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1. Similarity measures

1.1 Absolute value of the Pearson Correlation Coefficient (APCC)

The Pearson Correlation Coefficient (PCC) is defined by (Soranzo et al. 2007):
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In equation S.1, p(X;,X;) denotes the PCC. x;(/) denotes the expression values of gen i across I=1,...,p
samples and X, denotes the mean of expression.

In this work, the absolute value of the PCC was used as similarity measure (Zhang and Horvath
2005):

stf = lp(XuX;) | [S.2]

1.1.1 Non-linear Correlation coefficient based on Mutual Information (NCMI)
In order to calculate the Mutual information (Ml), an estimation of entropy for discrete random

variables is required (Daub et al. 2004). Equation S.3 describes Ml in terms of entropy and
equation S.4 describes the entropy of a random variable in terms of a probability measure:
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In equation S.4, I(X;,X;) denotes the MI between variables. H(X;) denotes the entropy of a random
variable X; and p(x;) its probability measure. k; denotes the discrete random variable’s bin or
subinterval. B; denotes the bin index vector denoting the bin’s number where p(x) is estimated.

In this work, the random variables were categorized in n, bins using the Global Equal Width
algorithm (Meyer et al. 2008), where n, was assessed by the Sturges’ rule: n,= 1+log,(p) (Scott and
Sain 2005). To estimate the entropy, the estimator proposed by Hausser (2006) was selected. Ml
was calculated using the R (R Development Core Team 2011) minet library (Meyer et al. 2008).

As Ml takes values in the interval [0,2), a transformation was applied to find the NCMI which falls
into the range [0,1] (Dionisio et al. 2004):
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1.1.2 Normalized Mean Residue Similarity (NMRS)

This metric is defined by (Mahanta et al. 2012):
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In equation S.6, xi(/) denotes the expression values of gen i across I=1,...,p samples. x; and o;
denotes the mean and the variance of expression.

2. The method for threshold similarity selection

The Arabidopsis curve in Fig. 2 indicated that the methodology proposed by Elo et al. (2007) is not
suitable for networks where the expected clustering coefficient of the random network C,(t,) is
higher than the clustering coefficient based on the constructed network C(t,). An adaptation of
the method used for the threshold similarity selection was proposed (see equation 4).

2.1 The algorithm to simulate GCNs

The steps to evaluate the accuracy of equation 4 for similarity threshold selection were
the following:

i) The M-GCN for Arabidopsis was constructed using the threshold given by equation
4. The coefficient of variation of node degree CV (k), the clustering coefficient
C(t,) and the degree distribution (P(k)~k") from Arabidopsis M-GCN were
obtained.



i) Three groups of 100 SNs were created using R (R Development Core Team 2011)
igraph library (Csardi and Nepusz 2006). Each group of SNs had the following
properties:

a. Group I: Same CV (k), C(t,) and degree distribution of the Arabidopsis M-

GCN.

b. Group II: Lower CV (k) than Arabidopsis M-GCN, same C(t,) and degree
distribution.

c. Group llI: Higher CV (k) than Arabidopsis M-GCN, same C(t,,) and degree
distribution.

Note that the number of nodes (n) and number of edges (ng) of SNs were not
fixed.

iii) A similarity matrix (S,,) was created for every SN. First, a total of n? similarities
(s;;) following a normal distribution were assessed forming a similarity array. Then,
the array was sorted in descending order. The first ng higher similarities were
randomly assigned to pairs of nodes connected in the SN.

Consequently, a theoretical threshold t; was found when all the connected pairs
of genes had a similarity assigned. In other words, the threshold t; is the ng-th
element of the ordered similarity array.

Remaining similarities lower than t{ were assigned randomly to non-connected
pairs.

iv) Using equation 4 a calculated threshold T* was obtained. The suitability of our
method was verified comparing graphically T* vs. 7} in each group. The absolute
difference n was calculated for each group (equation S7).

Ns
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In equation S7, 1 is the absolute difference between the theoretical thresholds 7}
and the calculated thresholds 7* across the ng simulated networks.

2.2 Evaluation of the method for threshold similarity selection

The adapted method exhibited extraordinary precision for the similarity threshold selection (see
Online resource 8: Fig. S4). For all three of the SN groups, the observed threshold 7* was close to
the theoretical threshold t;. The performance is acceptable even for those SNs with higher or
lower CV (k) than in the Arabidopsis M-GCN.

Especially for the low CV (k) (group 2), the SN properties are comparable to those of the M-GCNs
from rice, soybean, tomato and cassava. Those CV (k) for the M-GCNs from rice, soybean, tomato
and cassava were relatively close to the CV (k) for the SNs from group 2 (see Online resource 3:
Table S2). Because the SNs in group 2 had the lowest CV (k) and the lowest associated absolute



error (n = 1.43), we inferred that our methodology performs better for scale-free networks, such
as those of rice, soybean, tomato and cassava.

Although the absolute error increased with a higher CV (k) (group 1 and 3), the performance of
this method was not affected. For that reason, the methodology proposed here could be used for
networks with different topologies, not only those that are similar to the Arabidopsis M-GCN.

Considering these results, the absolute value of the differences between C(t,) and C,(t,,) is also
suitable for the threshold selection. We applied this method (equation 4) for the entire threshold
selections performed in this work.

3. Characterization of GCNs

The definition and equations of eight variables that were used to characterize GCNs are stated
as follows:

i.

ii.

iii.

Clustering coefficient

The clustering coefficient is the same referenced in methods section. It was calculated
by equation 1.

Network density

The network density is defined as the mean off-diagonal adjacency. It is a measure of
cohesiveness (Horvath and Dong 2008):
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In equation S.7, n denotes the number of nodes and a;; denotes the adjacency
between nodes j and j.

Centralization

The centralization is a measure of how central is the most central node in relation to
the centrality of all nodes. Consequently, centralization is a score based on nodes
centrality (Freeman 1979). Here we used the betweenness centrality measure, defined
by the number of shortest paths in the graph that pass through the node, divided by
the total number of shortest paths (Brandes 2001). The shortest path between two
nodes is a path that interconnects both nodes with the minimum number of edges.
The betweenness centrality B, for a node [ is (Freeman 1979):
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iv.

In equation S.8, (i, [, j) denotes the number of shortest paths between nodes i and j
that pass through node . £(i, j) denotes the number of shortest paths between nodes
iandj.

And the GCN’s centralization Cz was calculated with (Freeman 1979):
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In equation S.9, B, denotes the maximum centrality of a node in the GCN. Here G
is normalized by the network’s size.

Heterogeneity

The network heterogeneity is also known as coefficient of variation of node degree. It
measures the variance of connectivity across the nodes (Horvath and Dong 2008):

J [nZs ] = [V Zi kil
[S

11]
sk

Heterogeneity =

In equation S.10, k; denotes the number of neighbors of gen i or node degree.

Assortativity coefficients using different genomic data

The assortativity coefficient is a measure of how much the nodes link to other with
similar characteristics (Newman 2002). Nodes are characterized based on either
categorical or continuous variables. Thus, nodes share categories or values from the
variables. The assortativity coefficient for categorical variables is defined by (Newman
2002):

r= Zcfcc - Zc qctc
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In equation S.11, f,.; denotes the fraction of edges connecting nodes with categories ¢
and d; q. = X4 fea @and tg = X fea- The assortativity coefficient assumes values from
-1 (dissortative network) to 1 (assortative network).

Here we calculated two assortativity coefficients using the following categorical
variables, one per assortativity coefficient:
= Gene ontology (GO) annotations: They were downloaded from Phytozome
(http://www.phytozome.net) and Gramene (http://www.gramene.org) using
the Biomart database system. Genes were characterized by one or various GO
IDs.



=  PFAM annotations: They were obtained from the same public databases as GO
annotations. Genes were characterized by one or various PFAM ids.

vii. Tolerance to attacks

We followed a common methodology to evaluate the robustness of GCNs to
perturbations, here referred as tolerance to attacks, from a topological perspective
(Albert and Barabasi 2001). We started from the original GCN and those nodes with
the highest degree were removed sequentially, simulating an attack. To evaluate the
tolerance, the average path length (I,,,) was measured as a function of the fraction of
nodes removed (f) from the GCN. The tolerance to attacks was defined as the critical
fraction (f.) at which [;, is maximum, just before that GCN breaks into isolated
clusters (Albert and Barabasi 2001).
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viii. Correlation between node degree and presence of immunity domains

We attempted to find the dependence between node degree and presence of typical
domains found in the immunity proteins. Initially, a reference dataset of genes
encoding proteins involved in defense was assembled for each plant. The canonical
immune protein domains (WRKY, TIR, NBS, LRR, kinase and LysM) were downloaded
from PFAM (http://pfam.sanger.ac.uk/). HMMsearch was used to find these domains
in the proteome of each plant (Finn et al. 2011). Those genes encoding proteins with
unique domains TIR, NBS or LysM, and also genes encoding multiple different immune
domains were included in the dataset. For Arabidopsis, this dataset was
complemented with immunity related genes from a protein-protein interaction
network (Mukhtar et al. 2011).

Afterwards, the presence or absence of immunity domains was obtained through the
binary variable b:

b = { 1if geneiis included in the reference dataset S 14

L7 10 if geneiis not included in the reference dataset [S-14]
The correlation between degree of nodes and b was calculated with the Kendall’s tau
non-parametric correlation (Kendall and Gobbons 1990).

4. Supplementary analysis of S-GCNs in the PCs space

The correlation circles of both planes show the correlations among variables (Fig. 4c and d).
Heterogeneity has a negative correlation with other topological variables, which could be
explained by the fact that high heterogeneity is a property of less dense, non-clustered and non-
centralized GCNs that have a topology comparable to that of random networks.

The positions of S-GCNs in the planes (PC1-PC2, PC1-PC3) can be explained by the contribution of
each variable to the PCs. In quadrant Il of the PC1-PC2 plane (Fig. 4a), we found S-GCNs that were



influenced by high clustering coefficients, centralization and density. In quadrant lll, the separation
of S-GCNs was not strong, but there were networks with high assortativity coefficients from GO
and PFAM.

The networks that were projected in quadrants | and VI have opposite properties from those
networks in quadrants Il and IIl (Fig. 4a). In quadrant IV, we found less clustered, dense and
centralized networks that also had high heterogeneity. Quadrant | grouped a small number of
differentiated networks that have negative assortativity coefficients and high values of
heterogeneity.

In relation to the PC1-PC3 plane (Fig. 4b), the S-GCNs with high tolerance to attacks and immunity
degree dependence were placed in quadrants | and Il. The networks in quadrants lll and IV have
opposing properties. From this analysis, we conclude that the S-GCN differentiation by
assortativity coefficients is not as good as the differentiation by other variables.
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