Reconstructing high-dimensional two-photon entangled states via compressive sensing
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SUPPLEMENTARY MATERIALS

Algorithm Schematics

Input: Matrix of measurements A € CM*N_ vector of normalised probabilities 7, initial guess matrix p;,, SVD
threshold parameter 7 such that 0 < 7 < 1, sparsity parameter 7, such that 0 < 7, < 1 and stopping condition step
size 8. In our 17-dimensional state reconstruction we choose 7 = 0.4, 7, = 0.04 and §, = |75 - 1073.

Output: Recovered matrix gy

1. Set A’ = orth(A) and p’ = C'p where CA = A’

2. Set pAs,O = ﬁm

3. For k=1:kp,a

4. Set pox =77, (Ps,k—1)

3. Set po,r = vec(po,k)

6. For i=1:M

7. Set A; = iz, row of A
8. Set p; = P(pi—1,As)
9. End
10. Set ps. . = mat(pr)
11. Set 0 = |ps.k — Ps k-1
12. If 6 <4, Break
13. End

Here orth(-) is the orthogonalizing operator, I'; ,, () is the operator that enforces the desired characteristics de-
scribed in the results section, vec(+) is the operator that rearranges the elements of a matrix into a vector, P(v,V)
denotes the projection of a vector v onto a hyperplane having normal V', and mat(-) is the operator that rearranges
the elements of a vector into a square matrix.

Projection onto a hyperplane

To project a point g;—1 onto a hyperplane A}p = pf, it is necessary to find the vector ¥; that has direction 7; normal
to the hyperplane A}p = p} and size k;, where k; is

The desired projection pj; is then

ki = p; — (Filpi-1). (1)

Pi = Pi—1 + U;. (2)



Finding and correcting Ap

The error vector Ap depends on the experimental error Ap; associated with each of the probabilities and the
measurements made to perform the reconstruction. Instead of extending the search to a non-linear space, we make
use of the low rank and sparsity information to estimate the error direction, that is, to find a close approximation for
the vector Apg = p,. — py, where p,. is the projection of py onto the linear space intersection of all the hyperplanes. In
order to do this we divide the measurements and the corresponding probabilities in subsets A, and ps, of sufficient size
for our compressive sensing technique to yield convergence to a solution (the size of the subsets depends on the purity
of the state and the estimate of the error Ap; on each of the probabilities). We then perform the operation-projection
algorithm on each subset separately to find the vectors p,, low rank and sparse solutions to the corresponding subsets
systems A, p = ps,. We hence define a new set of vectors Ap; = ps, — pg, where gy, is the solution resulting from
applying one last set of thresholding operations to ps,. The sum of the vectors Ap; is taken as a close approximation
for the error vector Ap. We finally compute a correction vector for the probabilities Ap that can be subtracted from
the measured probabilities p. The correction vector is defined as

Ap = AN, (3)

Once the probabilities have been corrected as described above, the compressive sensing algorithm can be performed,
making use of the set of performed measurements A and the corrected probabilities p — Ap.
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