Reconstructing high-dimensional two-photon entangled states via compressive sensing

Francesco Tonolini¹, Susan Chan¹, Megan Agnew¹, Alan Lindsay^{1,2}, Jonathan Leach^{1,∗} 1 SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK ² Applied and Computational Mathematics and Statistics, University of Notre Dame, USA and ∗ j.leach@hw.ac.uk

SUPPLEMENTARY MATERIALS

Algorithm Schematics

Input: Matrix of measurements $A \in \mathbb{C}^{M \times N}$, vector of normalised probabilities \vec{p} , initial guess matrix $\hat{\rho}_{in}$, SVD threshold parameter τ such that $0 < \tau < 1$, sparsity parameter τ_{ℓ} such that $0 < \tau_{\ell} < 1$ and stopping condition step size δ_s . In our 17-dimensional state reconstruction we choose $\tau = 0.4$, $\tau_{\ell} = 0.04$ and $\delta_s = |\vec{\rho}_s| \cdot 10^{-3}$.

Output: Recovered matrix $\hat{\rho}_d$

- 1. Set $A' = orth(A)$ and $\vec{p}' = C\vec{p}$ where $CA = A'$
- 2. Set $\hat{\rho}_{s,0} = \hat{\rho}_{in}$
- 3. For $k = 1 : k_{max}$
- 4. Set $\hat{\rho}_{0,k} = \Gamma_{\tau,\tau_{\ell}}(\hat{\rho}_{s,k-1})$
- 5. Set $\vec{\rho}_{0,k} = vec(\hat{\rho}_{0,k})$
- 6. For $i=1:M$
- 7. Set $A_i = i_{th}$ row of A
- 8. Set $\vec{\rho}_i = P(\vec{\rho}_{i-1}, A_i)$
- 9. End
- 10. Set $\hat{\rho}_{s,k} = mat(\vec{\rho}_M)$
- 11. Set $\delta = |\hat{\rho}_{s,k} \hat{\rho}_{s,k-1}|$
- 12. If $\delta \leq \delta_s$ Break

13. End

Here $orth(\cdot)$ is the orthogonalizing operator, $\Gamma_{\tau,\tau_{\ell}}(\cdot)$ is the operator that enforces the desired characteristics described in the results section, $vec(\cdot)$ is the operator that rearranges the elements of a matrix into a vector, $P(v, V)$ denotes the projection of a vector v onto a hyperplane having normal V, and $mat(\cdot)$ is the operator that rearranges the elements of a vector into a square matrix.

Projection onto a hyperplane

To project a point $\vec{\rho}_{i-1}$ onto a hyperplane $A'_i \vec{\rho} = p'_i$, it is necessary to find the vector \vec{v}_i that has direction \vec{n}_i normal to the hyperplane $A'_i \vec{\rho} = p'_i$ and size k_i , where k_i is

$$
k_i = p'_i - \langle \vec{n}_i | \vec{\rho}_{i-1} \rangle. \tag{1}
$$

The desired projection $\vec{\rho}_i$ is then

$$
\vec{\rho}_i = \vec{\rho}_{i-1} + \vec{v}_i. \tag{2}
$$

Finding and correcting $\Delta \vec{\rho}$

The error vector $\Delta \vec{\rho}$ depends on the experimental error Δp_i associated with each of the probabilities and the measurements made to perform the reconstruction. Instead of extending the search to a non-linear space, we make use of the low rank and sparsity information to estimate the error direction, that is, to find a close approximation for the vector $\Delta \vec{\rho} = \vec{\rho}_r - \vec{\rho}_d$, where $\vec{\rho}_r$ is the projection of $\vec{\rho}_d$ onto the linear space intersection of all the hyperplanes. In order to do this we divide the measurements and the corresponding probabilities in subsets A_{s_i} and \vec{p}_{s_i} of sufficient size for our compressive sensing technique to yield convergence to a solution (the size of the subsets depends on the purity of the state and the estimate of the error Δp_i on each of the probabilities). We then perform the operation-projection algorithm on each subset separately to find the vectors $\vec{\rho}_{s_i}$, low rank and sparse solutions to the corresponding subsets systems $A_{s_i}\vec{\rho} = \vec{p}_{s_i}$. We hence define a new set of vectors $\Delta \vec{\rho}_i = \vec{\rho}_{s_i} - \vec{\rho}_{d_i}$ where $\vec{\rho}_{d_i}$ is the solution resulting from applying one last set of thresholding operations to $\vec{\rho}_{s_i}$. The sum of the vectors $\Delta \vec{\rho}_i$ is taken as a close approximation for the error vector $\Delta \vec{\rho}$. We finally compute a correction vector for the probabilities Δp that can be subtracted from the measured probabilities p . The correction vector is defined as

$$
\Delta p = A \Delta \vec{\rho}.\tag{3}
$$

Once the probabilities have been corrected as described above, the compressive sensing algorithm can be performed, making use of the set of performed measurements A and the corrected probabilities $p - \Delta p$.