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SUPPLEMENTARY MATERIALS

Algorithm Schematics

Input: Matrix of measurements A ∈ CM×N , vector of normalised probabilities ~p, initial guess matrix ρ̂in, SVD
threshold parameter τ such that 0 < τ < 1, sparsity parameter τ` such that 0 < τ` < 1 and stopping condition step
size δs. In our 17-dimensional state reconstruction we choose τ = 0.4, τ` = 0.04 and δs = |~ρs| · 10−3.

Output: Recovered matrix ρ̂d

1. Set A′ = orth(A) and ~p ′ = C~p where CA = A′

2. Set ρ̂s,0 = ρ̂in

3. For k = 1 : kmax

4. Set ρ̂0,k = Γτ,τ`(ρ̂s,k−1)

5. Set ~ρ0,k = vec(ρ̂0,k)

6. For i=1:M

7. Set Ai = ith row of A

8. Set ~ρi = P (~ρi−1, Ai)

9. End

10. Set ρ̂s,k = mat(~ρM )

11. Set δ = |ρ̂s,k − ρ̂s,k−1|

12. If δ ≤ δs Break

13. End

Here orth(·) is the orthogonalizing operator, Γτ,τ`(·) is the operator that enforces the desired characteristics de-
scribed in the results section, vec(·) is the operator that rearranges the elements of a matrix into a vector, P (v, V )
denotes the projection of a vector v onto a hyperplane having normal V , and mat(·) is the operator that rearranges
the elements of a vector into a square matrix.

Projection onto a hyperplane

To project a point ~ρi−1 onto a hyperplane A′i~ρ = p′i, it is necessary to find the vector ~vi that has direction ~ni normal
to the hyperplane A′i~ρ = p′i and size ki, where ki is

ki = p′i − 〈~ni|~ρi−1〉. (1)

The desired projection ~ρi is then

~ρi = ~ρi−1 + ~vi. (2)
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Finding and correcting ∆~ρ

The error vector ∆~ρ depends on the experimental error ∆pi associated with each of the probabilities and the
measurements made to perform the reconstruction. Instead of extending the search to a non-linear space, we make
use of the low rank and sparsity information to estimate the error direction, that is, to find a close approximation for
the vector ∆~ρ = ~ρr − ~ρd, where ~ρr is the projection of ~ρd onto the linear space intersection of all the hyperplanes. In
order to do this we divide the measurements and the corresponding probabilities in subsets Asi and ~psi of sufficient size
for our compressive sensing technique to yield convergence to a solution (the size of the subsets depends on the purity
of the state and the estimate of the error ∆pi on each of the probabilities). We then perform the operation-projection
algorithm on each subset separately to find the vectors ~ρsi , low rank and sparse solutions to the corresponding subsets
systems Asi~ρ = ~psi . We hence define a new set of vectors ∆~ρi = ~ρsi − ~ρdi where ~ρdi is the solution resulting from
applying one last set of thresholding operations to ~ρsi . The sum of the vectors ∆~ρi is taken as a close approximation
for the error vector ∆~ρ. We finally compute a correction vector for the probabilities ∆p that can be subtracted from
the measured probabilities p. The correction vector is defined as

∆p = A∆~ρ. (3)

Once the probabilities have been corrected as described above, the compressive sensing algorithm can be performed,
making use of the set of performed measurements A and the corrected probabilities p−∆p.
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