A generic cycling hypoxia-derived prognostic gene signature: application to breast cancer profiling

Supplementary Material

Cell line	Organ	Disease
MCF7	Breast	Adenocarcinoma
MDA-MB-231	Breast	Adenocarcinoma
T47D	Breast	Ductal carcinoma
A549	Lung	Carcinoma
Widr	Colon	Colorectal adenocarcinoma
HCT116 WTP53	Colon	Colorectal carcinoma
HCT116 ^{-/-P53}	Colon	Colorectal carcinoma
HT29	Colon	Colorectal adenocarcinoma
Colo-205	Colon	Colorectal adenocarcinoma
LoVo	Colon	Colorectal adenocarcinoma
HCT15	Colon	Colorectal adenocarcinoma
SiHa	Cervix	Squamous cell carcinoma
PC3	Prostate	Adenocarcinoma
U373	Brain	Glioblastoma
HepG2	Liver	Hepatocellular carcinoma
Нер3В	Liver	Hepatocellular carcinoma
PLC/PRF/5	Liver	Hepatoma
SK-HEP-1	Liver	Adenocarcinoma
A498	Kidney	Carcinoma
HT1080	Connective tissue	Fibrosarcoma

Supplementary Table 1: List of Human Tumor Cells used for Microarray Analysis.

Cancer cells were acquired from the ATCC where they are regularly authenticated. Cells were stored according to the supplier's instructions and used within 6 months after resuscitation of frozen aliquots.

Supplementary Table 2: GSEA analysis on the CycHyp signature extented to 2,118 differentially expressed genes between normoxia and cycling hypoxia. The table contains the signature sizes, primary and normalized enrichment scores (ES and NES, respectively), the nominal p-values, the false discovery rates (FDR) q-values and the familywise-error rate (FWER) for the top 50 gene sets enriched in the CycHyp signature. Only the two first gene sets are significantly enriched with a FDR q-value < 0.1.

Gene sets	Size ES	NES		NOM pval	FDR qval	FWER pval
JISON SICKLE CELL DISEASE DN	26	0,442	2,653	0	0,011	0,012
ZWANG TRANSIENTLY UP BY 2ND EGF PULSE ONLY	226	0,158	2,524	0	0,016	0,036
REACTOME TRANSLATION	40	0,275	1,997	0,006	0,44	0,771
PECE MAMMARY STEM CELL DN	29	0,303	1,926	0,008	0,501	0,894
KRIGE RESPONSE TO TOSEDOSTAT 24HR DN	94	0,12	1,312	0,155	0,978	1
BURTON ADIPOGENESIS 5	15	0,282	1,296	0,168	0,986	1
HAMAI APOPTOSIS VIA TRAIL DN	17	0,269	1,322	0,151	0,99	1
HSIAO HOUSEKEEPING GENES	65	0,143	1,336	0,14	0,99	1
MULLIGHAN MLL SIGNATURE 2 DN	15	0,277	1,27	0,175	0,992	1
REACTOME RNA POL I TRANSCRIPTION	17	0,267	1,315	0,16	0,992	1
HUTTMANN B CLL POOR SURVIVAL UP	20	0,26	1,383	0,12	0,993	1
REACTOME PEPTIDE CHAIN ELONGATION	27	0,202	1,241	0,206	0,994	1
WANG TUMOR INVASIVENESS UP	46	0,182	1,437	0,094	0,999	1
BOUDOUKHA BOUND BY IGF2BP2	15	0,371	1,74	0,024	1	0,998
BURTON ADIPOGENESIS 6	16	0.304	1.44	0.094	1	. 1
LI INDUCED T TO NATURAL KILLER UP	15	0.301	1.399	0.111	1	1
KEGG UBIQUITIN MEDIATED PROTEOLYSIS	22	0.29	1.608	0.045	1	1
KEGG SYSTEMIC LUPUS ERYTHEMATOSUS	16	0.289	1.387	0.118	1	1
GOLDRATH ANTIGEN RESPONSE	19	0.286	1.488	0.078	1	1
WIERENGA STAT5A TARGETS DN	18	0.285	1.45	0.082	1	1
YAO TEMPORAL RESPONSE TO PROGESTERONE CLUSTER 17	21	0.281	1.526	0.064	1	1
LINDGREN BLADDER CANCER CLUSTER 3 UP	16	0.271	1.297	0.163	1	1
MALONEY RESPONSE TO 17AAG DN	18	0.264	1.346	0.144	1	1
LIDAYAKUMAR MEDI TARGETS LIP	19	0.26	1 34	0 145	1	- 1
AFFAR YY1 TARGETS UP	20	0 259	1 357	0 1 3 7	1	- 1
KEGG PATHWAYS IN CANCER	28	0 252	1 563	0.054	1	- 1
SWEET LLING CANCER KRAS DN	26	0.25	1 492	0.076	1	- 1
REACTOME 3 LITE MEDIATED TRANSLATIONAL REGULATION	32	0 249	1 638	0,070	1	1
VAGLAMI, WITH T & 21 TRANSI OCATION	20	0 249	1 3 2 5	0,033	1	1
KEGG WNT SIGNALING PATHWAY	19	0,249	1 241	0,147	1	1
GARY CD5 TARGETS LIP	31	0,235	1 4 8 2	0.073	1	1
REACTOME SRP DEPENDENT COTRANSI ATIONAL PROTEIN TARGETING TO MEMBRANE	33	0 2 2 7	1 514	0.064	1	1
NIKOI SKY BREAST CANCER 16P13 AMPLICON	26	0.227	1 364	0 118	1	1
MOHANKI MAR TI X1 TARGETS LIP	20	0 2 2 4	1 372	0,122	1	- 1
NIKOLSKY BREAST CANCER 17021 025 AMPLICON	36	0,224	1 508	0,122	1	1
WONG EMBRYONIC STEM CELL CORE	46	0.196	1 5 2 7	0,062	1	1
VAGEAME WITH INV 16 TRANSLOCATION	34	0.186	1 255	0,002	1	1
MIKKEI SEN ES ICP WITH H3K4ME3	54	0 175	1 473	0,157	1	1
KRIGE RESPONSE TO TOSEDOSTAT 6HR LIP	42	0,167	1 254	0,070	1	1
STARK PREERONTAL CORTEX 22011 DELETION DN	71	0,166	1 586	0,152	1	1
DELACROIX RAR BOUND ES	45	0 164	1 274	0,047	1	1
		0 1 5 2	1 4 1 6	0,170	1	1
MEISSNER BRAIN HCD WITH H3K27ME3	55	0,152	1 28	0,055	1	1
MARTENS TRETINOIN RESPONSE DN	108	0,131	1 722	0,170	1	0000
	87	0,140	1 / 22	0,028	1	0,555
	75	0 1 4 1	1 3 8 5	0,073	1	1
MIKKEI SEN MEE HCP WITH H3K27ME3	2, 20	0 1 3 7	1 454	0.085	1	1
ACEVEDO LIVER TUMOR VS NORMAL ADIACENT TISSUE UP	94	0 1 2 9	1 406	0 103	1	1
RENPORATH FED TARGETS	115	0 104	1 249	0 196	1	1
DANG BOUND BY MYC	127	0.102	1.274	0,174	1	1
		0,101		5,174	1	-

Supplementary Table 3: GSEA analysis on the ContHyp signature extended to 2,065 differentially expressed genes between normoxia and continuous hypoxia. The table contains the signature sizes, primary and normalized enrichment scores (ES and NES, respectively), the nominal p-values, the false discovery rates (FDR) q-values and the familywise-error rate (FWER). 17 gene sets (red) were previoulsy identified as related

to hypoxia.

Gene sets	Size	ES	1	NES	NOM pval	FDR qval	FWER pval
FARDIN HYPOXIA 11		17	0,712	3,492	0	0	0
LEONARD HYPOXIA		21	0,524	2,841	0	0	0,002
MENSE HYPOXIA UP		39	0,477	3,469	0	0	0
ELVIDGE HYPOXIA BY DMOG UP		46	0,459	3,623	0	0	0
ELVIDGE HIF1A AND HIF2A TARGETS DN		44	0,445	3,376	0	0	0
WINTER HYPOXIA METAGENE		46	0,443	3,444	0	0	0
QI HYPOXIA		36	0,421	2,943	0	0	0
ELVIDGE HIF1A TARGETS DN		43	0,39	2,959	0	0	0
ELVIDGE HYPOXIA UP		56	0,386	3,326	0	0	0
KRIEG HYPOXIA NOT VIA KDM3A		113	0,295	3,474	0	0	0
NAKAMURA TUMOR ZONE PERIPHERAL VS CENTRAL DN		76	0,27	2,641	0	0,002	0,015
PRAMOONJAGO SOX4 TARGETS UP		15	0,551	2,582	0	0,003	0,029
WINTER HYPOXIA UP		20	0,491	2,596	0	0,003	0,024
GROSS HYPOXIA VIA HIF1A DN		23	0,432	2,457	0	0,007	0,083
GROSS HYPOXIA VIA ELK3 AND HIF1A UP		29	0,392	2,466	0	0,007	0,079
BASAKI YBX1 TARGETS DN		35	0.359	2.479	0	0.007	0.07
MARTORIATI MDM4 TARGETS NEUROEPITHELIUM UP		23	0.432	2.448	0	0.008	0.091
MARKEY RB1 ACUTE LOF UP		24	0.419	2.432	0	0.008	0.103
SCHLOSSER MYC TARGETS AND SERUM RESPONSE DN		18	0.48	2,412	0	0.009	0.117
		35	0.35	2,419	0	0.009	0,113
HARRIS HYPOXIA		17	0.488	2,383	0.002	0.01	0.143
REACTOME METABOLISM OF RNA		 60	0 264	2 351	0.001	0.012	0 177
BOYALIT LIVER CANCER SUBCLASS G3 UP		44	0 301	2,331	0.001	0.014	0.22
BLALOCK ALTHEIMERS DISEASE DN		169	0 163	2,310	0,001	0.014	0 208
DANG BOUND BY MYC		170	0,105	2,320	0.002	0,014	0,200
PID HIF1 TEPATHWAY		16	0,102	2,250	0.002	0.017	0.283
DANG MYC TARGETS UP		44	0.3	2.281	0.001	0.017	0.278
SHAFFER IRF4 TARGETS IN MYELOMA VS MATURE B LYMPI	Ю	15	0.488	2.263	0	0.018	0.304
WEI MYCN TARGETS WITH E BOX		194	0.149	2.226	0.001	0.022	0.372
KRIGE RESPONSE TO TOSEDOSTAT 24HR DN		220	0.139	2.21	0.001	0.024	0.408
REACTOME INFLUENZA LIFE CYCLE		33	0.322	2.173	0.002	0.03	0.492
NUYTTEN EZH2 TARGETS UP		78	0.217	2,169	0.002	0.03	0.501
GROSS HYPOXIA VIA FLK3 DN		29	0.339	2,156	0.002	0.031	0.535
BENPORATH MYC MAX TARGETS		120	0,176	2,146	0.001	0.032	0.558
		139	0 167	2 158	0.003	0.032	0.53
PODAR RESPONSE TO ADAPHOSTIN UP		25	0 352	2,130	0,003	0.049	0 725
KIM MYC AMPLIFICATION TARGETS LIP		33	0 306	2,077	0.004	0.053	0 762
		25	0 349	2,002	0.005	0.055	0 786
RODRIGUES THYROID CARCINOMA POORLY DIFFERENTIAT	FD	113	0 168	2,03	0.005	0.064	0.845
REACTOME RNA POLI PROMOTER OPENING		16	0,100	2,02	0,005	0,004	0,045
		72	0,413	1 997	0,000	0,005	0.88
GARY CD5 TARGETS DN		109	0,200	1 98	0,004	0,071	0,00
		222	0,17	1 983	0,003	0,073	0,503
		200	0,122	1,985	0,002	0,074	0,9
	1	20	0,322	1,904	0,000	0,075	0,899
	1	100	0,301	1,903	0,000	0,078	0,924
CRAESSMANN RESPONSE TO MC AND DOVORUBICIN DN		100	0,151	1,947	0,007	0,085	0,941
		125	0,156	1,949	0,004	0,084	0,94
		214	0,125	1,942	0,008	0,084	0,940
		20	0,303	1,936	0,006	0,085	0,951
		24	0,329	1,928	0,007	0,087	0,96
		27	0,312	1,905	0,009	0,098	0,975
PECE IVIAIVIIVIARY STEIVI CELL DIN		29	0,297	1,899	0,011	0,099	0,978

Supplementary Table 4: Overlap, in terms of number of common genes, between the CycHyp

signature and gene sets from the MsigDB identified as being related to hypoxia or HIF.

Hypoxia Gene Set	Gene in common
1PID HIF1APATHWAY	1
2 REACTOME REGULATION OF HYPOXIA INDUCIBLE FACTOR HIF BY OXYGEN	2
3 GROSS HYPOXIA VIA ELK3 AND HIF1A DN	1
4 REACTOME OXYGEN DEPENDENT PROLINE HYDROXYLATION OF HYPOXIA INDUCIBLE FACTOR ALPHA	2
S WINTER HYPOXIA UP	1
6 WINTER HYPOXIA DN	1
7 ELVIDGE HYPOXIA BY DMOG DN	1
8 GROSS HYPOXIA VIA ELK3 UP GROSS	2
9 HYPOXIA VIA ELK3 ONLY DN	1
10 MANALO HYPOXIA DN	1
11 JIANG HYPOXIA NORMAL	1
12 JIANG HYPOXIA CANCER	1
13 KRIEG HYPOXIA NOT VIA KDM3A	4

Supplementary Table 5: Overlap, in terms of number of common genes, between the ContHyp signature

and gene sets from the MsigDB identified as being related to hypoxia or HIF.

Hypoxia Gene Set	Gene in common
1BIOCARTA HIF PATHWAY	1
2 PID HIF2PATHWAY	2
3 PID HIF1APATHWAY	1
4 PID HIF1 TFPATHWAY	5
5 REACTOME REGULATION OF HYPOXIA INDUCIBLE FACTOR HIF BY OXYGEN	2
6 ELVIDGE HIF1A TARGETS UP	2
7 ELVIDGE HIF1A TARGETS DN	15
8 ELVIDGE HIF1A AND HIF2A TARGETS DN	16
9 GROSS HYPOXIA VIA HIF1A ONLY	1
10 GROSS HIF1A TARGETS DN	3
11 GROSS HYPOXIA VIA HIF1A DN	4
12 GROSS HYPOXIA VIA ELK3 AND HIF1A UP	14
13 RANKIN ANGIOGENIC TARGETS OF VHL HIF2A DN	1
14 SEMENZA HIF1 TARGETS	4
15 QI HYPOXIA TARGETS OF HIF1A AND FOXA2	1
16 REACTOME OXYGEN DEPENDENT PROLINE HYDROXYLATION OF HYPOXIA INDUCIBLE FACTOR ALPHA	1
17 WINTER HYPOXIA UP	11
18 ELVIDGE HYPOXIA UP	19
19 ELVIDGE HYPOXIA DN	4
20 Elvidge hypoxia by dmog up elvidge	17
21 HYPOXIA BY DMOG DN WEINMANN	2
22 ADAPTATION TO HYPOXIA UP WEINMANN	1
23 ADAPTATION TO HYPOXIA DN KONDO	1
24 HYPOXIA	1
25 gross hypoxia via elks up	4
26 gross hypoxia via elk3 dn	6
27 gross hypoxia via elk3 only up	1
28 MANALO HYPOXIA DN	5
29 MANALO HYPOXIA UP	10
30 MENSE HYPOXIA UP	19
31 КІМ НҮРОХІА	4
32 HARRIS HYPOXIA	7
33 LEONARD HYPOXIA	12
34 JIANG HYPOXIA NORMAL	9
35 JIANG HYPOXIA CANCER	2
36 JIANG AGING HYPOTHALAMUS UP	1
37 WINTER HYPOXIA METAGENE	16
³⁸ MIZUKAMI HYPOXIA UP	1
39 QI HYPOXIA FARDIN	14
40 HYPOXIA 9	5
41 FARDIN HYPOXIA 11	14
⁴² WACKER HYPOXIA TARGETS OF VHL	3
⁴³ krieg hypoxia via kdm3a	1
44 KRIEG HYPOXIA NOT VIA KDM3A	27

Supplementary Table 6: Overlap, in terms of number of common genes, between the CycHyp or ContHyp signatures and the conventional hypoxia-related signatures (respective sizes in the second column) described by Seigneuric et al. (2007) and Starmans et al. (2012).

		Size	СусНур	ContHyp
Seigneuric et al. (2007)	Early 0%	72	0	0
	Late 0%	71	1	7
	Early 2%	34	1	0
	Late 2%	32	0	3
Starmans et al. (2012)	Cluster 1	69	0	5
	Cluster 2	246	1	20
	Cluster 3	157	0	4
	Cluster 4	95	1	1
	Cluster 5	162	0	0
	Cluster 6	14	0	0
	Cluster 7	28	1	0
	Upregulated	780	2	32
	Downregulated	656	6	6

Supplementary Figure 1: Kaplan-Meier survival curves of node-negative, untreated ER+/HER2patients as determined by using the ContHyp signature (DFS Mantel-Cox comparison).

Supplementary Figure 2: Forest plots of the hazard ratio (HR), Concordance index (CI) and balance classification rate (BCR) for the prediction in high risk vs. low risk groups for each of the 4 data sets that form the total collection of node-negative, untreated ER+/HER2- patients; data are presented with their associated p-values.

Supplementary Figure 3: Graphs represent the hazard ratio (HR), concordance index (CI) and balanced classification rate (BCR) (expressed as the logarithm of the corresponding p-values) related to the power of discrimination in high vs. low risk groups, of the ContHyp and CycHyp signatures (see red dots) versus 1,000 randomly generated signatures (yellow shapes depicting their distribution).

Supplementary Figure 4: Kaplan-Meier survival curves of patients with primary breast cancer stratified at low or high risk according to the CycHyp signature and the NPI nomenclature (DFS Mantel-Cox comparison). (A) All patients, (B.) ER+/HER2- patients, (C.) node-negative ER+/HER2, (D.) node-negative, untreated ER+/HER2-patients. Indicated p-values are derived from Mantel-Cox log-rank tests.