Supplementary Information

Heterodimetallic [LnLn'] Lanthanide Complexes: Towards a Chemical Design of 2-Qubit Molecular Spin Quantum Gates

David Aguilà, Leoní A. Barrios, Verónica Velasco, Olivier Roubeau, Ana Repollés, Pablo J. Alonso, Javier Sesé, Simon J. Teat, Fernando Luis* and Guillem Aromí*

Table of contentspage number				
•	Spin Hamiltonian for a pair of weakly coupled rare-earth Kramers ions	S3		
•	Figure S1; Schematic representation of the structure of complexes			
	[LnLn'(HL) ₂ (H ₂ L)(NO ₃)(py)(H ₂ O)] (1 and 4 to 7)	S5		
•	Figure S2; Positive ESI MS of $[CeEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (1).	S6		
•	Figure S3; Comparison of two representative ESI peaks of			
	$[CeEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (1), with simulations.	S6		
•	Figure S4; Positive ESI MS of [LaEr(HL) ₂ (H ₂ L)(NO ₃)(py)(H ₂ O)] (4).	S7		
•	Figure S5; Comparison of two representative ESI peaks of of			
	$[LaEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (4), with simulations.	S7		
•	Figure S6; Positive ESI MS of $[CeY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (5).	S8		
•	Figure S7; Comparison of two representative ESI peaks of of			
	$[CeY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (5), with simulations.	S8		
•	Figure S8; Heat capacity of individual qubits and estimation of the dip	olar		
	interaction between molecules.	S9		
•	Figure S9; Positive ESI MS of			
	$[CeY(HL)_2(H_2L)(NO_3)(py)(H_2O)]_{0.7}[Y_2(HL)_2(H_2L)(NO_3)(py)(H_2O)]_{0.3}\textbf{(6)}.$	S10		
•	Figure S10; Positive ESI MS of $[LaY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (7).	S10		
•	Figure S11; Structure of $[CeEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (1).	S11		
•	Figure S12; Molecular structure and hydrogen bonding in			
	$[CeEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (1).	S11		
•	Figure S13; Structure of $[LaEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (4).	S12		
•	Figure S14; Structure of $[CeY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (5).	S13		

- Figure S15; Structure of $[(Ce_{0.7}Y_{0.3})Y(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (6). S14
- Figure S16; Structure of [LaY(HL)₂(H₂L)(NO₃)(py)(H₂O)] (**7**). S15
- Figure S17; Heat capacity of coupled and individual qubits. S16
- Table S1; Crystallographic data for 1, 4, 5, 6 and 7. S17
- Table S2; Selected bond distances (Å) and angles (°) of the structures of 1,
 4, 5, 6 and 7.

A spin Hamiltonian for a pair of weakly coupled rare-earth Kramers ions

We propose a straightforward extension of the fictitious spin formalism, often used to describe the magnetic response of a Kramers doublet, to the case of two coupled Kramers ions. Within the lowest lying multiplet, defined by a total angular momentum J, the magnetic properties of a lanthanide ion can be described by the following Hamiltonian

$$\mathbf{H} = \sum_{p} \sum_{q=-p}^{+p} B_{p}^{q} \mathbf{O}_{p}^{q} (\mathbf{J}) - g_{J} \mu_{\mathsf{B}} \mathbf{H} \mathbf{J}$$
(1)

The first term in Eq. (1) arises from the interaction of 4*f* electrons with the crystal field and is written in terms of effective operators that involve powers of different angular momentum components. The coefficients B_p^q are the anisotropy parameters. The second term is the Zeeman interaction with a magnetic field **H**, where g_J is an effective gyromagnetic ratio.

In the case of a Kramers ion, energy levels are, at least, doubly degenerate. If there are no additional degeneracies, the ground level defines a twodimensional subspace. For any state Φ of this subspace, the pair { Φ ,T Φ }, where T is the time-reversal operator, defines a suitable basis, usually referred to as a Kramers conjugate state basis (KCSB). Provided that both the thermal energy $k_{\rm B}T$ and the Zeeman splitting are small enough in comparison with the crystal field splitting Δ between the ground and first excited Kramers doublets, the magnetic response can be described with an effective S = 1/2 system in a magnetic field, using the following Hamiltonian

$$\mathbf{H}^{\mathrm{S}} = \mu_{B} \mathbf{H} \cdot \tilde{g} \cdot \mathbf{S}$$

(2)

where \tilde{g} is an anisotropic *g*-tensor. The EPR spectrum supplies information about the principal values and principal directions of this tensor.¹ It is, however, important to remember that only absolute values can be obtained from conventional EPR experiments; the sign of the product of the three principal values can be determined by using a circularly polarized microwave.²

¹ Poole, C.P. Jr., Farach H. *Theory of Magnetic Resonance*. Wiley-Interscience (N.Y., 1972) chapter 6.

² Abragam A., Bleaney B. *Electron Paramagnetic Resonance of Transitions Ions*. Oxford University Press (Oxford UK, 1970), chapter 3

Let us now consider *two* lanthanide Kramers ions, (1) and (2). The Hamiltonian of the combined system is given by:

$$H = H_1 + H_2 + H_{12}$$
(3)

where H_r (r = 1,2) are the spin Hamiltonians of each of the two isolated ions

$$\mathbf{H}_{r} = \sum_{\rho} \sum_{q=-\rho}^{+\rho} B_{\rho}^{q}(r) O_{\rho}^{q}(\mathbf{J}_{r}) - g_{J,r} \mu_{\mathsf{B}} \mathbf{H} \mathbf{J}_{r}$$
(4)

and H₁₂ accounts for their mutual interactions. The zeroth-order Hamiltonian corresponds to considering both systems without mutual interaction, i.e. H₁₂ = 0. The zeroth-order solutions of (3) are then given by $|\Psi\rangle = |\Phi_1\rangle \otimes |\Phi_2\rangle$, where each $|\Phi_i\rangle$ is solution of H_i $|\Phi_i\rangle = E_i |\Phi_i\rangle$ (*r* = 1, 2), and have energies $E = E_1 + E_2$. If there are no accidental degeneracies, these levels have fourfold degeneracy and admit a basis given by $\{|\Phi_1\rangle \otimes |\Phi_2\rangle$, $|\Phi_1\rangle \otimes |T_2\Phi_2\rangle$, $|T_1\Phi_1\rangle \otimes |\Phi_2\rangle$, $|T_1\Phi_1\rangle \otimes |\Phi_2\rangle$.

Interactions split the ground level and give rise to energy eigenstates that are linear combinations of the basis states. We next consider their effect by introducing a bilinear coupling between the angular momenta of ions (1) and (2)

$$\mathbf{H}_{12} = \mathbf{J}_{1} \widetilde{\mathbf{C}} \mathbf{J}_{2} \tag{5}$$

where \tilde{C} is a second rank tensor. This form includes a dipole-dipole interaction as well as any exchange interaction. For instance, in the case of a Heisenberg isotropic exchange \tilde{C} reduces to a constant J_{ex} . If the interaction H_{12} is sufficiently weak as compared with $H_1 + H_2$, its effect can be treated using firstorder perturbation theory within each of the subspaces associated with eigenstates of $H_1 + H_2$. At low enough temperatures, the magnetic properties can then be described by two coupled effective spins $S_1 = S_2 = \frac{1}{2}$, with the correspondence $g_{J,r}J_r \to \tilde{g}_r S_r$. The effective Hamiltonian is then given by

$$\mathbf{H}^{\mathbf{S}_{1},\mathbf{S}_{2}} = \mu_{B}\mathbf{H}\tilde{g}_{1}\mathbf{S}_{1} + \mu_{B}\mathbf{H}\tilde{g}_{2}\mathbf{S}_{2} + \mathbf{S}_{1}\tilde{D}\mathbf{S}_{2}$$
(6)

where \tilde{D} is a coupling tensor given by

$$\widetilde{D} = \frac{1}{g_{J1}g_{J2}} \left(\widetilde{g}_1 \widetilde{C} \widetilde{g}_2 \right)$$
(7)

And \tilde{g}_1 and \tilde{g}_2 are, respectively, the effective *g*-tensors for the description of the ground Kramers doublet of ions (1) and (2). In general, \tilde{D} is anisotropic and

non-symmetric. It becomes symmetric if \tilde{C} is a scalar, i.e. for a Heisenberg interaction between J_1 and J_2 , and if the principal axes of \tilde{g}_1 and \tilde{g}_2 are collinear. A similar solution was derived previously for a particular case.³ In the calculations shown in Fig. 3 of the main text, we took $\tilde{C} = J_{12}$, thus scalar, but considered a 70 degrees rotation of the principal axes of ion 2 around the $\mathbf{x}_1 = \mathbf{x}_2$ axis.

Figure S1. Schematic representation of the structure of complexes $[LnLn'(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (**1** and **4** to **7**), emphasizing the difference between smaller coordinating *site 1* (two 'O,O' and one 'O,N,O' coordination poket) and larger cavity *site 2* (one 'O,O' and two 'O,N,O' coordination pokets).

³ Palii A.V., Tsukerblat B.S., Coronado E., Clemente-Juan J.M., Morrás-Almenar J.J. *Inorg. Chem.* **2003**, *4*2, 2455-2458.

Figure S2. Positive-ion ESI mass spectrogram of $[CeEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (1), emphasizing the heterometallic fragments.

Figure S3. Comparison of two representative peaks from the positive-ion ESI mass spectrogram of $[CeEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (1), with their simulated ones, were the isotopic distribution has been taken into account.

Figure S4. Positive-ion ESI mass spectrogram of $[LaEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (4), emphasizing the heterometallic fragments.

Figure S5. Comparison of two representative peaks from the positive-ion ESI mass spectrogram of $[LaEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (4), with their simulated ones, were the isotopic distribution has been taken into account.

Figure S6. Positive-ion ESI mass spectrogram of $[CeY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (5), emphasizing the heterometallic fragments.

Figure S7. Comparison of two representative peaks from the positive-ion ESI mass spectrogram of $[CeY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (5), with their simulated ones, were the isotopic distribution has been taken into account.

Figure S8. Heat capacity of individual qubits. Specific heat data of powder samples of pure [CeY] (complex 5) and magnetically diluted [CeY]_{0.7}[Y₂]_{0.3} (complex 6) measured at zero field and under an applied magnetic field $\mu_0 H = 0.5$ T. The specific heat of the diamagnetic complex [LaY] is also shown, as it provides the contribution c_{latt} of vibrational modes to c_P . The dashed line is a

high temperature series $\frac{c_{\text{dipolar}}}{R} \approx \frac{\mu_{\text{eff}}^2 \langle H_{\text{dip}}^2 \rangle}{2(k_{\text{B}}T)^2}$, where $\mu_{\text{eff}} = 1.9 \ \mu_{\text{B}}$ is the low-T

effective magnetic moment extracted from the equilibrium susceptibility, and $\langle H_{dip}^2 \rangle$ is the average square dipolar magnetic field seen by each molecule. We find $\langle H_{dip}^2 \rangle \approx (45 \text{ mT})^2$ and $\langle H_{dip}^2 \rangle \approx (15 \text{ mT})^2$ for, respectively, pure [CeY] and [CeY]_{0.7}[Y₂]_{0.3}. For magnetic fields much stronger than the typical H_{dip} , specific heat curves measured on samples with different concentrations of spins simply scale with *x* (molar fraction of magnetic molecules), showing that the effect of intermolecular couplings becomes then negligible.

Figure S9. Representative region of the positive-ion ESI mass spectrogram of $[CeY(HL)_2(H_2L)(NO_3)(py)(H_2O)]_{0.7}[Y_2(HL)_2(H_2L)(NO_3)(py)(H_2O)]_{0.3}$ (6), showing fragments of the $[Y_2]$ and the [CeY] species, while the $[Ce_2]$ complex could not be observed.

Figure S10. Positive-ion ESI mass spectrogram of $[LaY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (7), emphasizing the heterometallic fragments.

Figure S11. Representation of the molecular structure of $[CeEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (1). Only heteroatoms are labelled. Carbon atoms are in grey. Hydrogen atoms are not shown for clarity.

Figure S12. Representation of $[CeEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (1) emphasizing the H-bond (dashed line) formed between one molecule of pyridine and the protonated carboxylate moiety from the H_2L^- ligand.

Figure S13. Representation of the molecular structure of $[LaEr(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (4). Only heteroatoms are labelled. Carbon atoms are in grey. Hydrogen atoms are not shown for clarity.

Figure S14. Representation of the molecular structure of $[CeY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (5). Only heteroatoms are labelled. Carbon atoms are in grey. Hydrogen atoms are not shown for clarity.

Figure S15. Representation of the molecular structure of $[(Ce_{0.7}Y_{0.3})Y(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (6). The both atoms occupying the position of Ln2 (either Ce2 or Y2) are shown as well as both positions of NO₃⁻ corresponding to each of these occupations. Only heteroatoms are labelled. Carbon atoms are in grey. Hydrogen atoms are not shown for clarity.

Figure S16. Representation of the molecular structure of $[LaY(HL)_2(H_2L)(NO_3)(py)(H_2O)]$ (7). Only heteroatoms are labelled. Carbon atoms are in grey. Hydrogen atoms are not shown for clarity.

Figure S17. Heat capacity of coupled qubits. Specific heat of a powder sample of [CeEr] (1) measured at four different magnetic field values, compared to the specific heats of each of the two ions and to that of its sum.

Compound	1 .5py	4 ⋅5.5py	5 .5py	6 .5ру	7 ⋅3py		
Formula	C ₇₅ H ₆₀ CeErN ₁₀ O ₁₉	C77.5H62.5ErLaN10.5O19	C ₇₅ H ₆₀ CeN ₁₀ O ₁₉ Y	$C_{75}H_{57}Ce_{0.70}N_{10}O_{19}Y_{1.30}$	C ₆₅ H ₅₀ LaN ₈ O ₁₉ Y		
FW, g/mol	1712.71	1751.04	1634.36	1615.97	1474.95		
λ, Å	0.71073	0.7749	0.7749	0.71073	0.71073		
crystal system			monoclinic				
space group		<i>P</i> 2 ₁ /c					
<i>a</i> , Å	14.5502(3)	14.5226(11)	14.450(3)	14.4500(10)	14.465(2)		
b, Å	15.8974(3)	15.8712(11)	15.827(3)	15.867(2)	15.9220(10)		
<i>c</i> , Å	35.5552(9)	35.345(2)	35.468(6)	35.483(3)	35.520(3)		
β , deg	112.521(2)	112.646(2)	112.707(6)	110.535(7)	111.570(10)		
<i>V</i> , Å ³	7597.1(3)	7518.6(9)	7483(2)	7618.5(13)	7607.8(13)		
Ζ	4	4	4	4	4		
$ ho_{cal}$, g/cm ³	1.497	1.546	1.451	1.409	1.288		
μ , mm ⁻¹	1.765	2.176	1.002	1.474	1.380		
Т, К	150(2)	100(2)	100(2)	150(2)	150(2)		
unique reflections	12933	14111	8403	7964	9231		
parameters / restraints	940 / 206	1006 / 371	1097 / 697	932 / 347	923 / 559		
wR ₂ [all data]	0.1208	0.2003	0.1650	0.2721	0.2334		
R_1 (all data)	0.1170	0.0932	0.0779	0.1739	0.1576		
wR ₂ [<i>I</i> >2σ(<i>I</i>)]	0.1101	0.1959	0.1515	0.2243	0.1968		
R ₁ [<i>I</i> >2σ(<i>I</i>)]	0.0569	0.0838	0.0583	0.0973	0.0853		
S [all data]	0.926	1.173	1.015	1.022	1.000		

Table S1. Crystallographic data for 1, 4, 5, 6 and 7.

CCDC numbers; 973881-973885 for compounds 1, 4, 5, 6 and 7, respectively.

compound	1 .5py	4 ⋅5.5py	5 .5py	6 .5py	7 ⋅3py
-	(Ln1=Er, Ln2=Ce)	(Ln1=Er, Ln2=La)	(Ln1=Y, Ln2=Ce)	(Ln1=Y, Ln2 = Ce / Y)	(Ln1=Y, Ln2=La)
Ln1–04	2.312(5)	2.313(7)	2.319(6)	2.306(10)	2.336(8)
Ln1–011	2.317(5)	2.314(7)	2.323(6)	2.301(11)	2.308(8)
Ln1–08	2.329(6)	2.339(7)	2.332(6)	2.302(12)	2.335(8)
Ln1–O19	2.392(6)	2.405(8)	2.401(6)	2.444(10)	2.426(9)
Ln1–O9	2.400(5)	2.396(7)	2.397(6)	2.355(11)	2.401(8)
Ln1–O3	2.401(5)	2.395(7)	2.396(5)	2.393(11)	2.415(9)
Ln1–013	2.425(5)	2.412(6)	2.423(6)	2.416(12)	2.423(8)
Ln1–N3	2.447(6)	2.439(8)	2.443(7)	2.413(14)	2.463(10)
Ln1–N4	2.652(7)	2.665(9)	2.674(8)	2.675(14)	2.691(10)
Ln2–06	2.458(5)	2.469(7)	2.448(6)	2.406(17) / 2.47(5)	2.450(9)
Ln2–014	2.460(5)	2.474(7)	2.453(6)	2.461(16) / 2.33(5)	2.474(9)
Ln2–01	2.480(5)	2.503(7)	2.456(6)	2.380(18) / 2.53(5)	2.488(10)
Ln2–013	2.534(5)	2.551(7)	2.518(6)	2.576(15) / 2.34(4)	2.575(9)
Ln2–08	2.568(5)	2.574(7)	2.550(6)	2.545(16) / 2.49(5)	2.586(8)
Ln2–016	2.597(6)	2.642(8)	2.608(6)	2.474(17) / 2.66(5)	2.642(10)
Ln2–N2	2.609(7)	2.639(9)	2.621(7)	2.560(19) / 2.65(5)	2.605(11)
Ln2–03	2.679(5)	2.687(7)	2.677(5)	2.688(15) / 2.53(5)	2.707(8)
Ln2–N1	2.722(6)	2.745(9)	2.732(6)	2.711(17) / 2.70(6)	2.753(11)
Ln2–017	2.843(7)	2.774(10)	2.812(7)	2.87(2) / -	2.807(11)
Ln1…Ln2	3.8505(6)	3.8572(7)	3.8516(11)	3.879(10)/3.69(4)	3.8693(14)
Ln1–O3–Ln2	98.43(18)	98.6(2)	98.63(18)	99.4(5) / 97.0(12)	98.0(3)
Ln1–O8–Ln2	103.6(2)	103.4(3)	104.1(2)	106.2(5) / 100.7(9)	103.6(3)
Ln1–013–Ln2	101.9(2)	102.0(2)	102.4(2)	101.9(5) / 101.7(14)	101.4(3)

Table S2. Selected bond distances (Å) and angles (°) of the structures of 1, 4, 5, 6 and 7.