Supplement for: Restricted motion of the conserved immunoglobulin G1 N-glycan is essential for efficient FcγRIIIa binding

Ganesh P. Subedi, Quinlin M. Hanson, Adam W. Barb*

Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011

			Relative Abundance (%)							
Glycoform		Monoisotopic Mass + Na⁺(m/z)	WT	K246F	F241I	F241S	F243I	F243S	F241I F243I	F241S F243S
M5N2	HH40 ⁰⁸	1345							2.01	2.60
NM3N2F	* =• *	1591		5.68				7.93	2.85	2.97
G0F		1836	73.18	73.58	35.31	20.2	18.41	27.39	8.63	10.42
M7N2	==• ⁰ 0	1988							0.83	1.68
G1F		2040	23.85	15.94	21.16	8.67	13.39	16.42	5.31	3.37
G2		2070				2.87	2.92			
N3M3N2F		2081			8.41	7.14	6.26	9.62	2.93	4.04
M8N2	==+ ⁰⁰ 00	2192							1.49	
Unidentified		2232							1.52	3.22
G2F		2244	2.98	2.56	20.71	11.76	10.16	12.7	6.47	4.14
G1N3M3N2F		2285		2.24	7.99	10.85	12.15	7.53	5.18	2.97
A1G1F		2404							3.57	3.22
G2F2	1	2418				5.28	5.21	3.9	2.46	2.89
A1G2N3M3N		2432							1.04	1.74
G2N3M3N2F		2489					4.03	5.35	3.87	2.89
A1G1N1M5N2F		2564							1.00	3.64
A1G2F		2605			6.42	9.22	9.96	9.16	11.35	5.76
A1G3N3M3N		2636							2.50	2.52
A1G1N3M3N2F		2646							2.80	2.85
G2N3M3N2F2	A =<	2663				4.58	2.6		1.43	1.67
G3N3M3N2F		2693							2.77	2.11
A1G2F2		2780				5.49	4.21		3.45	4.83
A2G2		2793							1.44	3.01
A1G2N3M3N2F		2851				4.91	3.21		2.63	3.38
A2G2F		2967				9.04	7.49		9.23	11.10
A2G3N3M3N		2997							2.29	3.53
A2G2N3M3N2		3038							2.55	2.46
A1G3N3M3N2F		3055							2.99	2.49
A2G2N3M3N2F		3212							1.46	
A2G3N3M3N2F		3416							2.50	2.57
A3G3N3M3N2F		3777							1.45	1.94

Figure S1, related to Figure 2. Relative abundance of Fc N-glycoforms as measured from the spectra presented in **Figure 2**.

Figure S2, related to Figures 2 and 4. MALDI-MS of PNGaseF-released, permethylated N-glycans following in vitro remodeling to incorporate ¹³C2-Gal (indicated by a "*" within a *yellow* circle). Cartoon diagrams highlight potential configurations that fit the observed masses and known N-glycan structures; isobaric ions were not distinguished. Two peaks corresponding to Na⁺ and K⁺ adducts are observed for each species.

		Relative Abundance (%)						
Glycoform	Monoisotopic Mass + Na⁺(m/z)	WТ	F241I	F241S	F243S	F241I F243I	F241S F243S	K246F
i. G*2N2M3N ■●	1827	20	12	15	5	19	10	5
ii. G*2N2M3N2 ■■€	2072	6	2	2	4	2	3	5
iii. G*2N2M3N2F	2246	74	66	56	69	46	50	90
G*2N2FM3N2F	2420		5	11	6	10	15	
G*2N3M3N2F	2491		4	5	5	8	6	
G*3N3M3N2F	2697		11	11	11	15	16	
i + iii (total G2F)		94	78	71	74	65	60	95
i + ii + iii (total with two Gal-termini)		100	80	73	78	67	63	100

Figure S3, related to Figures 2,4 and S2. Relative abundance of Fc N-glycoforms following in vitro remodeling with [¹³C2]-Gal as measured from the spectra presented in **Figure S2**.

Figure S4, related to Figures 3 and 4. Hinge disulfides formed stabilize Fc dimers (expt ~55 kDa) expressed from both HEK293F and HEK293S(lec1^{-/-}) cells. The covalently-linked C γ 2, C γ 3 domains and N-glycan that compose the Fc monomer have a combined mass of ~27.5 kDa and are observed in an SDS-PAGE gel when 1 mM beta-mercaptoethanol (β -me) is included in the sample preparation buffer.

Figure S5, related to Figure 4. ¹H-¹³C HSQC spectra of Fc mutants collected at 50°C following enzymatic remodeling to incorporate ¹³C2-Gal. Positions of wild type coherences are highlighted in each spectrum with "+" signs, and the position of coherences following trypsin proteolysis are marked with "x". Peaks labeled by "?" have not been identified, but are present in wild type. These peaks are very narrow and intense, but according to 1d ¹³C NMR spectroscopy only represent a small fraction of the total ¹³C signal.

Figure S6, related to Figure 7. Models of IgD and IgM Fc show the position of conserved Nglycosylation sites and aromatic residues. The IgD figure was generated from solution scattering data (pdb 1zvo (Sun et al., 2005)) and IgM upon x-ray scattering, crystallography and NMR data (Muller et al., 2013; Perkins et al., 1991).

Supplement References

- Muller, R., Grawert, M.A., Kern, T., Madl, T., Peschek, J., Sattler, M., Groll, M., and Buchner, J. (2013). High-resolution structures of the IgM Fc domains reveal principles of its hexamer formation. Proc Natl Acad Sci U S A *110*, 10183-10188.
- Perkins, S.J., Nealis, A.S., Sutton, B.J., and Feinstein, A. (1991). Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling. A possible mechanism for complement activation. J Mol Biol *221*, 1345-1366.
- Sun, Z., Almogren, A., Furtado, P.B., Chowdhury, B., Kerr, M.A., and Perkins, S.J. (2005). Semi-extended solution structure of human myeloma immunoglobulin D determined by constrained X-ray scattering. J Mol Biol 353, 155-173.