram (open red circles), while cells from different chips were largely

interspersed along the dendrogram within their respective source groups (2338 cells - blue



circles and 2339 cells - purple circles), suggesting that plate-to-plate variation does not have a
major impact on cell type classification. (b) Violin plots display the distribution of gene
expression levels in each population studied for the 10 genes most strongly correlated with
group memberships. Biomarkers defining groups from heterogeneous primary neural tissue are

further examined in Supplementary Fig. 11.
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Supplementary Figure 6 Distribution of expression levels for genes best explaining the
variation across single cells from distinct populations. (a-b) Distribution of expression
levels for the 500 genes with the strongest PC1-3 gene loading scores in low-coverage and
high-coverage datasets. Distributions are presented as violin plots (a) and histograms (b) that
represent expression levels as determined by high-coverage sequencing. The majority (78%) of
the top 500 PCA genes derived from high- and low-coverage datasets overlap (middle plots in
a, b). The distribution of gene expression levels differs for the 22% of PCA genes that explain
variation exclusively in the low-coverage data (left plots: a, b) and in the high-coverage data
(right plots: a,b). Specifically, the high-coverage sequencing is more sensitive to detecting low-
abundance PCA genes, while the low-coverage data relies on a greater proportion of a high-
abundance genes that may explain less variation in the more sensitive high-coverage dataset.
Although the majority of PCA genes are shared across depths, this analysis demonstrates a
limitation for shallow sequencing to detect a fraction of the low-abundance genes important for
variation across cells. (c-d) Violin plots representing the distribution of expression levels across
each cell type are displayed for the top 100 PCA genes derived from analysis of low-coverage
(c) and high-coverage (d) sequencing results. Some genes that appear to be low-abundance by
averaging all 301 cells may actually be expressed at very high-levels in a single population
(e.g., HBG1, HBGZ2 in K562 erythroleukemia cells, MPO in HL60 promyelocytic leukemia cells,

and KRT14 in keratinocytes, violin plots).
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Supplementary Figure 7 The PCA scree plot for the low-coverage mRNA Seq of 65 single

cells in the neural development lineage. Genes driving PC1 and PC2 have the greatest

relative contribution to the variation between analyzed cells.
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Supplementary Figure 8 Cells derived from samples representing various stages of
neural development can be separated using low-coverage single-cell mRNA Seq. (a) PCA
of low-coverage mRNA Seq data from 65 cells representing various stages of neural
development. Cells are labeled based on source: NPCs, GW16 cortex, GW21 cortex, and
GW21 cortex cultured under neurogenic conditions for three weeks (GW21+3) and are
schematized in Fig. 3a. Based on this analysis, the 500 genes with highest PCA loading scores
were used for hierarchical clustering of single cells in Fig. 3b. (b) Re-labeling of samples using
the broad cell type classifications from Fig 3c. (¢) Re-labeling of samples based on further

analysis of subgroups in hierarchical clustering discussed in Supplementary Fig. 10.
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Supplementary Fig. 9 Neural cell type classification is possible at ultra low sequencing
depths. (a) Plot showing the average total number of genes detected per cell at different
downsampled sequencing depths across 65 neural cells. Error bars represent standard error of
the mean. (b) Plot showing the fraction of the top 500 PCA genes identified in high-coverage
data that are detected at each downsampled sequencing depth. PCA at 10,000 reads per cell
identifies nearly half (46.8%) of the top 500 PCA genes derived from high-coverage data even
though only about one quarter (25.9%) of all genes detected by high-coverage data are
observed at this low depth. (c-j) PCA of high-coverage mRNA Seq data was compared with low-
coverage PCA (c-f) and with PCA conducted on downsampled datasets (g-j). (c-f) Sample
scores derived from low- and high-coverage data were calculated using eigenvectors from high-
coverage data and correlated strongly across all 65 neural cells for (¢) PC1 (r = 0.998) and (d)
PC2 (r = 0.993). Results from low- and high-coverage datasets also correlate strongly for the
eigenvectors defining (e) PC1 (r = 0.95) and (f) PC2 (r = 0.9). (g-j) Plots showing Pearson
correlation coefficient between sample scores (g-h) and eigenvectors (i-j) derived from the PCA
conducted on downsampled datasets and from the PCA conducted on high coverage mRNA
Seq data. At 5,000 reads per cell, the PCA sample scores for PC1 (g) and PC2 (h) are strongly
(r > 0.9) correlated with high-coverage PCA sample scores, indicating that cell type distinction is
possible even at very low sequencing depths. Eigenvectors derived from downsampled data
strongly correlate with the eigenvectors derived from high-coverage data at 50,000 reads (PC1:
r = 0.93; PC2: r = 0.86). (k-0) Panels displaying (left to right) top 10 PCA genes, PCA sample
plots and hierarchical clustering dendrograms for downsampled datasets corresponding to
50,000 reads per cell (k), 5,000 reads per cell (1), 1,000 reads per cell (m), 500 reads per cell
(n), and 100 reads per cell (0). Samples in the dendrogram are colored according to cell type
assignments in Figure 3b, and numbers indicate the approximately unbiased p-values
calculated using pvclust for clusters of cells corresponding to groups I-IV and subgroups
described in Supplementary Figure 10 (see Methods). (k) At 50,000 reads, finer distinctions
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within newborn and maturing neuron categories observed at high-coverage remained
detectable: immature inhibitory neurons (open green circle), maturing neuron-A (open blue
circle), maturing neurons-B (filled blue circle). (I) At 5,000 reads, the finer distinctions begin to
blur, but the four major groups of cell types remain visible. Notably, EGR7 and FOS, which are
the top-ranked PCA genes in the PCA at 50,000 reads per cell, are still detected in among top
10 PCA genes. (m) At 1,000 reads, the distinction between newborn and maturing neurons is
lost, but distinct progenitor, radial glia, and neuronal groups are visible. Unbiased identification
of finer distinctions between cell types is also likely to be influenced by the number of cells
surveyed from each population and the heterogeneity within each category. The ability to
classify cells at ultra low depths anticipates the utility of cellular barcoding and cell capture
strategies that retain cell-of-origin information for transcripts sampled from tens of thousands of

cells derived from heterogeneous tissue.
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Pollen et al. Supplementary Figure 10
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Supplementary Figure 10 Classification of 65 neural cells reveals additional cellular
diversity within broad categories. (a) The sets of genes that explain variation between the
same 65 neural cells sequenced at low- and high-coverage are largely overlapping: 380 of the
500 genes with the strongest loading scores in PC1-3 are shared (Venn diagram). Hierarchical
clustering of 65 neural cells across the top 500 PCA genes derived from low-coverage mRNA
sequencing (top dendrogram) reveals distinct groups of cells that are largely similar to the
groups derived from clustering cells according to the gene expression values and top 500 PCA
genes derived from high-coverage mRNA sequencing (bottom dendrogram). Sample names
and cell type assignments are listed below the dendrogram, and three cells that transition
between groups are highlighted in brown. Based on the expression of known marker genes,
groups I-IV correspond to major classes of cells in the developing neocortex (Fig. 3b-c).
However, additional subgroups highlighted with colored rectangles in dendrogram may
correspond to meaningful distinctions of additional cellular diversity. Numbers above nodes of
the dendrograms indicate approximately unbiased p-values calculated using pvclust (see
Methods). (b) PCA plots of low-coverage mRNA Seq data from 35 cells expressing markers of
neural progenitor cells and radial glia (Fig. 3a-c) that formed groups | and Il and subgroups
highlighted in the dendrogram in a. (c¢) PCA plot of low-coverage mRNA Seq data from 30 cells
that expressed markers of newborn and maturing neurons (Fig. 3a-c) and formed groups IlI, llb,
IVa, and IVb. (d) Heatmap of gene expression levels averaged across cells of each group
(identified in a) for marker genes selected to examine additional cellular diversity and for genes
distinguishing cell groups. Bottom row shows select in situ hybridization from developing mouse
cortex to illustrate the distinct and overlapping expression of select marker genes’. All cell
groups expressed FOXG1 consistent with their telencephalic origin®>. Group | cells strongly
expressed genes important for cell division®>®. Cells from group la and group Il shared strong
expression for neuroepithelial (NOG, SOX2, VIM) " and cortical (PAX6 and GLI3) """ markers,
but only group Il cells expressed mature radial glia markers (SLC1A3, HES1, and NOTCH1) *
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4 Although group Ib consisted of only two cells, these cells clustered together in analysis of
low- and high coverage data (a), and these cells expressed markers of intermediate neural
progenitors (HES6, BTG2, GADD45G, EOMES, DLL1, and NEUROG?2) **'® which are dividing
cells that are born from radial glia and amplify their neuronal output by undergoing divisions in
the SVZ. Group Ic contained cells that expressed markers of cell division but also expressed
early markers of neuronal fate including CD24 and SOX4. Group Ill contained 18 cells that
expressed markers of newborn neurons with minimal expression of progenitor markers. Within
group lllI, six cells clustered together in both dendrograms (a), and in downsampled dataset at
50,000 reads per cell (Supplementary Figure 9k), and in PCA space in c. These cells expressed
multiple markers of inhibitory interneurons, which are produced by the germinal zone of the
ventral telencephalon and migrate tangentially to populate the cortex'’. The remaining 12
neurons in group Il are likely to be newborn excitatory neurons and were largely captured from
the GW16 germinal zone. These cells were characterized by the expression of proneural factors
such as NEUROD1, NEURODG6, and SOX4, as well as UNC5D a gene transiently upregulated
in postmitotic newborn neurons that regulates the earliest phase of neuronal migration®, and
the gene ROBO2 which may be involved in regulating radial migration of cortical neurons'® %°.
NEUROD1, ROBO2, and UNC5D are expressed in the intermediate zone of the mouse cortex
but not the cortical plate (in situs, bottom row) suggesting that these cells correspond to
transient developmental intermediates in neurogenesis with distinct transcriptional profiles.
Group IV cells express markers of young neurons such as DCX, but also early markers of
neuronal maturation including MAPT, SNAP25, and MEF2C ?"*°. Interestingly, two putative
subgroups of maturing neurons classified in both low- and high-coverage datasets differentially
expressed CAMKV and ADRAZ2A, which have not been previously described in the context of

developmental human neuronal diversity.
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Pollen et al. Supplementary Figure 11

a N | VIM ZFP36L1 ANXA2 HMGB2 SPARC MDK SOX9 ANP32E DDAH1 GLI3
leural
progenitor cell 10 o ? ’ *
6 L Lol Lall]
0 IYYIRRYYY) IYYIHIFYY [} YY) Y ) é Y YY) (YY)
o GPX3 GPR98 | ATP1A2 | TFAP2C | FBXO32 LIPG BCAN TAGLN2 | SLC1A3 HOPX
Radial glia
10 l l
5_
o—l uul l&lll obdall doblsloakallloasdlblonss 1 a1 8abblloads
ROBO2 TMEM158 | NEUROD6 KCNQ3 HMP19 C12orf51 UNC5D NTM NEUROD1 CBLB
Newborn s
neuron & 404
=L li“ HIH
g o al ala JULAN S DAL Medoldollodllaslosalbbliaas
o DLX5 DLX6-AS1 | LOC144742 ERBB4 PDZRN3 DLX2 DLX6 GAD2 DLX1 SCGN
Inhibitory L% ’ ‘
interneuron 10 — ‘
i WA TIARK Lol ool |
olbod b slodolaaldadidaldodldalboatdalboolbaloadloalbobldaliocllas
NFASC CAMKV ZNF25 DLG1 FNDC4 LMO7 LRRC7 SATB2 HIVEP2 LYST
Maturing
neuron 10 — *
N l ‘f UL L L
otessalalbiba alsodallalblon lsssallaladlal Y alolbode
ADRA2A KLK10 PCDHGA4 CPOX POU3F1 NDRGH1 ARLSBA MLX MTM1 NCALD
Maturi
o L
Ll il LLdLdl
otoddell loadle loseoalldeosalllonosdlloosabllodosolidscedllobossllifhde
== 00O == O0C0OC==S00O0 =SSO0 T=SOCO TSSOSO TSSOCOTS=SO0O0T=S=Oo00 T==000
$50222 350222 350422 $%0222 390222 390222 $%0222 590222 390222 %0222
£08305552822082305058825285852005282555882005283505288005235s00
05333906333905333906338°06383 06238 °06333906338°05583 906838
(01616} 101616 [0]616) (01616} (01616 (01616 (01616} (01610} (01616} [0)616}
f

-
]
8
>
3
®
2
2
2

Group Il - Radial Giia [N | [ ][
Group IVa - Maturing Neurons - A- -_II

I I h nv o i PDZRN3 j PDZRN3 k PDZRN3
Lateral ventricle % 2 2 m i : : : Lateral
S s g @ cP SG ,’\» Dorsal
S 2 S ) i
= z c = S A Ee
c > =3
[ A [}
= g s z cTX
2 s 2 o
o z 3 £ SP
© £ z 5
5SS .LE: v
=z 2 = E ¢
l - Q o
- g 3 s
= 3 0 >
= = O a .
= © 3 vz
[G] <
& .

22



Supplementary Figure 11 Expression patterns of biomarkers for neural cell types
identified by single cell analysis. (a) Additional cellular diversity recognized by interpretation
of subgroups in Supplementary Fig. 10a. Violin plots display the distribution of gene expression
levels in each interpreted cell type for the 10 genes most strongly correlated with group
memberships. Notably, 8/10 biomarkers for the six cells classified as immature inhibitory
neurons in group llIb (bold gene names above violin plots) overlap with the 15 top-ranked
interneuron markers identified by gene coexpression analysis in a recent large-scale survey of
hundreds of heterogeneous regions of the prenatal human neocortex?® (module C31). (b)
Schematic of the position of cell types in developing human cortex. (¢) This large-scale survey
of gene expression from precisely microdissected tissue samples® provides the opportunity to
examine the expression patterns of candidate cell-type specific biomarkers in distinct regions of
developing human cortex. Heatmap represents the average expression levels of 20 genes most
strongly correlated with each group membership across 695 regions of the developing human
cortex from seven distinct laminae: VZ — ventricular zone, SVZ — subventricular zone, IZ —
intermediate zone, SP — subplate, CP — cortical plate, MZ— marginal zone, SG — subpial
granular layer. Biomarkers for neural progenitors (group 1) and radial glia (group Il) show
strongest expression in the germinal zones, where these cells are common. Interestingly,
progenitor cell biomarkers also show moderate expression in the subpial granular layer.
Biomarkers for immature inhibitory neurons (group Illb) show strongest expression in the
subpial granular layer, likely corresponding to a population of interneurons that migrates from
the ganglionic eminences. Additionally, the interneuron biomarkers show moderate expression
in the ventricular zone, corresponding to the region where the interneurons in this study were
captured. Biomarkers for the remaining cells in group Ill show strongest expression in the
subventricular zone and intermediate zone where newborn neurons begin their earliest phases
of radial migration towards the cortical plate. Maturing neuron (group IVa, IVb) biomarkers show
strongest expression outside of the germinal zone, but strong expression of group IVb
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biomarkers is more restricted to the cortical plate. (d-k) Candidate biomarkers show
complementary expression patterns in developing human cortex. (d) In situ hybridization in
GW23.5 cortical plate for SRGAP3, a gene with strong expression in group 1Va, but not group
IVb (Supplementary Fig. 10, heatmap), shows strongest expression in the middle of the cortical
plate (layers 1I-V). (e) Similarly, immunostaining for CAMKYV, a group IVa-specific marker (violin
plots) shows strongest expression in deep cortical layers. (f) In contrast, immunostaining for
SYNC, a gene with strong expression in group Vb, but not group IVa (Supplementary Fig. 10,
heatmap), shows strongest expression in upper cortical layers I-lll. (g) Similarly,
immunostaining for ADRA2A, a gene with expression across most mature neurons, but with
strongest expression in group Vb (violin plots), shows strongest expression in upper cortical
layers IlI-1ll, but also moderate expression across all cortical layers, including layer VI. (h)
Immunostaining for NTM, a candidate marker of newborn neurons, reveals specific expression
in a subset of cells in regions of cortical neuron migration: the intermediate zone and subplate,
but limited expression in the cortical plate. (i-k) /n situ hybridization for PDZRN3, a candidate
marker of immature interneurons, specifically labels a subset of cells in the subpial granular
layer (i) and the ventricular zone, where cells in this study were captured (j), with broad staining

in the lateral GE, a zone of interneuron production (k).
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Pollen et al. Supplementary Figure 12

Supplementary Figure 12 Consensus clustering of top 500 genes explaining variation
between neural cells optimally identifies three gene clusters. Consensus matrices
clustering the 500 PCA genes best explaining the variation between 65 cells in the neural
lineage were generated using k-means clustering for (a) 2, (b) 3, (c) 4, (d) 5 (e) 6 clusters. After
visual inspection of the consensus matrices we concluded that three gene clusters optimally

group the top 500 PCA genes.
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Pollen et al. Supplementary Figure 13 part 1
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Pollen et al. Supplementary Figure 13 part 2
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Supplementary Figure 13 PCA gene loading scores reveal important markers of cell
types and states in the developing human cortex. (a) Plot of the PCA gene loading scores
for all genes along PC1 and PC2 based on analysis of low-coverage mRNA Seq data. The 150
genes with the greatest gene loading scores are highlighted separately for positive and negative
PC1 and PC2 values in colors based on the sign of the gene loading score, and the
corresponding top biological process enrichment determined by ToppGene Suite?’ are listed
along with Bonferroni corrected p-values. (b) Selected markers of neuroepithelial and radial glial
cells (PAX6, GLI3, SOX2, HES1, SLC1A3, VIM, EMX2), dividing cells (ASPM, CDK1, CCNB2),
intermediate progenitors (EOMES), early neuronal commitment (TUBB3, DCX, CD24, ELAVL?2)
and maturing neurons (MAPT, SATB2, SNAP25, MEF2C) are highlighted in the PCA gene
loading plot along with a subset of nearby genes. Colors correspond to gene groups highlighted
in a. (c-d) Venn diagrams represent overlap between the 150 genes with the most negative PC1
loading values and the 150 genes with the most positive PC2 loading values (c) and between
the 150 genes with the most negative PC2 values and most positive PC1 values (d). Tables in c
and d represent the most significant biological process gene ontology enrichments determined
by ToppGene Suite. Notably, PC1 appears to correspond to an axis from mitotic cell cycle
(negative loading) to neuronal differentiation (positive loading), while PC2 corresponds to an
axis from radial glia markers (positive loading) to neuronal maturation (negative loading). (e)
Three dimensional plot of PCA gene loading scores for selected genes along PC1, PC2, and
PC3. Notably, PC3 further distinguishes a subset of known and novel radial glia markers
including FOS and EGR1 from other genes. (f-hh) Expression of candidate novel markers
related to categories identified in a—e was analyzed in the developing human cortex by in situ
hybridization. Classical markers of radial glia including PAX6 (f), HES1 (g), and EMX2 (h) are
strongly expressed in the germinal regions, the ventricular zone (VZ) and the subventricular
zone (SVZ), where radial glia are abundant. Genes not previously characterized in the
developing human cortex located nearby these classical radial glia markers in the PC plot show
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similar expression patterns: TFAP2C (i), FOS (j), EGR1 (k), DDAH1 (I), CLU (m), PON2 (n) and
TTYH1 (o). Interestingly, many of the novel radial glia markers were more restricted to the VZ,
which was recently observed for other novel biomarkers of radial glia®. (p-q) Both SPARC (p)
and ANXAZ2 (q) are highly expressed in the VZ and occupy a position in PCA space nearby the
neuroepithelial marker VIM, with a negative value for PC1 loading and a positive value for PC2
and PC3 loading (e). (r-u) In contrast, CKS2 (r) and HMGB?2 (t) share strongly negative PC1
loading scores, but also have low scores for PC2 and PC3 and are nearby numerous markers of
cell division in the PC plot, including CDK1, CCNB2, and ASPM. Both of these candidate
mitotic markers are expressed in a narrow domain at the edge of the ventricular surface (see
higher magnification inset images s for CKS2 and u for HMGB2; arrows mark dividing cells),
where ventricular radial glia undergo mitosis. (v-w) In contrast to many genes with positive PC1
loading scores, CTORF61 (v) and NNAT (w) have neutral PC2 loading scores and strongly
positive PC3 scores, falling closer in PCA space to radial glia genes. Interestingly, the
expression of both genes is enriched in the germinal zones, but NNAT which also has the
strongest positive PC1 loading score of all genes (toward the neurogenesis enriched quadrant)
is also detected in the intermediate zone and the cortical plate (CP), zones of newborn neuron
migration and early maturation. (x-z) Genes nearby known neural differentiation markers with a
negative PC2 loading score and a positive or neutral PC1 score are expressed most strongly in
the CP: TAGLNS3 (x), RTN1 (y), STMNZ2 (z). (aa-bb) At GW14.5, corresponding to peak layer V
neurogenesis®®, we detected complementary expression of SCG5 (aa) and GRIAZ2 (bb) in upper
and lower portions of the cortical plate. (cc-hh) In the cortical plate towards the end of cortical
neurogenesis, GRIA2 (cc) and SCGS5 (dd) were both detected in layer Il, but GRIA2 was also
expressed in layer VI, while SCG5 was expressed in columnar patterns within layer V.
Pyramidal neurons of layer V project to diverse targets. We observed that a fraction of cells
immunoreactive for SATB2, which marks callosal projection neurons in the mouse cortex also
expressed SCGS5 (ee-ff), while numerous cells immunoreactive for CTIP2, a marker of
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subcortical projections, expressed SCGS5 (gg-hh), highlighting the additional cellular and
molecular diversity that emerges in the developing brain and will likely be amenable to efficient

large-scale surveys of single cell gene expression. Scale bar is 100 um except for s and u

where scale bar is 25 uym.
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Pollen et al. Supplementary Figure 14
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Supplementary Figure 14 Expression domains of EGR1 and FOS in the developing
cortex across species. (a-h) Numerous SOX2 positive cells in the germinal zones of the
human cortex express EGR1 and C-FOS. (a-d) Composite channels of the image of human
GW16.5 ventricular zone (VZ) from Fig. 4b showing staining for EGR1 (a), C-FOS (b), SOX2
(c), and an overlay image (d); LV - lateral ventricle. (e-h) Images of the VZ (e-f) and
subventricular zone (SVZ, g-h) of GW17.3 human fetal cortex showing double labeling for EGR1
and C-FOS (e, g) and overlay images with staining for SOX2 (f, h). Arrows indicate triple-labeled

cells in panel a-h. We note that there are many uncontrolled variables in the preparation of
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primary human tissues compared with the acute preparation of samples from model organisms.
Some of these variables could influence gene expression. Therefore, we reproduced the
staining patterns for EGR1 and C-FOS immunohistochemistry,(a-h, Fig. 4e) as well as EGR1
and FOS in situ hybridization experiments (Fig. 4a-d, Supplementary Figure 13j-k), in five
independent samples, including two acutely fixed samples (data not shown). (i-n) Because
expression of EGR1 and C-FOS in radial glia had not been previously reported, we examined
the expression of these genes in publicly available mouse in situ hybridzation data across
phases of neurogenesis (Allen Developing Mouse Brain Atlas: http://developingmouse.brain-
map.org). Egr1 (i-k) and Fos (I-n) were not readily detectable in the germinal zones of the
mouse cortex during neurogenesis suggesting that these genes are unlikely to be involved in
mouse neocortical progenitor cell development. (0-nn) We further examined the expression of
Egr1 and c-Fos in the developing mouse and ferret brain by immunohistochemistry. (o-v) We
found that the antibodies used in human also detected specific cell populations of Egr1 (o, q)
and c-Fos (p, r) immunoreactive cells in the developing mouse hippocampus (o-p) and piriform
cortex (g-r) at E18.5, consistent with previous reports about the roles of these proteins in

development of neuronal circuitry in these regions® *:

a.c. - anterior commissure. Similarly, in
the developing ferret brain at E35 we found numerous Egr1 (s, u) and c-Fos (t, v) expressing
cells in the piriform cortex (s, t) and indiceum griseum (IG, u, v): cc - corpus callosum. (w-nn) In
contrast, Sox2-expressing cells in mouse or ferret were rarely immunoreactive for Egr1 and c-
Fos during phases of neurogenesis. (w-bb) Images of the SVZ (w-y) and VZ (z-bb) of E15.5
mouse cortex immunostained for Egr1 (w, z), c-Fos (x, aa) and overlay images with Sox2
expression in red (y, bb). Open white arrows indicate sporadic examples of Sox2 expressing
cells that are immunopositive for Egr1, but do not stain for c-Fos. (cc-ee) Immunostaining of
mouse E18.5 subventricular zone / intermediate zone (SVZ/IZ) for Egr1 (cc), c-Fos (dd), and
overlay with Sox2 (ee) showing a subset of Sox2 positive cells expressing Egr1 (open white

arrows). (ff-hh) Representative images of mouse E18.5 VZ showing immunostaining for Egr1
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(ff), c-Fos (gg) and overlay image with immunostaining for Sox2 (hh). Open white arrows
indicate examples of Sox2 expressing cells that express c-Fos but not Egr1 (ii-nn) Images of
the ferret cortical outer SVZ (ii) showing immunostaining for Egr1 (nn, Il), c-Fos (jj,mm), and an
overlay image with Sox2 (kk,nn). Sporadic Egr1 positive Sox2 expressing cells are highlighted
with white open arrows (ii-kk). Similar sparse patterns of Egr1 (ll) and c-Fos (mm)
immunoreactivity can be detected in the VZ/SVZ of the ferret cortex at this age with a subset of

Sox2 immunoreactive cells expressing either Egr1 or c-Fos, but not both (white arrows, II-nn).

Pollen et al. Supplementary Figure 15
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Supplementary Figure 15 Correlation of EGR1 and FOS mRNA levels with canonical
effectors of key signaling pathways regulating radial glia development using low- and
high-coverage data. Heatmaps represent correlation coefficients between mRNA levels for
EGR1, FOS, other immediate early genes, and canonical effectors of FGF, Notch and Wnt
signaling pathways across all 65 neural cells (above diagonal) and within radial glia (below
diagonal). Correlations were calculated based on expression levels detected in low-coverage (a,

same heatmap as in Figure 4l) and high coverage data (b).
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Supplementary Table 1 Overview of cell types studied, sequencing depth, and alignment
rates. The cell types studied, integrated fluidic circuit (IFC) chips used, the single cell capture
efficiency, the percentage of outliers following low-coverage sequencing, and the number of
cells used in this study for comparison between high- and low-coverage sequencing depths are
listed in the left panel of the table. The middle panel and right panel provide details on the
number of total and aligned reads per a cell from each source for low-coverage and high-

coverage sequencing respectively.

Supplementary Table 2 Single cell capture efficiency data. The single cell capture
efficiency of the C;" System was examined across a range of primary cells and cell lines
loading a range of cell numbers onto the chip. Columns describe, cell types, integrated fluidic
circuit (IFC) chips used, the average number of cells captured per 96 capture sites on chip at a

given cell input number, and the average diameter of cells from each population.

Supplementary Table 3 Biological properties of PCA gene clusters. Enrichment analysis of
genes belonging to individual clusters using ToppGene Suite (http://toppgene.cchmc.org/)
provides insights into the possible functions of genes that define various cell types. Genes
belonging to the green cluster are most highly expressed in skin cells and are highly enriched
for genes belonging to the extracellular matrix organization (GO:0030198, p<10"°). Genes
belonging to the orange cluster are most highly expressed in the neural cells, and are enriched
for neurogenesis (G0O:0022008, p<10™"). Finally, the cyan gene cluster is primarily expressed in
K562 erythroleukemia cells, promyeloblast HL60 cells, and B lymphoblast 2339 cells, and this
cluster was found to be most highly enriched for the immune response category (GO:0006955,

p<107).

Supplementary Table 4 Comparison of the top 500 PCA genes identified in low- and

high-coverage mRNA Seq data across 301 cells. Table of the 500 genes with the greatest
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contribution to PC1-3 derived from high-coverage and separately from low-coverage mRNA

sequencing data, including the rank and gene loading score for PC1 and PC2.

Supplementary Table 5 Top 500 PCA genes explaining variation across 65 neural cells.

Table of 500 genes with the greatest contribution to PC1-3 across 65 neural cells presented in

Fig. 2a. Colors correspond to gene clusters highlighted in Fig. 2a’, b’ and were identified by

consensus clustering in Supplementary Fig. 10.
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