
Supplementary Materials

A Prior Densities Used in the BGLR R-Package

In this section we describe the prior distributions assigned to the location parameters, (βj ,ul),
entering in the linear predictor of eq. (1). For each of the unknown effects included in the linear
predictor, {β1, ..,βJ ,u1, ...,uL}, the prior density assigned is specified via the argument model in
the corresponding entry of the list (see Box 8 for an example). Table S1 describes, for each of the
options implemented, the prior density used. A brief description is given below.

FIXED. In this case regression coefficients are assigned flat priors, specifically we use a Gaussian
prior with mean zero and variance equal to 1× 1010.

BRR. When this option is used regression coefficients are assigned normal IID normal distributions,
with mean zero and variance σ2

β . In a 2nd level of the hierarchy, the variance parameter is assigned
a scaled-inverse Chi-squared density, with parameters dfβ and Sβ . This density is parameterized

in a way that the prior expected value and mode are E(σ2
β) =

Sβ

dfβ−2 and Mode(σ2
β) =

Sβ

dfβ+2 ,

respectively. By default, if dfβ and Sβ are not provided, BGLR sets dfβ = 5 and solves for the scale
parameter to match the R-squared of the model (see default rules to set hyper-parameters below).
An analysis with fixed variance parameter can be obtained by choosing the degree of freedom
parameter to a very large value (e.g., 1× 1010) and solving for the scale using Sβ = σ2

β × (dfβ +2);

this gives a prior that collapses to a point of mass at σ2
β.

BayesA. In this model the marginal distribution of marker effects is a scaled-t density, with
parameters dfβ and Sβ . For computational convenience this density is implemented as an infinite
mixture of scaled-normal densities. In a first level of the hierarchy marker effects are assigned
normal densities with zero mean and marker-specific variance parameters, σ2

βjk
. In a 2nd level of

the hierarchy these variance parameters are assigned IID scaled-inverse Chi-squared densities with
degree of freedom and scale parameters dfβ and Sβ , respectively. The degree of freedom parameter
is regarded as known; if the user does not provide a value for this parameter BGLR sets dfβ = 5.
The scale parameter is treated as unknown, and BGLR assigns to this parameter a gamma density
with rate and shape parameters r and s, respectively. The mode and coefficient of variation (CV)
of the gamma density are Mode(Sβ) = (s− 1)/r (for s > 1) and CV (S0) = 1/

√
s. If the user does

not provide shape and rate parameters BGLR sets s = 1.1, this gives a relatively un-informative
prior with a CV of approximately 95%, and then solves for the rate so that the total contribution of
the linear predictor matches the R-squared of the model (see default rules to set hyper-parameters,
below). If one wants to run the analysis with fixed scale one can choose a very large value for the
shape parameter (e.g., 1 × 1010) and then solve for the rate so that the prior mode matches the
desired value of the scale parameter using r = (s− 1)/Sβ .

Bayesian LASSO (BL). In this model the marginal distribution of marker effects is double-
exponential. Following Park and Casella (2008) we implement the double-exponential density as a
mixture of scaled normal densities. In the first level of the hierarchy, marker effects are assigned
independent normal densities with null mean and maker-specific variance parameter τ2jk × σ2

ε . The
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residual variance is assigned a scaled-inverse Chi-square density, and the marker-specific scale pa-
rameters, τ2jk, are assigned IID exponential densities with rate parameter λ2/2. Finally, in the last

level of the hierarchy λ2 is either regarded as fixed (this is obtained by setting in the linear predictor
the option type="FIXED"), or assigned either a Gamma (λ2 ∼ Gamma(r, s) if type="gamma") or a
λ/max is assigned a Beta prior, if type="beta", here max is a user-defined parameter representing
the maximum value that λ can take). If nothing is specified, BGLR sets type="gamma" and s = 1.1,
and solves for the scale parameter to match the expected R-squared of the model (see section B of
this Supplementary Materials for further details).

BayesB-C. In these models marker effects are assigned IID priors that are mixtures of a point of
mass at zero and a slab that is either normal (BayesC) or a scaled-t density (BayesB). The slab
is structured as either in the BRR (this is the case of BayesC) or as in BayesA (this is the case
of BayesB). Therefore, BayesB and BayesC extend BayesA and BRR, respectively, by introducing
an additional parameter π which in the case of BGLR represents the prior proportion of non-zero
effects. This parameter is treated as unknown and it is assigned a Beta prior π ∼ Beta(p0,π0),
with p0 > 0 and π0 ∈ [0, 1]. The beta prior is parameterized in a way that the expected value
by E(π) = π0; on the other hand p0 can be interpreted as the number of prior counts (priors
“successes” plus prior “failures”); with this parametrization the variance of the Beta distribution

is then given by V ar(π) = π0(1−π0)
(p0+1) , which is inversely proportional to p0. Choosing p0 = 2 and

π0 = 0.5 gives a uniform prior in the interval [0, 1]. Choosing a very large value for p0 gives a prior
that collapses to a point of mass at π0.
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Table S1. Prior densities implemented in BGLR.

model= Join distribution of effects and hyper-parameters Specification of elements in the
linear predictor

FIXED p(βj) ∝ 1 list(X=, model="FIXED")

BRR p(βj ,σ
2
β) =

{

∏

k N(βjk|0,σ2
β)
}

χ−2(σ2
β |dfβ , Sβ) list(X=, model="BRR",df0=,S0=,R2=)

BayesA p(βj ,σ
2
βj
, Sβ) =

{

∏

k N(βjk|0,σ2
βjk

)χ−2(σ2
βjk

|dfβ, Sβ)
}

G(Sβ |r, s) list(X=, model="BayesA",df0=,rate0=,

shape0=,R2=)

p(βj , τ
2
j ,λ

2|σ2
ε) =

{

∏

k N(βjk|0, τ2jk × σ2
ε)Exp

{

τ2jk|
λ2

2

}}

×G(λ2|r, s) , or list(X=,model="BL",lambda=,type="gamma",

rate=,shape=,R2=)1

BL p(βj , τ
2
j ,λ|σ2

ε , max) =
{

∏

k N(βjk|0, τ2jk × σ2
ε)Exp

{

τ2jk|
λ2

2

}}

×B(λ/max |p0,π0), or list(X=,model="BL",lambda=,type="beta",

probIn=,counts=,max=,R2=)1

p(βj , τ
2
j |σ2

ε ,λ) =
{

∏

k N(βjk|0, τ2jk × σ2
ε)Exp

{

τ2jk|
λ2

2

}}

list(X=,model="BL",lambda=,type="FIXED")1

BayesC
p(βj ,σ

2
β,π) =

{

∏

k

[

πN(βjk|0,σ2
β) + (1− π)1(βjk = 0)

]}

×χ−2(σ2
β |dfβ , Sβ)B(π|p0,π0)

list(X=,model="BayesC",df0,S0,

probIn=,counts=,R2=)2

BayesB
p(βj ,σ

2
β,π) =

{

∏

k

[

πN(βjk|0,σ2
β) + (1− π)1(βjk = 0)

]

χ−2(σ2
βjk

|dfβ , Sβ)
}

B(π|p0,π0)×G(Sβ |r, s)
list(X=,model="BayesB",df0,rate0,shape0,

probIn=,counts=,R2=)2

RKHS p(ul,σ2
ul
) = N(ul|0,K l × σ2

ul
)χ−2(σ2

ul
|dfl, Sl) Either list(K=,model="RKHS",df0,S0,R2=)

or list(V=,d=,model="RKHS",df0,S0,R2=)3

N(·|·, ·), χ−2(·|·, ·), G(·|·, ·), Exp(·|·), B(·|·, ·) denote normal, scaled inverse Chi-squared, gamma, exponential and beta densities, re-
spectively. (1) type can take values "FIXED", "gamma", or "beta"; (2) probIn represents the prior probability of a marker having a
non-null effect (π0), counts (the number of ‘prior counts’) can be used to control how informative the prior is; (3) V and d represent the
eigen-vectors and eigen-values of K, respectively.
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B Default rules for choosing hyper-parameters

BGLR has built-in rules to set values of hyper-parameters. The default rules assign proper, but
weakly informative, priors with prior modes chosen in a way that, a priori, they obey a variance
partition of the phenotype into components attributable to the error terms and to each of the
elements of the linear predictor. The user can control this variance partition by setting the argument
R2 (representing the model R-squared) of the BGLR function to the desired value. By default
the model R2 is set equal to 0.5, in which case hyper-parameters are chosen to match a variance
partition where 50% of the variance of the response is attributable to the linear predictor and 50%
to model residuals. Each of the elements of the linear predictor has its own R2 parameter (see
last column of Table S1). If these are not provided, theR2 attributable to each element of the linear
predictor equals the R-squared of the model divided the number of elements in the linear predictor.
Once the R2 parameters are set, BGLR checks whether each of the hyper-parameters have been
specified and if not, the built in-rules are used to set values for these hyper-parameters. Next we
briefly describe the built-in rules implemented in BGLR; these are based on formulas similar to
those described by de los Campos et al. (2013) implemented using the prior mode instead of the
prior mean.

Variance parameters. The residual variance (σ2
ε), σ

2
ul

of the RKHS model, and σ2
β, of the BRR,

are assigned scaled-inverse Chi-square densities, which are indexed by a scale and a degree of
freedom parameter. By default, if degree of freedom parameter is not specified, these are set equal
to 5 (this gives a relatively un-informative scaled-inverse Chi-square and guarantees a finite prior
variance) and the scale parameter is solved for to match the desired variance partition. For instance,
in case of the residual variance the scale is calculated using Sε = var(y)× (1−R2)× (dfε +2), this
gives a prior mode for the residual variance equal to var(y)×(1−R2). Similar rules are used in case
of other variance parameters. For instance, if one element of the linear predictor involves a linear
regression of the form Xβ with model=‘BRR’ then Sβ = var(y)×R2× (dfβ +2)/MSx where MSx
is the sum of the sample variances of the columns of X and R2 is the proportion of phenotypic
variance a-priori assigned to that particular element of the linear predictor. The selection of the scale
parameter when the model is the RKHS regression is modified relative to the above rule to account
for the fact that the average diagonal value of K may be different than 1, specifically we choose the
scale parameter according to the following formula Sl = var(y)×R2× (dfl + 2)/mean(diag(K)).

In models BayesA and BayesB the scale-parameter indexing the t-prior assigned to marker effects
is assigned a Gamma density with rate and shape parameters r and s, respectively. By default
BGLR sets s = 1.1 and solves for the rate parameter using r = (s−1)/Sβ with Sβ = var(y)×R2×
(dfβ + 2)/MSx, here, as before, MSx represents the sum of the variances of the columns of X.

For the BL, the default is to set: type=‘gamma’, fix the shape parameter of the gamma density
assigned λ2 to 1.1 and then solve for the rate parameter to match the expected proportion of
variance accounted for by the corresponding element of the linear predictor, as specified by the
argument R2. Specifically, we set the rate to be r = (s− 1)/(2× (1−R2)/R2×MSx).

For models BayesB and BayesC, the default rule is to set π0 = 0.5 and p0 = 10. This gives a
weakly informative beta prior for π with a prior mode at 0.5. The scale and degree-of freedom
parameters entering in the priors of these two models are treated as in the case often models
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BayesA (in the case of BayesB) and BRR (in the case of BayesC), but the rules are modified by
considering that, a-priori, only a fraction of the markers (π) nave non-null effects; therefore, in
BayesC we use Sβ = var(y) × R2 × (dfβ + 2)/MSx/π and in BayesB we set r = (s − 1)/Sβ with
Sβ = var(y)×R2× (dfβ + 2)/MSx/π.
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C Supplementary R scripts

Box S1 illustrates how to extract estimates and predictions form the models fitted in Box 7.

Box S1: Supplementary code for the model fitted in Box 7

#Residual Variance
fmBRR$varE; fmBRR$SD.varE
fmBA$varE; fmBA$SD.varE
fmBB$varE; fmBB$SD.varE
# DIC and pD
fmBRR$fit
fmBA$fit
fmBB$fit
#Predictions
fmBRR$yHat; fmBRR$SD.yHat
fmBA$yHat; fmBA$SD.yHat
fmBB$yHat; fmBB$SD.yHat
#Correlations between predicted and simulated signals
cor(signal,fmBRR$yHat)
cor(signal,fmBA$yHat)
cor(signal,fmBB$yHat)

# Estimated effects
tmp<-range(abs(b0))
plot(numeric()~numeric(),ylim=tmp,xlim=c(1,p),

ylab=expression(paste("|",beta[j],"|")),
xlab="Marker Possition (order)")

abline(v=whichQTL,lty=2,col=4)
points(x=whichQTL,y=abs(b0[whichQTL]),pch=19,col=4)
points(x=1:p,y=abs(fmBRR$ETA$MRK$b),col=1,cex=.5)
lines(x=1:p,y=abs(fmBRR$ETA$MRK$b),col=1,cex=.5)
points(x=1:p,y=abs(fmBB$ETA$MRK$b),col=2,cex=.5)
lines(x=1:p,y=abs(fmBB$ETA$MRK$b),col=2,cex=.5)

Box S2 illustrates how to extract estimates and predictions form the models fitted in Box 8.
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Box S2: Supplementary code for the model fitted in Box 8

#1# Estimated Marker Effects & posterior SDs
bHat<- fm$ETA$MRK$b
SD.bHat<- fm$ETA$MRK$SD.b
plot(bHat^2, ylab="Estimated Squared-Marker Effect",

type="o",cex=.5,col="red",main="Marker Effects",
xlab="Marker")

points(bHat^2,cex=0.5,col="blue")

#2# Predictions
# Genomic Prediction

gHat<-X%*%fm$ETA$MRK$b
plot(fm$y~gHat,ylab="Phenotype",

xlab="Predicted Genomic Value", col=2, cex=0.5,
main="Predicted Genomic Values Vs Phenotypes",
xlim=range(gHat),ylim=range(fm$y));

#3# Godness of fit and related statistics
fm$fit
fm$varE # compare to var(y)

#4# Trace plots
list.files()

# Residual variance
varE<-scan("varE.dat")
plot(varE,type="o",col=2,cex=.5,

ylab=expression(sigma[epsilon]^2),
xlab="Sample",main="Residual Variance");

abline(h=fm$varE,col=4,lwd=2);
abline(v=fm$burnIn/fm$thin,col=4)

# lambda (regularization parameter of the Bayesian LASSO)
lambda<-scan("ETA_MRK_lambda.dat")
plot(lambda,type="o",col=2,cex=.5,

xlab="Sample",ylab=expression(lambda),
main="Regularization parameter");

abline(h=fm$ETA$MRK$lambda,col=4,lwd=2);
abline(v=fm$burnIn/fm$thin,col=4)

Box S3 shows how to extract estimates, predictions and variance components from the regression
model fitted using the script provided in Box 9.
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Box S3: Supplementary code for the model fitted in Box 9

#1# Predictions
## Phenotype prediction

yHat<-fm$yHat
tmp<-range(c(y,yHat))
plot(yHat~y,xlab="Observed",ylab="Predicted",col=2,

xlim=tmp,ylim=tmp); abline(a=0,b=1,col=4,lwd=2)

#2# Godness of fit and related statistics
fm$fit
fm$varE # compare to var(y)

#3# Variance components associated with the genomic and pedigree
# matrices
fm$ETA$PED$varU
fm$ETA$PED$SD.varU

fm$ETA$MRK$varU
fm$ETA$MRK$SD.varU

#4# Trace plots
list.files()
# Residual variance
varE<-scan("PGBLUP_varE.dat")
plot(varE,type="o",col=2,cex=.5);

#varA and varU
varA<-scan("PGBLUP_ETA_PED_varU.dat")
plot(varA,type="o",col=2,cex=.5);

varU<-scan("PGBLUP_ETA_MRK_varU.dat")
plot(varU,type="o",col=2,cex=.5)

plot(varA~varU,col=2,cex=.5,main=paste("Cor= ",round(cor(varU,varA),3),sep=""))

varG<-varU+varA
h2<-varG/(varE+varG)
mean(h2);sd(h2)

mean(varU/varG)
mean(varA/varG)

Box S4 provides supplementary code for the model fitted in Box 10.
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Box S4: Supplementary code for the model fitted in Box 10

fm$varE
plot(y~fm$yHat)

plot(scan("RKHS_h=0.25_ETA_K1_varU.dat"),type="o",col=2,cex=0.5)
abline(h=fm$ETA$K1$varU,col=4)
plot(scan("RKHS_h=0.25_varE.dat"),type="o",col=2,cex=0.5)
abline(h=fm$varE,col=4)

Box S5 provides supplementary code for the model fitted in Box 11.

Box S5: Supplementary code for the model fitted in Box 11

# Posterior mean of the residual variance
fm$varE

# Posterior means of the variances of the kernels
VAR<-c(fm$ETA[[1]]$varU, fm$ETA[[2]]$varU, fm$ETA[[3]]$varU)
names(VAR)<-paste("Variance(h=",h,")",sep="")
barplot(VAR,ylab="Estimated Variance")

# Plots of variance components
varE<-scan("RKHS_KA_varE.dat")
varU1<-scan("RKHS_KA_ETA_1_varU.dat")
varU2<-scan("RKHS_KA_ETA_2_varU.dat")
varU3<-scan("RKHS_KA_ETA_3_varU.dat")
varU<-varU1+varU2+varU3

plot(varE,col=2,type="o",cex=.5,ylab="Residual Variance")
plot(varU,col=2,type="o",cex=.5,ylab="Variance",main="Genomic Variance")
plot(varU1,col=2,type="o",cex=.5,ylab="Variance",main=paste("Variance (h=",h[1],")"))
plot(varU2,col=2,type="o",cex=.5,ylab="Variance",main=paste("Variance (h=",h[2],")"))
plot(varU3,col=2,type="o",cex=.5,ylab="Variance",main=paste("Variance (h=",h[3],")"))

Box S6 provides supplementary code for the model fitted in Box 12.
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Box S6: Supplementary code for the model fitted in Box 12

# Assesment of correlation in TRN and TST data sets
cor(fm$yHat[tst],y[tst]) #TST
cor(fm$yHat[-tst],y[-tst]) #TRN

# Plot of phenotypes versus genomic prediction, by set (TRN/TST)
plot(y~I(fm$yHat),ylab="Phenotype",

xlab="Pred. Gen. Value" ,cex=.8,bty="L")
points(y=y[tst],x=fm$yHat[tst],col=2,cex=.8,pch=19)
legend("topleft", legend=c("training","testing"),bty="n",

pch=c(1,19), col=c("black","red"))
abline(lm(I(y[-tst])~I(fm$yHat[-tst]))$coef,col=1,lwd=2)
abline(lm(I(y[tst])~I(fm$yHat[tst]))$coef,col=2,lwd=2)

Box S7 provides supplementary code for the model fitted in Box 13.

Box S7: Supplementary code for the model fitted in Box 13

# Comparing models using a paired t-test
colMeans(COR)
mean(COR[,2]-COR[,1])
t.test(x=COR[,2],y=COR[,1],paired=TRUE,var.equal=FALSE)

# Plots of Correlations: Pedigree+Markers vs Pedigree Only
xy_limits<-range(as.vector(COR))
plot(COR[,2]~COR[,1],col="red",

xlim=xy_limits,
ylim=xy_limits,
main="E1",
xlab="Pedigree", ylab="Pedigree+Markers")

abline(0,1,col="blue")
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D Regression with Ordinal and Binary Traits

For categorical traits BGLR uses the probit link and the phenotype vector should be coercible
to a factor. The type of response is defined by setting the argument response type. By de-
fault this argument is set equal to "Gaussian". For binary and ordinal outcomes we should set
response type="ordinal". Box S8 provides a simple example that uses the wheat data set with
a discretized phenotype. The second block of code, #2#, presents the analysis of a binary outcome,
and the third one, #3#, that of an ordinal trait. Figure S1 shows, for the binary outcome, a plot of
predicted probability (fmBin$probs) versus realized value in the TRN and TST datasets.

Box S8: Fitting models with binary and ordinal responses

#1# Loading and preparing the input data
library(BGLR); data(wheat);
Y<-wheat.Y; X<-wheat.X; A<-wheat.A;
y<-Y[,1]
set.seed(123)
tst<-sample(1:nrow(X),size=150)
#2# Binary outcome
yBin<-ifelse(y>0,1,0)
yBinNA<-yBin; yBinNA[tst]<-NA
ETA<-list(list(X=X,model="BL"))

fmBin<-BGLR(y=yBinNA,response_type="ordinal", ETA=ETA,
nIter=1200,burnIn=200)

head(fmBin$probs)
par(mfrow=c(1,2))
boxplot(fmBin$probs[-tst,2]~yBin[-tst],main="Training",ylab="Estimated prob.")
boxplot(fmBin$probs[tst,2]~yBin[tst],main="Testing", ylab="Estimated prob.")

#2# Ordinal outcome
yOrd<-ifelse(y<quantile(y,1/4),1,ifelse(y<quantile(y,3/4),2,3))
yOrdNA<-yOrd; yOrdNA[tst]<-NA

ETA<-list(list(X=X,model="BL"))

fmOrd<-BGLR(y=yOrdNA,response_type="ordinal", ETA=ETA,
nIter=1200,burnIn=200)

head(fmOrd$probs)
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Figure S1: Estimated probability by category, versus observed category (binary response).
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E Regression with Censored Outcomes

Box S9 illustrates how to fit a model to a censored trait. Note that in the case of censored trait the
response is specified using a triplet (ai, yi, bi) (see Table 2 for further details). For assessment of
prediction accuracy (not done in Box S9), one can set ai = −∞, yi = NA, bi = ∞ for individuals in
testing data sets, this way there is no information about the ith phenotype available for the model
fit.

Box S9: Fitting censored traits

#1# Loading and preparing the input data
library(BGLR); data(wheat);
Y<-wheat.Y; X<-wheat.X; A<-wheat.A;
y<-Y[,1]
set.seed(123)

#censored
n<-length(y)
cen<-sample(1:n,size=200)
yCen<-y
yCen[cen]<-NA
a<-rep(NA,n)
b<-rep(NA,n)
a[cen]<-y[cen]-runif(min=0,max=1,n=200)
b[cen]<-Inf

#models
ETA<-list(list(X=X,model="BL"))

fm<-BGLR(y=yCen,a=a,b=b,ETA=ETA,nIter=12000,burnIn=2000)

cor(y[cen],fm$yHat[cen])

13



14 
 

File S2 

Boxes.R 

 

Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164442/‐/DC1 

 

 

 

 

 

 

 

 

 

   


	Introduction
	Statistical Models, Algorithms and Data
	Application Examples
	Benchmark of parametric models
	Concluding Remarks
	Prior Densities Used in the BGLR R-Package
	Default rules for choosing hyper-parameters
	Supplementary R scripts
	Regression with Ordinal and Binary Traits
	Regression with Censored Outcomes



