RAGO TABLE S3

Shared targets	Gene name	Expression at E14.5	Function	Reference
miR369-3p	INO80D	not found in database	Chromatin remodeler factor, transcriptional regulation.	1, 2
miR496	MBNL1	not found in database	RNA binding protein, splicing mediator, plays a role in muscle and eye development.	1, 3, 4
	GJC1	no regional signal	Gap junction protein member.	1, 5
	CYP26B1	no regional signal	Enzymes responsible of retinoic acid metabolism.	1, 6
	CXADR	strong signal in brain, ganglia, ear, eye & nose	Cell-to-cell adhesion mediator, component of tight junctions associated to ZO-1.	1, 13
miR369-3p	TRAPPC8	not found in database	Function in secretory and endocytic pathways.	1, 7
	RANBP9	no regional signal	Scafold protein promotes cofillin activation.	1, 8
	PLXNA2	strong signal in brain and spinal chord	Receptor of semaphorin6A signalling.	1, 9
	ADAM10	strong in peripheral nervous system, ganglia, ear, eye & nose	Involved in N-cadherin cleavage and turnover.	1, 10
	PAX6	strong signal in brain and spinal chord	Transcription factor expressed in RGCs in developing neocortex.	1
	RORA	strong signal in brain and spinal chord & nose	Retinoic acid receptor with neuroprotective function during hypoxia.	1, 11
		no regional signal	Zink finger protein, unknown transcriptional activity, upregulated in epithelial cancers.	1, 12
	PAPPA	moderate signal in brain and peripheral nervous system	Plasma protein involved in IGF-1 bioavailability.	1, 14
		no regional signal	Regulation of mRNA stability. Self-renewal maintenance in embryonic stem cells.	1, 15
	RER1	no regional signal	Putative Golgi-ER retrieval receptor involved in the biogenesis of acetylcholine receptors.	1, 16
	NDST1	no regional signal	Heparan sulfate biosynthesis enzyme.	1, 17

- References

 1 Diez-Roux G., et al. A High-Resolution Anatomical Atlas of the transcriptome in the Mouse Embryo. PLoS Biol. 2011 Jan 18;9(1):e1000582.

 2 Allantaz F., et al. Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One. 2012;7(1):e29979.

 3 Wang E.T., et al. Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins. Cell (2012) 150, 710-724.

 4 Charizanis K., et al. Muscleblind-like 2-Mediated Alternative Splicing in the Developing Brain and Dysregulation in Myotonic Dystrophy. Neuron (2012) 75, 437-450.

 5 Blankenship A.G., et al. The Role of Neuronal Connexins 36 and 45 in Shaping Spontaneous Firing Patterns in the Developing Retina. The journal of Neuroscience (2011) 31(27), 9998-10008.

 6 Dranse H.J., et al. Genetic deletion of Cyp26b1 negatively impacts limb skeletogenesis by inhibiting chondrogenesis. Solumal of Cell Escience (2011) 124, 2723-2734.

 7 Zong M., et al. The Adaptor Function of TRAPPC In Mammalian TRAPPS Explains TRAPPC2-Associated SEDT and TRAPPC9-Associated Congenital Intellectual Disability. PLoS ONE 6(8): e23350.

 8 Woo J.A., et al. Piexin-A2 and its ligand, Sema6A, control nucleuscentrosome coupling in migrating granule cells. Nature Neuroscience (2008) 11(4), 440-449.

 10 Reiss K., et al. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and b-catenin unclear signalling. EMBO Journal (2005) 24(4), 742-752.

 11 Jolly S., et al. Cell-Autonomous and Non-Cell-Autonomous Neuroprotective Functions of ROR in Neurons and Astrocytes during Hypoxia. The Journal of Neuroscience (2011) 31(40):14314 –14323.

 12 Belike S., et al. The zinc-finger protein KCMF1 is overexpressed during pancreatic cancer development and downregulation of KCMF1 inhibits pancreatic cancer development in mice. Oncogene (2010) 29, 4058–4067.

 13 Patzke C., et al. The Coxosackievirus-Adenovirus Receptor Reveals Complex Homophilic and Heterophilic Interactions on Neu

Supplementary Table S3. Predicted mRNA targets to be bound by miR369-3p and miR496, or by miR369-3p, miR496 and miR543.