
Fig. S1, related to Fig. 1. Analysis of human and murine polarized macrophages. Panel A: Polarization of human monocyte-derived
macrophages differentiated with M-CSF or GM-CSF was confirmed by qRT-PCR using genes associated with M1 (IL1β, TNFα) and M2
macrophages (CCL13, CD36). Panel B: Functional annotation of cell surface proteins detected by mass spectrometry based on cellular
component (CC) and biological process (BP). Statistical significance was assessed by the hypergeomtretic test with Benjamini-Hochberg
correction. Panel C: Cell surface expression levels of CD11c and CD206 were quantified in the various cell types by flow cytometry (MFI)
and mass spectrometry (MS/MS; spectral counts). Linear regression analyses demonstrated excellent concordance between the two methods.
Panel D: Cell surface levels of CD274 and CD38 were quantified in murine MM0 and MM1 macrophages by flow cytometry. Where applicable,
results are means and SEMs; *, denotes p<0.05, t-test.   

Fig. S2, related to Figs. 1,2. Flow cytometric analysis of airway macrophages from CF patients. Panel A: CF patient demographics. Panel B:
Strategy for interrogating airway macrophage populations. Gates (red) represent cells that were selected for further analysis. Resultant airway macrophage 
populations, defined as CD14+CD15-, were confirmed by staining with Hema-3. Panel C: Cell surface levels of CD38, CD274, and CD319 on airway
macrophages were assessed following the gating strategy shown in Panel B.
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Patient 1
Age: 54
BMI: 35.6
Gender: M
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Fig. S3, related to Fig. 2. Flow cytometric analysis of ATMs from omental and subcutaneous fat. Panel A: Patient demographics. Panel B: Strategy for
interrogating ATM populations. Gates (red) represent cells that were selected for further analysis. Panels C-D: Cell surface levels of CD38, CD274, CD319,
ABCA1, and CD36 on ATMs isolated from omental (OM) or subcutaneous (SUBQ) adipose tissue collected from patients undergoing bariatric surgery (Panel C)
or abdominoplasty (Panel D). For patients undergoing abdomnioplasty, analysis was performed with ATMs from subcutaneous adipose tissue. Data are provided
for 3 representative patients using the gating strategy shown in Panel B. 
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Fig. S7, related to Fig. 6. Metabolic activation inhbits autophagy.
Human MM0 and MMe macrophages were treated wtih chloroquin
(CQ; 100μM), an inhibitor of autophagy and LC3-I/-II levels were
determined by immunoblotting. Where applicable, results are
means and SEMs; *, denotes p<0.05, t-test.   
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Fig. S4, related to Fig. 4. Palmitate is the key driver of metabolic activation. Panel A: Human
monocyte-derived macrophages (MM0) were metabolically activated (MMe) or treated with components
of metabolic activation in isolation; P=palmitate, INS=insulin, GLU=glucose. mRNA levels for PLIN2 and
IL1β were determined by qRT-PCR. Panel B: Human MM0 macrophages were treated with 0.1mM
palmitate. Panels C-D: Palmitate uptake in wild-type and Cd36-/- murine BMDMs was assessed by
Oil-Red-O staining (Panel C) and FFA quantification (Panel D). Where applicable, results are means
and SEMs; *, denotes p<0.05, t-test relative to MM0.   
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Fig. S5, related to Fig. 5. Murine MMe macrophages fail to activate
the type I interferon response. Murine bone marrow-derived macrophages
(MM0) were classically (MM1) or metabolically (MMe) activated.
Panel A: Immunoblotting for total and phosphorylated (P-Ser172)
IKKε. Panel B: Irf7 mRNA levels. Where applicable, results are
means and SEMs; *, denotes p<0.05, t-test relative to MM0.   
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Fig. S6, related to Fig. 6. PPARγ regulates expression of MMe markers. Panel A:
Gene expression in human MMe macrophages treated with a PPARγ antagonist
(T0070907; 1μM). Panel B: Murine bone marrow-derived macrophages (MM0) were
metabolically activated (MMe). PPARγ binding to its target and control gene promoters
was assessed by ChIP analysis. Control genes were selected based on publically available
ChIP-Seq data for PPARγ and RXR. Positive controls: Acox1, Tbp1; Negative
control: Satb1. H3K4m3 ChIP was used as a marker for open chromatin.
Results are means and SEMs; *, denotes p<0.05, t-test relative to control; N=4-6.   
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SUPPLEMENTAL TABLE LEGENDS 
 

Table S1, related to Fig. 1. Plasma membrane proteomics of human monocyte-
derived macrophages. Proteomics analysis of classically activated (M1), alternatively 
activated (M2), and un-stimulated (M0) macrophages generated from human peripheral 
blood monocytes (Mn) in the presence of M-CSF (MM0, MM1, MM2) or GM-CSF (GM0, 
GM1, GM2). Proteins were quantified by spectral counting and differentially abundant 
proteins were identified using the t-test (p < 0.05) and G-test (G-statistic > 1.5).   
 
Table S2, related to Fig. 3. Plasma membrane proteomics of classically and 
metabolically activated macrophages. Proteomics analysis of classically activated 
(M1), metabolically activated (MMe), and un-stimulated (M0) macrophages generated 
from human peripheral blood monocytes in the presence of M-CSF. Proteins were 
quantified by spectral counting and differentially abundant proteins were identified using 
the t-test (p < 0.05) and G-test (G-statistic > 1.5).   
 
Table S3, related to Experimental Procedures. PCR primers used for PPARγ and 
H3K4m3 ChIP experiments. Sequences of human and murine PCR primers used in 
chromosome immunoprecipitation studies.  

 
SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 
Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-
ESI-MS/MS) – Tryptic digests (1.5 µg) were loaded directly onto 2 cm C18 trap column 
(packed in-house), washed with 10 µl of solvent A (5% acetonitrile, 0.1% formic acid), 
and eluted on a 15 cm long, 75 µM reverse phase capillary column (ProteoPep™ II C18, 
300 Å, 5 µm size, New Objective, Woburn MA). Peptides were separated at 300 nL/min 
over a 180 minute linear gradient from 5% to 35% buffer B (95% acetonitrile, 0.1% 
formic acid) on a Proxeon Easy n-LC II (Thermo Scientific, San Jose, CA). Mass spectra 
were acquired in the positive ion mode, using electrospray ionization and a linear ion 
trap mass spectrometer (LTQ Orbitrap Velos®, Thermo Scientific, San Jose, CA). The 
mass spectrometer was operated in data dependent mode, and for each MS1 precursor 
ion scan, the ten most intense ions were selected from fragmentation by CID (collision 
induced dissociation). Other parameters for mass spectrometry analysis 
included: resolution of MS1 was set at 60,000, normalized collision energy 35%, 
activation time 10ms, isolation width 1.5, and the +1 and +4 and higher charge states 
were rejected.  

Peptide and protein identification – MS/MS spectra were searched against the 
International Protein Index (Kersey et al., 2004) human (v3.87, 91464 entries) primary 
sequence database using Sorcerer™-SEQUEST® (version v. 3.5,) (Sage-N Research, 
Milpitas, CA). Search parameters included semi-enzyme digest with trypsin (after Arg or 
Lys) with up to 2 missed cleavages. SEQUEST® was searched with a parent ion 
tolerance of 50 ppm and a fragment ion mass tolerance of 1 amu with fixed Cys 
alkylation, and variable Met oxidation. SEQUEST results were further validated with 
PeptideProphet (Keller et al., 2002) and ProteinProphet (Nesvizhskii et al., 2003) using 
an adjusted probability of ≥0.90 for peptides and ≥0.96 for proteins. Proteins considered 
for analysis had to be identified in at least 5 of 6 replicates for one biological condition.   

Protein quantification and statistical analysis – Proteins detected by LC-MS/MS 
were quantified by spectral counting, the total number of MS/MS spectra detected for a 
protein (Liu et al., 2004). Differences in relative protein abundance were assessed with 



the t-test and G-test (Becker et al., 2010). Permutation analysis was used to empirically 
estimate the FDR. Significance cutoff values for the G-statistic and t-test were 
determined using PepC (Heinecke et al., 2010). 

qRT-PCR – Relative quantification of PCR products was based on value differences 
between the target and 18S control, using the 2-ΔΔCt method (Livak and Schmittgen, 
2001). To normalize whole adipose tissue cytokine measurements to the number of 
ATMs in the tissue, data were further standardized to CD206 (a general marker of 
human ATMs; (Zeyda et al., 2007)) expression levels. 

Chromatin Immunoprecipitation – ChIP experiments were performed as previously 
described (Mutskov et al., 2002). Briefly, samples were cross-linked with 1% 
formaldehyde, sheared to obtain chromatin fragments ranging in size from 200 to 500 
bp, and immunoprecipitated with antibodies specific for PPARγ (Santa Cruz 
Biotechnology Inc.; sc-7196) or histone H3K4m3 (Millipore; 07-473). Purified input and 
immunoprecipitated DNA were amplified and analyzed by Q-PCR using specific primers 
(Table S3) at the region of interest. ChIP data analyses were performed as previously 
described (Mutskov and Felsenfeld, 2004). Fold difference of a target sequence (t) in the 
IP fraction versus a fixed amount of input (In) DNA was calculated according to IP/In = 2-

ΔΔCt = 2-(Ct(IP)-Ct(In)). Primers were designed based on previously published PPARγ ChIP-
Seq data (Mikkelsen et al., 2010) and the RXR-binding sites from the ENCODE project. 
For each primer set, fold difference values were corrected by subtraction of the 
nonspecific signal derived from the nonimmune rabbit IgG ChIP (t0), where (IP/In)t  - 
(IP/In)t0. In parallel, DNA samples were amplified with primers for an internal control 
primer (c), and the relative abundance of target sequences to the internal control 
sequence was calculated using the following formula: [(IP/In)t - (IP/In)t0] / [(IP/In)c - 
(IP/In)c0]. 
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