Protein	Yield (mg)	S _{0.5} (mmol/L)	Hill (nH)	^{ATP} Km (mmol/L)	$\mathbf{K}_{cat} \mathbf{a} (\mathbf{s}^{-1})$	$\mathbf{K}_{cat} \mathbf{b} (\mathbf{s}^{-1})$	RAI	Predicted GSIS threshold for heterozygous carriers (mg/dl (mmol/L))
WT	31.25	7.98±0.16	1.58 ± 0.02	0.51 ± 0.01	61.47±0.32	49.50±0.56	1.00	90 (5.0)
R43P	3.41	222.38±2.43	1.59 ± 0.01	0.35 ± 0.01	7.09 ± 0.05	7.23 ± 0.08	0.000005	129.6 (7.2)
T206M**	5.07	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Supplemental Table 1. Kinetic characterization of mutant GCK enzymes. Results are based on the kinetic analysis of one preparation of human wild type and mutant GST-GCK proteins. Glucose affinity ($S_{0.5}$), Hill number (nH), and turnover number (K_{cat}) values were determined in the presence of 0-100 mmol/L glucose (WT-GCK) or 0-1000mmol/Lglucose (R43P- and T206M-GCK). Affinity for ATP (^{ATP}Km) was determined in the presence 0-5mmol/Lof this substrate. K_{cat} a values were determined from glucose $S_{0.5}$ assays, and K_{cat} b values were determined from ^{ATP}Km assays. Relative activity indices (RAI) were calculated for each enzyme using the equation first described by Christesen et al which normalizes to a blood glucose of 90 mg/dl (5mmol/L) (K_{cat} values were taken from the glucose $S_{0.5}$ assay) (1). Data are presented as mean ±SEM. Glucose stimulated insulin secretion (GSIS) thresholds were calculated using the equation described by Gloyn et al (2). **As data were not quantifiable for this mutant protein a GSIS threshold could not be predicted. N/A = data unobtainable as mutation resulted in a protein with such poor affinity for glucose that its functional parameters could not be calculated.

Supplemental Figure 1: Algorithm illustrating the systematic approach followed to investigate other family members with diabetes following identification of the p.T206M mutation in *GCK* and diagnosis of GCK-MODY in II-2.

Supplemental Figure 2. Ribbon model of the closed (glucose-bound) form of human GCK illustrating each of the 2 missense mutations. Glucose is indicated in stick form in the centre of the active site.

References:

1. Christesen, H.B., Jacobsen, B.B., Odili, S., Buettger, C., Cuesta-Munoz, A., Hansen, T., Brusgaard, K., Massa, O., Magnuson, M.A., Shiota, C. et al. 2002 The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes, 51, 1240-1246.

2. Gloyn AL, Odili S, Buettger C, Njolstad PR, Shiota C, Magnuson MA, Matschinsky FM 2004 Glucokinase and the Regulation of Blood Sugar. In: Matschinsky FM, Magnuson MA eds. Glucokinase and Glycaemic Disease: From Basics to Novel Therapeutics. Basel: Karger; 92-109

5 Family members (I2, II4, II6, III1, III4)

